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Greenhouse Gas Concentrations
Are Increasing
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Greenhouse Gas Concentrations Will
Continue to Increase in the Future
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VT EPSCoR Climate Team
Key Questions

e How well can we simulate climate using numerical models?

e \What is the local response of precipitation and temperature
to climate change?

e \What are the critical uncertainties in predicting climate
change impacts?

Source: The Nature Conservancy



Global Climate Models (GCMs) Predict
Temperature and Precipitation

e GCMs solve the primitive equations (conservation of
momentum, mass, and energy) to simulate fluid flow on a
spherical surface

e Can be atmospheric (AGCM), oceanic (OGCM) or coupled

atmospheric-oceanic general circulation models (AOGCM)
e AOGCMs are the core of full climate models
e Global spatial coverage
e Contain significant inaccuracies, coarse resolution
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Statistical Downscaling Bias Corrects and
Increases Resolution of GCM Projections

e Bias correct and downscale GCM data based on interpolated
station observations

e Removes some inaccuracies of GCMs

e [ncreases spatial resolution, but limits spatial coverage

e Multiple methods and target observational datasets

e Statistically downscaled climate projections constrained by
observational record or extrapolations of observational
record




VT EPSCoR Climate Team
Research Overview

e Completed

— Assessment of an ensemble of intermediately downscaled (1/8 °) GCM
projections over the Lake Champlain Basin

— QGuilbert, J., B. Beckage, J. M. Winter, R. M. Horton, T. Perkins, and A.
Bomblies. 2014. Impacts of projected climate change over the Lake
Champlain Basin in Vermont. Journal of Applied Meteorology and

Climatology, 53(8): 1861-1875.
— Developed methodology for very high resolution n

downscaling of intermediately downscaled data -
high resolution dataset

and processed initial ensemble members
— Assist with integrating and evaluating downscalec
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Impacts of Projected Climate Change Over
the Lake Champlain Basin in Vermont

e Difference between mid-
century (2040-2069), end-of-

century (2070-2099) and
historical (1970-1999) climate
e Two Representative iﬁ@,g’?gm? g
Concentration Pathways (RCPs): égﬁ%ﬁ? ;
EEIE
4.>and 8.5 3¥%§ﬁ£ﬁ
e CMIP5, 4 GCMs: CSIRO-MK3 e ?"’
(wet), IPSL-CM5 (dry), MIROC-
ESM (warm), INM-CM4 (cool)
e Bias-Corrected with
Constructed Analogues (BCCA;
Brekke et al., 2013)

Source: Guilbert et al., 2014



Temperature Will Increase
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Precipitation Is Likely to Increase
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Leverage Topographic Data to Create Very
High Resolution Climate Scenarios

e Downscale intermediately downscaled products (1/8 °,
~12 km) to 30 “ (~1 km) using elevation, which is accurate

and readily available at 1 km resolution
1. Derive observed temperature and precipitation lapse rates: AT/Az,

AP/Az, from station data
2. Adjust variables to the reference elevation using lapse rate and

intermediate resolution (1/8 °) elevation dataset
3. Interpolate data with inverse 1/8 degree

30 arcsecond

distance weighting to increase

spatial resolution

4. Create very high resolution

variables by adjusting

interpolated data using lapse

rate and high resolution (30 )

elevation dataset




Derive Lapse Rates with an Assumed
Functional Form and MLE
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e Calculate the relationship

between elevation (z2),

temperature (7),
precipitation (P), and

latitude ()

I'=o0z+ pop+1,

e Maximum Likelihood
Estimation (MLE) with
station observations to find

a, B, and X

Source: Liston and Elder, 2006



Refine Climate Data Based on Elevation,
Lapse Rates, and Interpolation

1/8 ° Precipitation Field at 200m e Adjust intermediate

181111111 resolution (1/8 °)
temperature and
precipitation fields using a,
B, %, andz, p at 1/8 ° to
reference elevation

e [nterpolate intermediate
resolution (1/8 °) data to
very high resolution (30 “)

e Adjust very high resolution
(30 “) temperature and
precipitation using o, B, ¥,

-140 -735 -713.0 -725 and Z, (I) at 30" to actual

elevation
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Very High Resolution Output

e Daily average
temperature (top)
and precipitation
(bottom)

e May 25, 1950

e CSIRO ACCESS

e BCCA

e |nverse Distance
Weighting




Ensemble of Intermediately Downscaled
Climate Scenarios

Method Project Scenario Time step Time Period Resolution Domain # of GCMs

Al1B US +
CMIP3 Daily 1960-2099 |[1/8° 27
A2 Canada

1961-2000
AlB | US +
CMIP3 Daily 2046-2065 |1/8°
A2 Canada
2081-2099
RCP4.5 US +
BCCA CMIP5 Daily 1950-2099 |1/8° 20
RCPS8.5 Canada
RCP4.5
CMIP5 Daily 1950-2100 |1/16° US 21
RCP&.5

ARR

BCSD

BCSD

BCSD



Why Use a GCM-Based
Ensemble Approach?

e GCMs are the only tools that account for the complex set of
processes that determine future climate, but they contain
structural and practical inaccuracies (Murphy et al., 2004;
Suckling and Smith, 2013; Mid-Jun 2014 Plume of Model ENSO Predictions
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Ensemble Methods Facilitated by Big Data
and Computation

* Volume
— Downscaling three variables, precipitation, minimum temperature, and

maximum temperature, for 150 ensemble members - unique
combination of GCM, intermediate downscaling method, and

interpolation method
— Each downscaled variable requires over 240 compute hours on NCAR’s

Yellowstone supercomputer distributed over 150 cores, and over

27 GB of disk space
— Established a public GLOBUS

end-point at UVM to speed data
transfer to and from Yellowstone
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Pegasus Downscaling Workflow for
Integration with |AM

Preliminary: reading NCDF files Iin

(Green: input
- Intermediate
Brown: output

COARSE-SCALE

FOR T AND P apply lapse-rate to P and T and bring
them down to reference elevation

Elevation Data

Files

o COARSE-SCALE BASELINE FOR
S TANDP - -
=: interpolation from coarse-grade to
g fine-grade at baseline elevation
D)

Water Masks c% @ <:
S
g' FINE-SCALE BASELINE

FORTANDP apply lapse-rate to P and T and bring
them to actual elevation

@ C——

DOWNSCALED/FINE-SCALED

Parameter Files

FORTANDP create the NetCDF files and write them

to desk

GENERATE NCDF FILES




Very High Resolution Output:
Burlington Temperature Histograms
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Very High Resolution Output:
Burlington Precipitation Histograms
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Capacity Development, Disciplinary
Engagement, and Community Outreach

e WRF Tutorial on Climate Modeling: National Center for
Atmospheric Research (NCAR), Jul. 2013

e Workshop on Quantitative Evaluation of Downscaling,

National Center for Atmospheric Research, Aug. 2013

e Sierra Club of the Upper Valley Presentation: “Climate
Change over the Northeast: Projections and Impacts on
Flooding and Agriculture”, Nov. 2013

e AGU Fall Meeting Convener: “General Circulation Model
Downscaling for Impact, Vulnerability and Adaption
Assessments: Methodologies and Applications, Dec. 2013

e 15t" Annual WRF Users' Workshop on Climate Modeling,

National Center for Atmospheric Research, Jun. 2014

e AGU Fall Meeting Convener: “Characterizing,
Understanding, and Modeling Climate Extremes”, Dec. 2014




