Climate Change Projections for the Lake Champlain Basin

Jonathan Winter^{1,2}, Brian Beckage³, Gabriela Bucini³, Patrick Clemins³

¹Dartmouth College, ²Columbia University, ³University of Vermont

August 5, 2014

Experimental Program to Stimulate Competitive Research

Greenhouse Gas Concentrations Are Increasing

Source: USGCRP, 2009

Greenhouse Gas Concentrations Will Continue to Increase in the Future

Source: IPCC Fifth Assessment Report, 2013

VT EPSCoR Climate Team Key Questions

- How well can we simulate climate using numerical models?
- What is the local response of precipitation and temperature to climate change?
- What are the critical uncertainties in predicting climate change impacts?

Source: The Nature Conservancy

Global Climate Models (GCMs) Predict Temperature and Precipitation

- GCMs solve the primitive equations (conservation of momentum, mass, and energy) to simulate fluid flow on a spherical surface
- Can be atmospheric (AGCM), oceanic (OGCM) or coupled atmospheric-oceanic general circulation models (AOGCM)
- AOGCMs are the core of full climate models
- Global spatial coverage
- Contain significant inaccuracies, coarse resolution

Ocean Model (AOGCM) or Fixed Sea Surface Temperatures with Ocean Flux Parameterization (AGCM)

Surface Physics

Statistical Downscaling Bias Corrects and Increases Resolution of GCM Projections

- Bias correct and downscale GCM data based on interpolated station observations
- Removes some inaccuracies of GCMs
- Increases spatial resolution, but limits spatial coverage
- Multiple methods and target observational datasets
- Statistically downscaled climate projections constrained by observational record or extrapolations of observational record

VT EPSCoR Climate Team Research Overview

• Completed

- Assessment of an ensemble of intermediately downscaled (1/8°) GCM projections over the Lake Champlain Basin
- Guilbert, J., B. Beckage, J. M. Winter, R. M. Horton, T. Perkins, and A. Bomblies. 2014. Impacts of projected climate change over the Lake Champlain Basin in Vermont. *Journal of Applied Meteorology and Climatology*, 53(8): 1861-1875.
- Developed methodology for very high resolution downscaling of intermediately downscaled data and processed initial ensemble members

• In Progress

- Complete ensemble of very high resolution projections
- Publish methodology and assessment of very high resolution dataset
- Assist with integrating and evaluating downscaled products for IAM applications

Impacts of Projected Climate Change Over the Lake Champlain Basin in Vermont

- Difference between midcentury (2040-2069), end-ofcentury (2070-2099) and historical (1970-1999) climate
- Two Representative
 Concentration Pathways (RCPs):
 4.5 and 8.5
- CMIP5, 4 GCMs: CSIRO-MK3 (wet), IPSL-CM5 (dry), MIROC-ESM (warm), INM-CM4 (cool)
- Bias-Corrected with Constructed Analogues (BCCA; Brekke et al., 2013)

Temperature Will Increase

Precipitation Is Likely to Increase

Source: Guilbert et al., 2014

Hot Days (> 90 °F) Will Increase

Source: Guilbert et al., 2014

Leverage Topographic Data to Create Very High Resolution Climate Scenarios

- Downscale intermediately downscaled products (1/8°, ~12 km) to 30 " (~1 km) using elevation, which is accurate and readily available at 1 km resolution
 - 1. Derive observed temperature and precipitation lapse rates: $\Delta T/\Delta z$, $\Delta P/\Delta z$, from station data
 - 2. Adjust variables to the reference elevation using lapse rate and intermediate resolution (1/8°) elevation dataset
 - 3. Interpolate data with inverse distance weighting to increase spatial resolution
 - 4. Create very high resolution variables by adjusting interpolated data using lapse rate and high resolution (30 ") elevation dataset

Derive Lapse Rates with an Assumed Functional Form and MLE

• Calculate the relationship between elevation (z), temperature (T), precipitation (P), and latitude (ϕ)

$$T = \alpha z + \beta \phi + T_0$$

$$P = P_0 \left[\frac{1 + \chi(z - z_0)}{1 - \chi(z - z_0)} \right]$$

• Maximum Likelihood Estimation (MLE) with station observations to find α , β , and χ

Source: Liston and Elder, 2006

Refine Climate Data Based on Elevation, Lapse Rates, and Interpolation

- Adjust intermediate resolution (1/8°) temperature and precipitation fields using α , β , χ , and z, ϕ at 1/8° to reference elevation
- Interpolate intermediate resolution (1/8°) data to very high resolution (30 ")
- Adjust very high resolution (30 ") temperature and precipitation using α , β , χ , and z, ϕ at 30" to actual elevation

Very High Resolution Output

- Daily average temperature (top) and precipitation (bottom)
- May 25, 1950
- CSIRO ACCESS
- BCCA
- Inverse DistanceWeighting

Ensemble of Intermediately Downscaled Climate Scenarios

Method	Project	Scenario	Time step	Time Period	Resolution	Domain	#of GCMs
ARR	CMIP3	A1B A2	Daily	1960-2099	1/8°	US + Canada	27
BCSD	CMIP3	A1B A2	Monthly	1950-2099	1/8°	US + Canada	15
BCSD	CMIP5	RCP4.5 RCP8.5	Monthly	1950-2099	1/8°	US + Canada	28
BCCA	CMIP3	A1B A2	Daily	1961-2000 2046-2065 2081-2099	1/8°	US + Canada	9
BCCA	CMIP5	RCP4.5 RCP8.5	Daily	1950-2099	1/8°	US + Canada	20
BCSD	CMIP5	RCP4.5 RCP8.5	Daily	1950-2100	1/16°	US	21

Why Use a GCM-Based Ensemble Approach?

• GCMs are the only tools that account for the complex set of processes that determine future climate, but they contain structural and practical inaccuracies (Murphy et al., 2004;

Suckling and Smith, 2013; Macilwain 2014)

 "The best" climate change projection is as allusive as Champ

- Ensembles enable uncertainty assessment
- Can be combined with statistical methods (Macilwain, 2014)

Ensemble Methods Facilitated by Big Data and Computation

• Volume

- Downscaling three variables, precipitation, minimum temperature, and maximum temperature, for 150 ensemble members - unique combination of GCM, intermediate downscaling method, and interpolation method
- Each downscaled variable requires over 240 compute hours on NCAR's
 Yellowstone supercomputer distributed over 150 cores, and over
 - 27 GB of disk spaceEstablished a public
- Established a public GLOBUS
 end-point at UVM to speed data
 transfer to and from Yellowstone

Veracity

 Downscaling process subjected to external review and algorithmic cross-validation, and QA/QC check was established for each downscaled variable

Source: ucar.edu

Pegasus Downscaling Workflow for Integration with IAM

Very High Resolution Output: Burlington Temperature Histograms

Very High Resolution Output: Burlington Precipitation Histograms

Capacity Development, Disciplinary Engagement, and Community Outreach

- WRF Tutorial on Climate Modeling: National Center for Atmospheric Research (NCAR), Jul. 2013
- Workshop on Quantitative Evaluation of Downscaling, National Center for Atmospheric Research, Aug. 2013
- Sierra Club of the Upper Valley Presentation: "Climate Change over the Northeast: Projections and Impacts on Flooding and Agriculture", Nov. 2013
- AGU Fall Meeting Convener: "General Circulation Model Downscaling for Impact, Vulnerability and Adaption Assessments: Methodologies and Applications, Dec. 2013
- 15th Annual WRF Users' Workshop on Climate Modeling, National Center for Atmospheric Research, Jun. 2014
- AGU Fall Meeting Convener: "Characterizing, Understanding, and Modeling Climate Extremes", Dec. 2014