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Longstanding debate in behavioral sciences about 
selfish versus cooperative behaviors

• Results from previous experimental studies, mostly of voluntary mechanisms and 
conducted under controlled laboratory conditions, suggest that the behavior of 
human agents is neither perfectly selfish nor perfectly cooperative (Ledyard 1995, 
Gintis 2000, Messer et al. 2007). 

• After reviewing experimental research conducted to estimate cooperative and 
non-cooperative decision behaviors for provision of public goods under voluntary 
mechanisms, Ledyard (1995:172-173) noted that:

– “There appear to be three kinds of players: dedicated Nash players who act pretty much as predicted 

by game theory with possibly a small number of mistakes, a group of subjects who will respond to self 

interest as will Nash players if the incentives are high enough but who also make mistakes, and 

respond to decision costs, fairness, altruism, etc., and a group of subjects who behave in an 

inexplicable (irrational?) manner. Casual observation suggests that the proportions are 50 percent, 

40 percent, 10 percent in many subject pools.”



Hypotheses & Game Design
(1) Incentives in the form of taxes and subsidies induce cooperative behavior among 
agents in a river-system network. 

(2) The number and frequency of water-quality sensors increases cooperative behavior.

(3) The spatial locations of the decision-makers relative to the spatial locations of the 
sensors affects the induction of cooperative behavior.

Table 2: Treatment table 

Treatment/Parcel Sensor Number Frequency of Sensing Ambient Tax/Subsidy 

Treatment A One One time Yes 

Treatment B One Four time Yes 

Treatment C One Continuous Yes 

Treatment D Two One time Yes 

Treatment E Two Four time Yes 

Treatment F Two Continuous Yes 

 

Generally, there are two types of differences among treatments: sensor number and 

frequency of sensing. On one hand, for treatments A, B and C, there is one sensor located 

at just downstream of parcel 6, while for treatments D, E and F, one sensor is placed at 

just downstream of parcel 6 and another one is located at just downstream of parcel 3. On 

the other hand, for treatments A and D, sensor(s) measure the concentration of pollutant 

at low sensing frequency, one time in time horizon T. For treatments B and E, sensor(s) 

measure the concentration of pollutant at high sensing frequency, four times in time 

horizon T. For treatments C and F, sensor(s) measure the concentration of pollutant 

continuously. Next, we describe six treatments in detail. 

2.2.1 Treatment A 

In this treatment, one sensor is placed at just downstream of parcel 6. After all the 

pollutant enters the river, the sensor measures the concentration of pollutant at just 

downstream of parcel 6 for one time in time horizon T. Ambient tax/subsidy is 

determined by difference between measured concentration and optimal maximum 

concentration (OMC) though it is very likely that the measured concentration is not the 

actual maximum concentration. We assume that the profit function of each agent is 

his/her utility function. So agents’ utility function takes the form of equation (5): 

      U
1
n =-10[C (x1,…, x5, x6) -7.75 ]+ 35 – 0.0075(50 - xn)
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where U

1
n is the utility of agent n in treatment A, 7.75 is OMC determined by the 

principal exogenously and  C (x1,…, x5, x6) is measured concentration.  If we assume all 

the agents are risk-neutral and maximize their expected utility in each round of treatment 

A, one agent will choose a production that maximize expected value of U
1
n: E[U

1
n]. 

Since agents are not allowed to communicate, non-cooperative game theory is used to 

predict potential outcome of all treatments. According to numerical calculation, 

theoretical prediction of each agent’s production in treatment A is presented in Table 1. 

This array of production is essentially Nash equilibrium (NE) since no one agent gets 

more benefit if he deviate from the predicted production level. Form the table, the 

production level is almost symmetric across all the parcels.     



Clustering analysis of gaming data reveals four 
types of behavioral strategies
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Multilevel multinomial logistic regression models predict induction 
of cooperative behaviors for different policy and sensor regimes

• Incentives in the form of taxes and subsidies generally induce 
cooperative behavior but the effect is conditional on the location of 
the agent’s property in the river network
– Downstream agents display a slightly greater likelihood to behave 

selfishly/competitively despite the tax/subsidy incentives. 

– The number of sensors and frequency of sensing has the greatest effect in 
inducing cooperative behavior for upstream agents.

• There is an optimal number of sensors and frequency of sensing 
that can maximize the induction of cooperative behavior. Beyond 
that number and frequency, the addition of sensors and frequency 
of sensing diminish the likelihood of cooperation in maintaining 
water quality. 



Scaling from Games to ABMs



ABM models farmer joint production behaviors at watershed scales 
under different policy and sensor regimes

Treatment 1: One Sensor & 
One timeControl: No Sensor

ABM model calibration for Missisquoi watershed is in process

ABM model will likely be replicated in DE and/or RI watersheds
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