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Abstract

The biological brain is a complex, modular structure designed to handle a range of
inputs with minimal neuronal hardware. To promote this modularity in simulation, we
propose the use of critical random Boolean networks (RBNs) to represent multiple gait
patterns in a single data structure for a robot. We used a two-part genetic algorithm to
evolve 8-node RBNs, each containing multiple cyclical attractors, in order to show that
pre-evolving RBNs for maximal variability greatly improves the evolutionary fitness of
the simulated robot. Our results indicate that it is feasible to represent multiple,
highly-fit gaits with the cyclic attractors of a single network.

RBN Generation

A Boolean network is a connected system of nodes, and a RBN is a Boolean Network
in which the nodes are connected randomly. Each node in the network can represent
two values, {0, 1} which determines whether the node is ’on’ or ’off’ respectively. The
values of the nodes in the Boolean network are determined by each node’s interaction
with the other nodes in the network.
Since the value of each node in the network at each given timestep is either 0 or 1,
and finding the value of any node at a given time step is completely determined by
other nodes in the network, every initial condition will eventually repeat after a certain
number of iterations. Since these values are fixed, this results in a loop, defined as an
attractor of the network. Each network may have several different attractors that each
possible initial condition can fall into. These attractors will be the driving force behind
the motion of the robot.
Since these attractors will be eventually translated into robotic motion, the goal of
evolving these RBNs is to create networks with diverse sets of attractors. Attractor
sets that have little variability will be useless in translation to robotic motion, so
networks are selected based on high variability. Variation in both the vertical and
horizontal directions in the states of attractors is optimal for nontrivial motion, both of
these variations are used to select for networks with interesting attractor sets.

Figure : The top left portion of the figure shows an example state for a 2-regulator RBN. The value at each
node is shown as Red or Green (0 or 1 respectively). The top right shows an example of a complete
attractor with the associated encoding from the graph. Finally, the bottom shows how this attractor affects
the joint angles of two legs. In each case, the last four bits determine the four joint angles shown.

The driving force behind
the controls of this robot is the underlying Boolean network.
To translate from the RBN output to robotic movement, each
joint is assigned a single node in the network to control its
motor angle. The default angle for each joint is zero degrees,
resulting in a ninety-degree angle between the two sections
of each limb. From there, a negative angle corresponds
to joint extension while positive angles result in joint flexion.

Simulated Quadruped

Figure : To illustrate and test this translation scheme from RBN to robot, the open-source Bullet Physics
Simulator was employed. The morphology must be established first. We used a radially symmetric
quadruped with a rectangular prism for its body. It is intuitively difficult to assign biomimetic gait patterns
to this robot due to its obscure shape. Thus without any information on how gaits should look, the final
results should not be influenced by experiential biases.

Evolutionary Algorithm

The attractor sets of each RBN are the driving force for simulating
robotic gaits. Sustained motion is a repetitive process in nature. Thus
the attractor sets of a network will translate to repetitive robotic motion
that can result in a robotic gait. The goal of evolution is to evolve these
attractor sets into different types of robotic gaits, and create a diverse
network that can perform different tasks.
We use a two-part genetic algorithm (GA) to evolve our RBNs. The first
step is to evolve a diverse set of critical networks that will be candidates
for the initial population of the second GA. The final population from this
first GA is then sent into the Bullet Physics simulator to test each
attractor set on the simulated robot. The best individuals from the
simulator are then taken as the initial population for the second GA.
The second GA takes the truncated population of networks from the
first GA and evolves based on the fitness obtained in the robot
simulator. This is the exploitation phase of the evolutionary process.
The goal of the second GA is to select based on the performance of the
simulated robot in order to evolve a network that has many different
attractors, each of which corresponds to a different type of robotic gait.

RBN Robot
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N = Number of Attractors
D = Normalized Distance
V = Variability of Motion

The pre-evolution of the network will (theoretically) drastically reduce the
computation time of the costly process of evolving a robot in simulation.

Results

Here, we track the average
simulated fitness of the
population per generation of
the second GA for 2, 4 and a
random number from 2 to 5
regulators per node.
Individuals in the population
had a rapid decrease in fitness
for the first few generations
and then oscillated between
fitness values for the rest of
the simulation.

Next we show the absolute
distance traveled per attractor
per surviving network of the
final GA population. Although
the population consisted of 50
individuals, replication leads to
numerous duplicates which
are disregarded for this
visualization. Each attractor is
colored based on whether it
met the fitness threshold of
0.075 after the simulation.

The following shows the
trajectories of the attractors of
the best final network given
2,4 or a random number of 2
to 5 regulators per node. All
simulations begin at the (x,z)
origin and move outwards.
Trajectories are colored based
on meeting the acceptable
fitness threshold of 0.075.
Green trajectories meet this
fitness threshold, while red
trajectories do not. Here there
is an apparent wide range of
types of trajectories due to the
different types of acceptable
gaits.

Discussion

In this project 3 distinct types of RBNs were utilized. Two experiments were conducted
with static regulators of length 2 and 4, while the third type of RBN used a set of
randomly generated regulators between length 2 and 5. Since the first GA driver is
designed to evolve toward criticality, the type of RBN is somewhat arbitrary. From
these preliminary results, there is no evidence that any one choice of these types
regulators is optimal. Results show that each choice will result in networks with
diverse attractor sets that can perform different tasks. Future work can continue
running these simulations in order to determine if one choice of regulators will
significantly outperform the others.
Nevertheless, the final individuals from each experiment exhibit attractors that
translate to different types of robotic gaits. These gaits are differentiated due to the
clear changes in trajectory along with different types of stability. Each final individual
contains a host of different attractors, the best of which correspond to different forms
of nontrivial motion. This shows the significance of evolving RBNs to perform
repetitive tasks on simulated robots.
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