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“Modes” of truth

Recall: logic with respect to a knowledge base
Contextualizes statements — need abstract notion of context

« Informally, time: when is something true?

«  When must something be true?¢ Refers not to time, but “in what contexte”

« Formally more abstract than time: fime has a specific sequential meaning, but we ma

want a broader definition



Recap: Semantics

Recall: a formal semantics is a mapping from a surface string (syntax) to an underlying structure that

gives a surface string meaning.
Propositional logic example: Given assignment A ={p:1,q:0,r: 1}, AE@PVg —r

Predicate logic example: Given U = N and structure M = (F ={+}, P ={=}), M Evnim(m=n+
Finding an assignment that models a formula == searching for a satisfying assignment (SAT)

Finding a structure to model a predicate formula - not emphasized
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Take everything from propositional logic and add:
« O ("box" = “necessity” - like V)
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Basic modal logic: Syntax

Take everything from propositional logic and add:

« O ("box" = “necessity” - like V)

o O (“diamond” = “possibility” - like 3)

These are unary operators that can be prefixed to any valid propositional or modal logical fo

p -p gAp p—>q pVva
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Basic modal logic: Model specification

Model structure: M = (W, R, L)
« W:set of “worlds” (nodes in a graph),

« R: binary “accessibility relation” on W (edges in @
graph),

- L: “labeling function” from each world to a subset
of atomes,

Where the set of atoms is the set of propositions.




Basic modal logic: Semantics

Given Model structure: M = (W,R,L).Letw € W.Then:

wiF T

w1l

w ik aiff a e L(w)
WIF 7@ ITTW I @

wiFo AY iff wikF e and w IFY

wik @ VY iff at least one of wiF g orw I- ¢
wik @ - Y iff wiF @ wheneverw IF ¢

wikOg iff vw e W (R(w, W) - W' IF)
wiF O iffIw eW (Rw, W) A W IFY )
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New rules/equivalences

DeMorgan's: Distributive: Tautology, contradiction:

n0@ =0 g O(p AY) =0¢ VOy oT =T
— 0@ =0O-¢ o V) =0 Aoy OT #o T
ol=1

Connective equivalence:

ol 0Ol
0@ =0 @
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Model satistiability

So far: world safisfiability (e.g.,w I+ p).

Let M = (W,R,L). If every world w € W satfisfies a formula ¢, then we

sQy M E .



Valid formulas: Propositional logic

Recall: a formula is valid iff every possible assignment/structure makes it true.

Equivalently: a formula is valid iff there does not exist an assignment that

could make it false.

Examples:

(»p = q) = (—~q » —p)



Valid formulas: Basic Modal Logic

All the same valid formulas, plus “K":
(@ = ¢) ADgp) » OY
Also written:

O(p =) - (Op — OY)

Work through derivation on the board



New interpretation of modes: Knowledge, Belief

Necessity, possibility - abstract concept
Can provide alternative interpretations of “It is necessarily true that ¢” for the string og:
- It will always be frue that ¢" (temporal logic 2 coming up!)
+ "It ought fo be true that” (deontological > law)

« “Agent Q believes that” (belief)

« “Agent Q knows that” (knowledge)
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Can provide alternative interpretations of “It is necessarily frue that ¢” for the string og:
« It will always be true that ¢" (temporal logic > coming up!)
« “It ought to be true that” (deontological 2 law)
Do °Q

- “Agent Q believes that” (belief) “o is consistent with Q’s beliefs”

“Agent Q knows that” (knowledge)



New interpretation of modes: Knowledge, Belief

Necessity, possibility = abstract concept

Can provide alternative interpretations of “It is necessarily true that ¢" for the string oe:

“It will always be frue that ¢” (temporal logic » coming upl)
“It ought to be true that” (deontological -2 law)

“Agent Q believes that” (belief)

°Q

“Agent Q knows that” (knowledge) “For all Q knows, ¢”

D

Both interpretations of possible (diamond) are more intuitive uno-
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Capturing domain-specific axioms

Returning to the totally abstracted case:
Is op — p valid?
If O represents belief, is ap — p<e
(Recall: op means “Agent Q believes p to be true”)
If O represents knowledge, is ap - p?

(Recall: op means “Agent Q knows p o be frue”)



Sometimes we want to assert a formula schema

Formula schema: high-level pattern (we've seen this before)
e.g., @ V- is a schema;

pV-apand (p - q) V-(p — q) are instances

We want op — p to be true when talking about knowledge, but not
belief (even though it isn't valid generally).

When we assert a formula schema, we intfroduce it as an axiom.
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true things AXIOM
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o @ —o O

Agent Q only knows
true things

Agent Q knows what
it knows
(introspection)

If agent Q doesn’t
know something, it
doesn’t know what it
doesn’t know

NOT A SUITABLE
AXIOM

Agent Q believes what
it believes

If agent Q doesn’t
believe something, it
doesn’t believe what
it doesn’t believe
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Agent Q only knows

true things

Agent Q knows what it
knows (introspection)

If agent Q doesn’t know
something, it doesn’t

know what it doesn’t

know

Agent Q doesn’t know

contradictions

Agent Q can chain

knowledge (true things)

NOT A SUITABLE
AXIOM

Agent Q believes
what it believes

If agent Q doesn’t
believe something,
it doesn’t believe
what it doesn’t
believe

Agent Q doesn’t
believe
contradictions

Agent Q can chain
belief (true things)



Knowledge Belief Property
(axiom name)

Op - p Agent Q only knows NOT A SUITABLE Reflexive (T)
true things AXIOM
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o > 0O¢¢ Ifagent Qdoesn’t know If agent Q doesn’t

something, it doesn’t believe something,
know what it doesn’t it doesn’t believe
know what it doesn’t
believe
oT Agent Q doesn’t know  Agent Q doesn’t
contradictions believe

contradictions

Op —o @ Agent Q can chain Agent Q can chain
knowledge (true things) belief (true things)
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Agent Q only knows

true things

Agent Q knows what it
knows (introspection)

If agent Q doesn’t know
something, it doesn’t
know what it doesn’t

know

Agent Q doesn’t know

contradictions
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knowledge (true things)

NOT A SUITABLE
AXIOM

Agent Q believes
what it believes

If agent Q doesn’t
believe something,
it doesn’t believe
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believe
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Agent Q can chain
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Property
(axiom name)

Reflexive (T)

Transitive (4)

Euclidean (5)

Serial (D)

Serial (D)

viw,w',w') € WxWxW),
(Rw,w)ARW", w'") - R(w,w'))

Viw,w',w'') € (WxWxW),
(Rw,w) AR(w,w'") > R(wW',w'))

vw e W(@Aw' € W(R(w,w"))

vyw e W@Aw' € W(R(w,w"))



