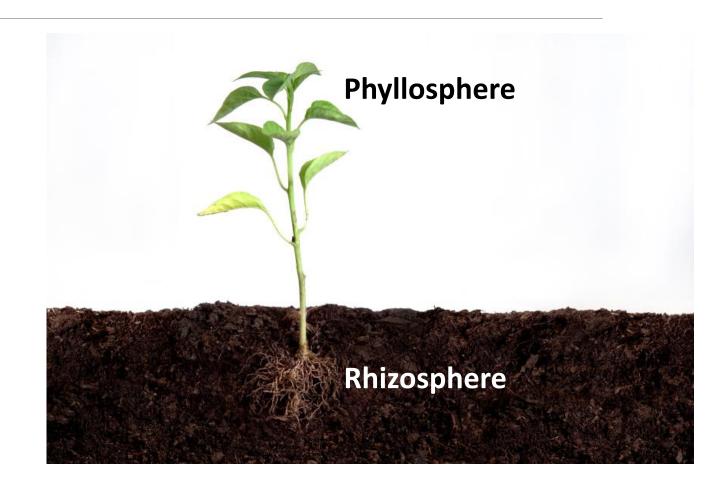
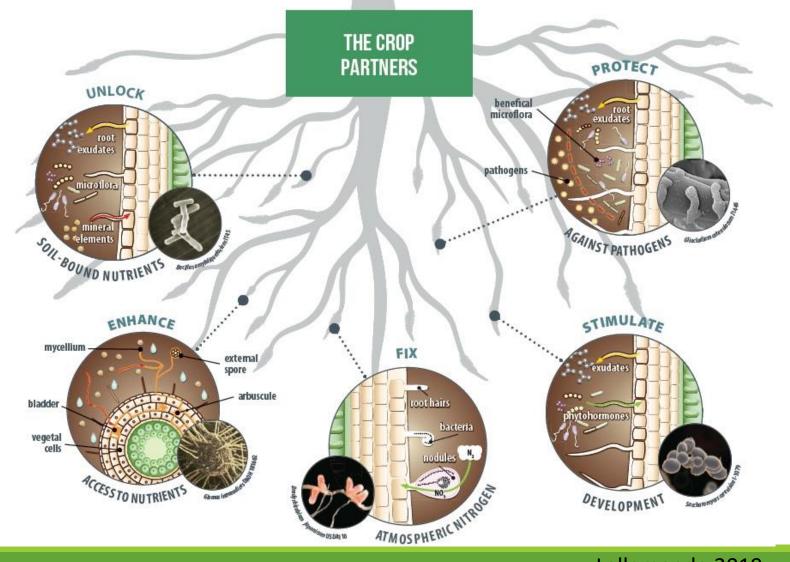
Potting Soils & Biopesticides


HOW THE SOIL TYPE INFLUENCES THE EFFECTIVENESS OF BIOPESTICIDES

Agricultural Sciences MS' 21
Poleatewich Plant Pathology Lab
Department of Agriculture, Nutrition, and Food Systems
University of New Hampshire

Soil's Interactions with the Plant

Most diverse "ecosystem" of all


- Bulk soil: tens of thousands of bacteria per gram
- Rhizosphere BILLIONS bacteria per gram

Interactions Examples

Lots of interactions between microbes and the crop!

Soils have Natural Disease Suppressiveness

Substrates & Greenhouse Production

Peat Coco Coir Wood products Oasis®

- Lots of reasons (economic, environmental, etc.) to choose different substrates
- What about disease suppressiveness of those substrates?

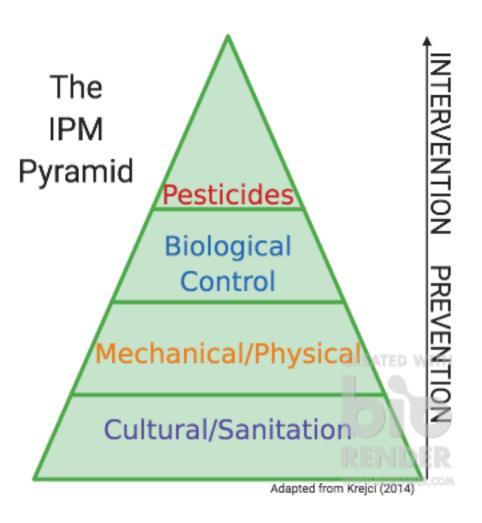
We know different substrates/soils have different "natural" disease suppressiveness

Why?

Differences in chemical and physical properties

What about differences in how a biopesticide works in different substrates?

Like other soil microbes, Biopesticides are alive!



Biopesticides

Biological organisms—microbes like fungi and bacteria

Better for the environment, for growers, and for consumers

Best as a proactive approach to disease management

Previous work in the Poleatewich Plant Pathology Lab...

Pythium as our focus species

 Pythium root rot as a major greenhouse disease

Liza DeGenring's work:

- Application of biopesticides in propagation
- 3 biopesticides on 3 substrates: Peat, Coir, and Oasis[®]

Results:

Biopesticides applied at propagation did NOT cause phytotoxicity

Oasis® performed best against Pythium root rot across biopesticides

My focus: The effect of substrate type on biopesticide efficacy in greenhouse production

Questions:

- 1. How does the type of substrate affect biopesticide efficacy in production?
- 2. Why does the type of substrate affect biopesticide efficacy in production?
 - 1. Chemical, physical, biological?

The Specs of My Research

Crops: Cucumbers & Tomatoes

Substrates: Oasis® (inorganic); Peat, Coco coir, Pine bark mulch (organics)

Biopesticides: Cease®, Rootshield® WP, Regalia®

Ultimate Goal: To make biopesticides an effective, practical method of disease control in greenhouses

Feedback?

- 1. As growers, what are substrates and biopesticides that you are using?
- 2. Come talk to me after or email me at:
 - 1. im1063@wildcats.unh.edu
- 3. Thank you!

References

Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. *Trends in Plant Science*, *17*(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001

Hoitink, H., & Boehm, M. (1999). BIOCONTROL WITHIN THE CONTEXT OF SOIL MICROBIAL COMMUNITIES: A Substrate-Dependent Phenomenon. *Annual Review of Phytopathology*, *37*(1), 427–446. https://doi.org/10.1146/annurev.phyto.37.1.427

Lallemande (2019). Rhizosphere Inoculants. Retrieved from https://www.lallemandplantcare.com/en/our-solutions/rhizosphere-inoculants/

Pal, K. K. and B. McSpadden Gardener (2006). Biological Control of Plant Pathogens. *The Plant Health Instructor.* DOI: 10.1094/PHI-A-2006-1117-02.