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“Modes” of truth

Recall: logic with respect to a knowledge base

Contextualizes statements – need abstract notion of context

• Informally, time: when is something true?

• When must something be true? Refers not to time, but “in what context?”

• Formally more abstract than time: time has a specific sequential meaning, but we may 

want a broader definition



Recap: Semantics

Recall: a formal semantics is a mapping from a surface string (syntax) to an underlying structure that 

gives a surface string meaning. 

Propositional logic example: Given assignment 𝒜 = p ∶ 1, q ∶ 0, 𝑟 ∶ 1 , 𝒜 ⊨ 𝑝 ∨ 𝑞 ⟶ 𝑟

Predicate logic example: Given 𝒰 = ℕ and structure ℳ = ℱ = + , 𝒫 = = , ℳ ⊨ ∀𝑛∃𝑚(𝑚 = 𝑛 + 1)

Finding an assignment that models a formula == searching for a satisfying assignment (SAT)

Finding a structure to model a predicate formula à not emphasized



Basic modal logic: Syntax
Take everything from propositional logic and add:

• ☐ (“box” = “necessity” à like ∀)

• ◇ (“diamond” = “possibility” à like ∃)

These are unary operators that can be prefixed to any valid propositional or modal logical formula:
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Basic modal logic: Syntax
Take everything from propositional logic and add:

• ☐ (“box” = “necessity” à like ∀)

• ◇ (“diamond” = “possibility” à like ∃)

These are unary operators that can be prefixed to any valid propositional or modal logical formula:

p ¬p q ∧ p p → q p ∨ q

☐ p ◇¬p ☐(q ∧ p) ◇(p → q) q ∨☐ p
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Basic modal logic: Model specification
Model structure: ℳ = (𝑊,𝑅, 𝐿)

• W: set of “worlds” (nodes in a graph),

• R: binary “accessibility relation” on W (edges in a 
graph),

• L: “labeling function” from each world to a subset 
of atoms,

Where the set of atoms is the set of propositions.
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Basic modal logic: Semantics
Given Model structure: ℳ = 𝑊,𝑅, 𝐿 . Let 𝑤 ∈ 𝑊. Then:

𝑤⊩ ⊤

𝑤⊮⊥

𝑤⊩ a iff a ∈ L(w)

𝑤⊩ ¬𝜑 iff w ⊮ 𝜑

𝑤⊩ 𝜑 ∧ 𝜓 iff w ⊩ 𝜑 and w ⊩𝜓

𝑤⊩ 𝜑 ∨ 𝜓 iff at least one of w ⊩ 𝜑 or w ⊩ 𝜓

𝑤⊩ 𝜑 → 𝜓 iff w ⊩ 𝜑 whenever w ⊩ 𝜓

𝑤⊩ ☐𝜑 iff ∀ w’ ∈ W (R(w, w’) → w’ ⊩ 𝜓)

𝑤⊩ ◇𝜑 iff ∃ w’ ∈ W (R(w, w’) ∧ w’ ⊩ 𝜓 )
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Let 𝜑 = q and 𝜓 = p
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Basic modal logic: Semantics
Given Model structure: ℳ = 𝑊,𝑅, 𝐿 . Let 𝑤 ∈ 𝑊. Then:
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Given Model structure: ℳ = 𝑊,𝑅, 𝐿 . Let 𝑤 ∈ 𝑊. Then:

𝑤⊩ ⊤

𝑤⊮⊥
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Basic modal logic: Semantics
Given Model structure: ℳ = 𝑊,𝑅, 𝐿 . Let 𝑤 ∈ 𝑊. Then:
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Basic modal logic: Semantics
Given Model structure: ℳ = 𝑊,𝑅, 𝐿 . Let 𝑤 ∈ 𝑊. Then:
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Basic modal logic: Semantics
Given Model structure: ℳ = 𝑊,𝑅, 𝐿 . Let 𝑤 ∈ 𝑊. Then:

𝑤⊩ ⊤

𝑤⊮ ⊥
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New rules/equivalences

DeMorgan’s:

¬□𝜑 = ⋄ ¬𝜑

¬ ⋄ 𝜑 = □¬𝜑

Distributive:

□(𝜑 ∧ 𝜓) = □𝜑 ∨ □𝜓

⋄ 𝜑 ∨ 𝜓 =⋄ 𝜑 ∧⋄ 𝜓

Tautology,	contradiction:

□⊤ = ⊤

□⊤ ≠⋄ ⊤

⋄⊥= ⊥

⋄⊥≠ □ ⊥
Connective	equivalence:

¬□¬𝜑 =⋄ 𝜑



Basic modal logic: Stacked modals
Given Model structure: ℳ = 𝑊,𝑅, 𝐿 . Let 𝑤 ∈ 𝑊. Then:

𝑤⊩ ⊤

𝑤⊮ ⊥

𝑤⊩ p iff p ∈ L(w)

𝑤⊩ ¬𝜑 iff w ⊮ 𝜑

𝑤⊩ 𝜑 ∧ 𝜓 iff w ⊩ 𝜑 and w ⊩𝜓

𝑤⊩ 𝜑 ∨ 𝜓 iff at least one of w ⊩ 𝜑 or w ⊩ 𝜓

𝑤⊩ 𝜑 → 𝜓 iff w ⊩ 𝜑 whenever w ⊩ 𝜓

𝑤⊩ ☐𝜑 iff ∀ w’ ∈ W (R(w, w’) → w’ ⊩ 𝜓)

𝑤⊩ ◇𝜑 iff ∃ w’ ∈ W (R(w, w’) ∧ w’ ⊩ 𝜓 )
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Find a world 𝑤 such that 𝑤⊩☐ ⋄ q



Basic modal logic: Stacked modals
Given Model structure: ℳ = 𝑊,𝑅, 𝐿 . Let 𝑤 ∈ 𝑊. Then:

𝑤⊩ ⊤

𝑤⊮ ⊥

𝑤⊩ p iff p ∈ L(w)

𝑤⊩ ¬𝜑 iff w ⊮ 𝜑
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Model satisfiability

So far: world safisfiability (e. g. , 𝑤 ⊩ p).

Let ℳ = 𝑊,𝑅, 𝐿 . If every world 𝑤 ∈ 𝑊 satisfies a formula 𝜑, then we 

say ℳ ⊨ 𝜑.



Valid formulas: Propositional logic

Recall: a formula is valid iff every possible assignment/structure makes it true.

Equivalently: a formula is valid iff there does not exist an assignment that

could make it false.

Examples:

𝑝 ∨ ¬𝑝 𝑝 → 𝑝 𝑝 → 𝑞 → (¬𝑞 → ¬𝑝)



Valid formulas: Basic Modal Logic

All the same valid formulas, plus “K”:

(□(𝜑 → 𝜓) ∧ □𝜑) → □𝜓

Also written:

□(𝜑 → 𝜓) → (□𝜑 → □𝜓)

Work through derivation on the board



New interpretation of modes: Knowledge, Belief

Necessity, possibility à abstract concept

Can provide alternative interpretations of “It is necessarily true that 𝜑” for the string □𝜑:

• “It will always be true that 𝜑” (temporal logic à coming up!)

• “It ought to be true that” (deontological à law)

• “Agent Q believes that” (belief)

• “Agent Q knows that” (knowledge)
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Can provide alternative interpretations of “It is necessarily true that 𝜑” for the string □𝜑:
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□𝜑 ⋄ 𝜑
“𝜑 is consistent with Q’s beliefs”



New interpretation of modes: Knowledge, Belief

Necessity, possibility à abstract concept

Can provide alternative interpretations of “It is necessarily true that 𝜑” for the string □𝜑:

• “It will always be true that 𝜑” (temporal logic à coming up!)

• “It ought to be true that” (deontological à law)

• “Agent Q believes that” (belief)

• “Agent Q knows that” (knowledge)
□𝜑

⋄ 𝜑
“For all Q knows, 𝜑”

Both interpretations of possible (diamond) are more intuitive under ¬□¬𝜑 =⋄ 𝜑



Capturing domain-specific axioms

Returning to the totally abstracted case:

Is □𝑝 → 𝑝 valid?
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Capturing domain-specific axioms

Returning to the totally abstracted case:

Is □𝑝 → 𝑝 valid?
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Capturing domain-specific axioms

Returning to the totally abstracted case:

Is □𝑝 → 𝑝 valid?

If □ represents belief, is □𝑝 → 𝑝?

(Recall: □𝑝 means “Agent Q believes p to be true”)
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(Recall: □𝑝 means “Agent Q knows p to be true”)

P, 
q

q
p

p
q

w1

w6

w5

w4

w3

w2



Sometimes we want to assert a formula schema 

Formula schema: high-level pattern (we’ve seen this before)

e.g., 𝜑 ∨ ¬𝜑 is a schema; 

𝑝 ∨ ¬𝑝 and 𝑝 → 𝑞 ∨ ¬ 𝑝 → 𝑞 are instances

We want □𝑝 → 𝑝 to be true when talking about knowledge, but not 
belief (even though it isn’t valid generally).

When we assert a formula schema, we introduce it as an axiom.
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