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4 Growth of Age-Structured Populations:  black-footed ferrets 
 
Major concepts: 

 Survival and fecundity rates often change with age.  In such cases, an accurate 
understanding of population growth must take the age structure of the population into 
account.  Life tables show how survivorship and reproduction change with age. 

 The population net reproductive rate (R0) is a measure of population growth and is 
computed from the life table as the expected number of female offspring per female 
over her entire life.   

 The life table can also be used to calculate life expectancy, 
reproductive value and generation time. 

 Different life history strategies (annual vs perennial, 
semelparous vs iteroparous) have different 
survivorship and fecundity schedules, which are 
reflected in the life table.  

 
 
Black Footed Ferrets (Mustela nigripes)  are medium sized mammals related to skunks, minks 
and weasels.  They are notable in that they are completely dependent on colonies of 
burrowing rodents commonly known as prairie dogs (Cynomys spp) for survival. The short 
legs and slender bodies of ferrets are ideal for entering the burrows of prairie dogs in search of 
prey.    
 
The fate of the ferret was tied to the demise of prairie dog populations. Prairie dogs have long 
been considered pests. Although they are an important component of the shortgrass prairie 
ecosystem,  they are herbivores and therefore compete with cattle on rangeland.  In addition, 
the colonies form extensive networks of burrows that can make the landscape unsuitable for 
farming and other human uses. After a century of  
systematic prairie dog extermination programs, prairie 
dog colonies now occupy less than 2% of their original 
range.  
 
Figure 4.1 Historical and current range of black footed 
ferrets. Ferrets are now known from only a few sites 
where they have bee reintroduced. 
 
In response to the elimination of prairie dogs, the 
numbers of black-footed ferrets also plummeted.  Black 
footed ferrets were thought to be extinct until a single colony was discovered near the town of 
Meeteetsie, Wyoming in 1981.  Those last known individuals were all captured to serve as the 
founder stock for a captive breeding program. Since then there have been several successful 
reintroductions of ferrets to the wild, in locations where there are still large and active prairie 
dog colonies. Some of those reintroduced ferret populations have shown a remarkable 
comeback.  
 



Case Studies in Ecology and Evolution  DRAFT 

© Don Stratton 2010 2 

 
Is this pattern of rapid growth typical of other ferret populations?  What are the important 
stages of the life cycle to maintain vigorous black-footed ferret populations? 
 
Figure 4.2  Population size of black footed ferrets in 
the Conata Basin. Data from MacDonald. 
 
 
We’ve already seen examples of the power of 
exponential population growth and looked at simple 
population growth models.  Those models are good 
abstractions, but make several simplifying 
assumptions.  One important assumption is that they 
assume all individuals are identical. That allowed us 
to keep track of only the total population size (N) and ignore any differences among 
individuals. However, individuals are rarely identical.  Most populations of animals have two 
sexes.  Also, survival and reproduction usually change with age.  Very often, survival is lower 
for newborns than it is for adults.  And it is very common for organisms to have a pre-
reproductive juvenile stage, and obviously those individuals can not produce any offspring.  
Those real differences among individuals mean that we need to keep track of animals of 
different ages in order to have an accurate gauge of the population growth potential.  
 
Often the simple models are sufficient.  When populations are large, it is often possible to use 
the simple models of exponential or logistic growth, knowing that they make simplifying 
assumptions that don't precisely hold.  However, for small and medium populations when 
individuals have very different survival and reproductive output, more complicated models 
may be necessary. 
 
In this chapter our approach will differ from the previous models of population growth that 
we saw in the first three chapters.  Instead of fitting a population growth rate (r) to time series 
data, we will look at the underlying demographic processes of survival and reproduction, and 
then infer the potential population growth rate.  Thus we will primarily be concerned with the 
fates of individuals: how long do they survive? how many offspring do they produce?  We 
will then combine that information on individual behavior to see how the population as a 
whole is expected to grow. 
 
To understand the growth of age-structured populations, it is necessary to know how 
individual survival and fecundity change with age.  That means it is necessary to identify the 
age, sex, and reproductive status of particular individuals. Usually, that requires some kind of 
long-term census of marked individuals. The survivorship and fecundity schedules are then 
collected into a life table.   
 
To keep things simple, we will assume that all give birth or die exactly on their birthday (in 
other words we will use a discrete model of population growth).  We will then keep track of 
the probability of surviving from birth to their first, second, third or fourth birthday and the 
number of offspring that produced by females of each age. 
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4.1 How do you measure survival? 
Black-footed ferrets occur in populations that are spread over a large area, they are nocturnal, 
and they spend most of their time underground.   That makes them hard to count!  One of the 
key parameters of our demographic model will be the survivorship schedule for the 
population, i.e. the fraction of individuals that survive to various ages.  Measuring survival 
requires the researcher to follow individuals through time and record the number of deaths.  
 
One way to do that is to follow a particular cohort (i.e. the set of individuals born at a 
particular time) through their life and record the fraction that remain after each time interval.  
Although that is conceptually easy, there are a couple of difficulties.  First, for long-lived 
organisms it would take many years of study to monitor the entire life cycle.  Second, because 
there is constant attrition of the cohort as individuals die, you would need to start with a very 
large initial sample in order to effectively measure the survival of the oldest individuals.  
Finally, any environmental variation may mask true survivorship schedule. Increases in 
mortality over time could be due to natural aging of the cohort, but it could also be due to 
deterioration of the environment. 
 
For those reasons, it is more common to measure the short-term survival of individuals of 
different ages, and then combine that information into a composite survivorship schedule. 
That is relatively easy to do for stationary organisms like plants, but somewhat harder for 
mobile animals. 
 
In the particular case of ferrets, the usual approach is to go out at night with spotlights, 
looking for the characteristic green reflections from the ferrets' eyes.  Once a ferret is spotted, 
researchers place a trap near the burrow to try to capture that animal later in the evening.  
Individual ferrets are then marked by implanting a tiny tag with a unique barcode number 
under the ferret's skin. When the ferret is later recaptured it's ID code can be read.  Ferrets are 
captured and identified each year, and all new individuals are tagged. Thus the fate of most 
individuals in the population is known. 
 
When you have complete knowledge of the fate of all individuals, measuring survival is easy: 
you simply record the fraction of individuals of a given age that are recaptured at the next 
census.  However not every individual is encountered each time, so not all disappearances are 
true deaths. Some of the animals may have just been missed by chance. Others may have 
emigrated from the population.  So, how can we estimate the true survival rate? 
 
Figure 4.3 See Appendix A for more details on how survival is calculated.  
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For now we'll keep things simple and assume that the population is closed and that the 
probability of recapture is high.  As long as the recapture rates are fairly high, it is unlikely 
that an individual that is actually present will be missed on every subsequent encounter.  In 
that case the apparent survival of individuals over successive censuses is close to the true 
survival rate. Appendix A outlines more complex methods for estimating survival that take 
the capture probability into account. 
 

If the recapture rate is 80% each time, what is the probability that a surviving individual 
would be missed on both the first and the second recapture periods? ___________ 

 
The estimates of  individual survival for animals of different ages are then collected into a 
survivorship schedule.  The survivorship (lx) is the probability of surviving from birth to age 
x.  Because survival is multiplicative over time (individuals that survive two years must 
survive year 1 and survive year 2), the survivorship from birth to age x is:  

€ 

lx = s0 ⋅ s2 ⋅... ⋅ sx−1  or 

€ 

lx = sy
y=0

x−1

∏
     eq. 4.2

 

By definition, l0 = 1.0, because all individuals are alive at birth.    
 
Alternatively, you can calculate lx sequentially as 

€ 

lx+1 = lx ⋅ sx      eq. 4.3 
 

(In words, the survivorship to age x+1 is the survivorship to age x times the survival from age 
x to x+1.) 
 
To be clear, the term "survivorship" (lx) is used by ecologists to mean the survival probability 
from birth to age x.  We will use the term "survival" (s) when we talk about any other time 
interval. Also remember that survivorship (lx) is the probability of surviving from birth to the 
start of age x, and the age-specific survival (sx) is the probability that individuals of age x 
survive the next year to the start of age x+1. 
 
As an example, here are the age-specific survival results from annual censuses of one 
population of black footed ferrets,  In these data 60% of newborns survived their first year, 
50% of one year olds survived to age 2, etc.  Complete the survivorship column for 3 and 4 
year olds: 
 

Table 4.1.  Annual survival of ferrets in South Dakota.  
 

Age 
x 

Annual 
Survival 

sx 

Cumulative 
Survivorship 

lx 
0 0.6 1.0 
1 0.5 0.6 
2 0.4 0.3 
3 0.3  
4 0  
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4.2 How do you measure reproduction? 
 
Reproduction is relatively easy to measure, at least for birds and mammals.  Sometimes it is 
as easy as counting the number of offspring in a nest or den. However, female reproductive 
success is usually much easier to measure than male reproductive success.  Often the male is 
no longer present when offspring are born. Even when a male is present on a territory, that 
male may or may not be the biological parent of all of the offspring.  
 

Figure 4.3: Litter sizes of female black-footed ferrets 

 
 

Because each offspring has two parents we need to make sure that we don’t double-count the 
parents' reproductive output.  In a sense, each of the two parents contributes only half. So 
when we construct the fertility schedule, we must credit only half of the offspring of a pair to 
the female parent and the other half to the male. Because female reproduction is so much 
easier to measure than male reproduction, it is customary to keep track only of the number of 
female offspring per female. 
 
The fertility schedule shows how the expected number of offspring changes with age.  The 
age specific fecundity (bx) shown in the fertility schedule is the expected number of female 
offspring produced by females of age x. 
 
Some females may not reproduce at all and it is important to include them when calculating 
the fertility schedule.  The overall age specific fecundity will then be the proportion of 
females of age x that reproduce, times the average number of female offspring per litter. 
 
Table 4.3 Fecundity schedule for black footed ferrets. 

Age 
Proportion 

reproducing  

Average Total 
Litter size 

(males+females)  

Expected number of 
female offspring per 

female (assuming 
50:50 sex ratio) (bx) 

0 0 0 0 
1 0.98 3.0 1.47 
2 0.98 3.4 1.67 
3 0.98 3.6  
4 0.98 3.6  

Complete this fecundity schedule to calculate the fecundity of 3 and 4 year old ferrets. 
(Hint: remember that the probabilities are multiplicative.  Therefore the expected number of female offspring per 
female is the probability of reproduction times the average litter size times the proportion of female offspring.) 
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 The expected number of female offspring is what you expect to find on average for females 
of different ages.  Because it is an average, the age specific fecundity (bx) shown in the 
fertility schedule is usually not an integer. 
 
Other species of insects, marine invertebrates, and plants have no parental care and therefore 
newborn offspring do not remain associated with parents.  In that case individual fertilities 
can be very hard to measure.  Sometimes seeds can be counted before they disperse.  In other 
cases the best you can do is to estimate an average fertility for the whole population from the 
total number of offspring divided by the total number of parents. 

4.3 How can you predict population growth from the life table? 
The rate of population growth will depend on both the survival and reproduction.   The 
survival and fecundity schedules are therefore combined into a life table, which shows the 
expected survivorship and reproduction of individuals from birth through their entire life. 
 
To determine the total number of offspring a female will produce, we will need to know the 
expected number of (female) offspring produced by a 1-year-old, times the probability that 
she survives to 1 year.  Then we’ll add the expected number of offspring produced when she 
is two years old, times the probability that she survives to age 2.  We’ll continue in a similar 
fashion for reproduction in years 3, 4, etc. 
 

Table 4.4.  Simplified life table for a population of Black Footed Ferrets  
x sx lx bx lxbx xlxbx 
0 0.6 1.000 0 0 0 
1 0.5 0.600 1.5 0.9 0.9 
2 0.4 0.300 1.7 0.51 1.02 
3 0.3 0.120 1.8 0.216 0.648 
4 0 0.036 1.8 0.0648 0.2592 
      
   Sum: 1.69 2.83 

 
In the life table,  

Which column shows the probability that a newborn will survive to age x? ________ 
 

 Which column shows the expected number of (female) offspring produced at age 
x?________ 

 
 
The life table also includes two additional columns that are used for calculating population 
growth parameters.  The product lx bx is the expected number of offspring produced by 
individuals of age x, taking survival to age x into account.  From the perspective of a 
newborn, the expected reproduction at age x is the fertility at age x  times the probability of 
surviving to age x.  The last column shows the product x lx bx  and is used to calculate the 
generation time. 
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The total number of female offspring produced by a female during her entire life is called the 
net reproductive rate or the replacement rate of the population (R0).  
 

€ 

R0 = lx∑ bx      eg. 4.4 

 
R0 is an important number because it is a measure of population growth rate.  If the population 
size is to stay constant, then on average each female should produce one female offspring 
over her entire life (

€ 

R0 =1).  If 

€ 

R0 >1, then some “excess” offspring are being produced and 
the population will grow.  If 

€ 

R0 <1 then the population will decline. 
 

What is the net reproductive rate for the ferret population in table 4.4? R0= _________ 
 

Is the population expected to grow? _________ 
 

R0 is similar in many ways to λ, the finite rate of increase of a population (see chapter 1).  The 
key difference is that R0  is measured on a time scale of generations.  It shows the replacement 
rate or the proportional increase of a population over an entire generation, whereas λ 
describes the growth of a population on an absolute time scale (e.g. one year). 

4.3.1 What is the generation time of this population? 
A generation is the length of time from the birth of one generation until the birth of the next 
generation of offspring.  In other words, the generation time (G)  is the average age of 
mothers when they give birth. 
 
A standard way to calculate an average is 

€ 

y = yPr(y)∑ .  The age of the mother is x.  The 
probability that a particular offspring is born to a mother of age x, Pr(x), is the quantity 

€ 

lxbx
lx∑ bx

.  That is the proportion of all offspring that are born to mothers of age x.  So the 

average age of mothers would be 

€ 

G = x∑ ⋅
lxbx
lx∑ bx

 

 
That equation can be rearranged to the computationally easier form,  

€ 

G =
xlx∑ bx

lx∑ bx      eq. 4.5
 

 
Notice that the numerator is the sum of the final column of the life table and the denominator 
is equal to R0. 
 

What is the generation time of the ferret population in table 4.4? G= _________ 
 

Another way to see that the generation time is in fact an average is to look at a simple 
example.  Let’s look at a very simple life table and imagine we start with a small cohort of 
only 10 newborns.   

Table 4.5. Example life table. 
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x lx bx 

Number 
remaining 

alive 

Total number of 
offspring 
produced 

0 1.0 0 10 0 
1 0.5 0 5 0 
2 0.2 1 2 2 
3 0.1 2 1 2 

 
There are a total of four offspring produced: two are produced by 2-year-old mothers and two 
are produced by 3-year-old mothers.  What is the average age of the mothers of those four 
offspring? 

€ 

2+2+ 3+ 3
4

=
10
4

= 2.5  years 

 
What is the generation time for that life table using equation 4.5?  _______ 

 
 

4.4 Assumptions 
Most of our previous assumptions from chapter 1 still hold: 

 There is a constant environment, so vital rates (survival and fecundity of each age 
class) do not change over time. 

 Survival and reproduction do not depend on density. 
 There is no immigration into or emigration out of the population. 
 The only difference is that now we let individuals differ in survival and fecundity. 

 
Notice that we've added some complexity to the model by keeping track of ages of 
individuals, but we've ignored any kind of density dependence.  This model can show whether 
the population is currently growing (R0>1) or declining (R0<1) and the parameter R0 gives the 
rate of geometric increase.  But we probably wouldn't want to use this model to make long-
term projections of population growth since it contains no provision for density dependence. 
 

4.5 How does R0 relate to r? 
Two populations can have the same net reproductive rate (R0) yet have different absolute rates 
of growth if the generation times of the two populations differ.  For example, if R0=2 then the 
population will double after one generation.  That might be one month for a population of 
insects, but a decade for a large mammal.  It is often useful to convert the net reproductive 
rate, R0, to the Malthusian parameter, r, which shows the population growth rate on an 
absolute time scale.     
 
We have seen that R0 is the proportional rate of increase over a time interval of one 
generation, so after G years  

€ 

Nt+G = R0Nt  
From equation 1.7 we also saw that under normal exponential growth the population size after 
G years would be 

€ 

Nt+G = Nte
rG  

Equating those two and simplifying leads to 
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€ 

R0Nt = Nte
rG

R0 = erG

ln(R0) = rG
 

 
and finally 

€ 

r ≈ ln(R0)
G      eq. 4.6

 

 
 
 

What is the intrinsic population growth rate for our population of ferrets?  r= ___________ 
 
 
 
Equation 4.6 is only approximately correct, because it does not consider when in a generation 
offspring are born.  Offspring born early in a generation will themselves reproduce earlier 
than later-born offspring, and so will contribute more to the overall population growth rate.  
Even within a generation individuals are not equivalent. 
 
The exact equation for r was worked out in 1760 by the mathematician Leonhard Euler who 
showed that  

€ 

1= e−rx∑ lxbx      eq. 4.7
 

This equation can’t be solved directly.  But, starting with our approximation of r (above), we 
can use trial and error to find a value of r that satisfies the Euler equation such that the 
quantity 

€ 

e−rx∑ lxbx is close to 1.0. 
 
For ferrets, we found that that r was approximately 0.31.  Trying several values of r near 0.31, 
and putting them into equation 4.7 we get 

r Euler equation 
result 

0.30 1.054 
0.31 1.034 
0.32 1.023 
0.33 1.008 
0.34 0.993 

The exact solution for r for this life table is somewhere between 0.33 and 0.34  (r=0.335) 
 
 
 
 
To see how the intrinsic growth rate depends on generation time, consider this hypothetical 
example.  Both populations have R0=2.0, but population 2 has a shorter generation time and 
therefore has a higher intrinsic rate of increase.   
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Table 4.6, two hypothetical life tables. 
Population 1, late reproduction Population 2, early reproduction 

 
Age lx bx lxbx xlxbx 

0 1 0 0 0 

1 0.7 0 0 0 

2 0.4 0 0 0 

3 0.2 6 1.2 3.6 

4 0.1 8 0.8 3.2 

5 0 0 0 0 

  Sum 2 6.8  

 
Age lx bx lxbx xlxbx 

0 1 0 0 0 

1 0.6 1 0.6 0.6 

2 0.4 3 1.2 2.4 

3 0.2 1 0.2 0.6 

4 0.1 0 0 0 

5 0 0 0 0 

  Sum 2 3.6 
 

 
Complete the table by calculating R0, G and r for Population 2: 

 R0 G r 
Population 1 2 3.40 0.20 
Population 2    

4.6 Stable age distribution 
Solving the life table to compute the population growth rate gives an asymptotic estimate that 
is accurate only when the population reaches its stable age distribution.  In the short term, 
the population may grow at a rate that is very different from the predicted growth rate. For 
example, if you start a population with all adults of reproductive age, the initial population 
growth rate will be higher than if you start the population will only newborns. No new 
individuals can be added to the second population until the newborns reach reproductive age, 
so initially that population can only decrease in size.  Eventually, however, the population will 
reach its stable age distribution and will grow at the predicted rate. 
 
An example may be useful. Using the life table data for ferrets, this hypothetical population 
started with 900 newborns and 25 of each of the other ages. The relative abundance of 
animals of each age changes as those newborns become 1 year olds and 2 year olds, etc.  but 
eventually the relative proportion stabilizes to a characteristic stable age distribution.   When 
it reaches the stable age distribution the population size then increases at a constant geometric 
rate (e.g. it is linear on the log scale). 
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Figure 4.4 

 
The stable age distribution implies that the proportion of individuals of each age is constant.  
But the overall population size will continue to grow at the rate r. 
 
Once the stable age distribution is reached, the proportion of individuals of age x is given by: 

€ 

cx =
lxe

−rx

lxe
−rx∑      eq. 4.8

 

 
To calculate the stable age distribution by hand, it is most convenient to add one more column 
to the life table, showing the quantity 

€ 

lxe
−rx  and then compute the sum of that column.  

 
Table 4.7  Calculation of the stable age distribution.  

x sx lx bx lxbx xlxbx 

€ 

lxe
−rx  cx 

0 0.6 1.000 0 0 0 1.00  
1 0.5 0.600 1.5 0.9 0.9 0.43  
2 0.4 0.300 1.7 0.51 1.02 0.15 0.10 
3 0.3 0.120 1.8 0.216 0.648 0.04 0.03 
4 0 0.036 1.8 0.0648 0.2592 0.01 0.01 
        
   Sum: 1.69 2.83 1.64  

 
What will be the proportion of newborns and 1-year-olds in this population  

when it reaches its stable age distribution? 
newborns: c=________ 

1-year-olds: c=________ 

4.7 Life Expectancy 
The life expectancy for any given age class of individuals is the expected number of 
additional years they are likely to survive, given that they have already survived to age x. 
Human demographers often report the life expectancy of a newborn when comparing different 
populations.  But you can calculate the future life expectancy for an individual of any age.  
Life insurance companies use their calculations of future life expectancy when they determine 
insurance premiums.  Insurance rates go up with age because older humans have shorter life 
expectancy.   
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In concept, the life expectancy is the expected number of additional person-years from age x 

onward, divided by the expected number of individuals alive at age x:  

€ 

Ny
y=x
∑
Nx

.  If we divide 

top and bottom by the number of newborns, that is equivalent to 

€ 

ly
y=x
∑
lx

.  However this 

expression assumes that all individuals die on their birthday. In fact, some will die early in the 
year, just after their birthday, and others will die near the end of the year.  On average, those 
that die during the interval live about 1/2 of the year.  To correct for the different times of 
death, we need to calculate the midpoint survivorship, 

€ 

Lx = lx+1/2 .   Remember that lx is the 
proportion of the cohort that survives to the start of age x, and lx+1  is the proportion surviving 
to the start of the next age class. To get the midpoint survivorship, we just average the 
survivorships lx  and lx+1: 

€ 

L
x

=
lx + lx+1
2

 

 
The life expectancy for an individual of age x is then: 

€ 

ex =

Ly
y=x
∑
lx

     eq. 4.9 

 
 

Complete the table for life expectancy in the ferret population: 
 

Age 
 

x 

Survivorship 
 

lx 

Midpoint  
Survivorship 

Lx 

€ 

Ly
y=x
∑  

Life  
Expectancy 

Ex 
0 1.000 0.8 1.556  
1 0.600 0.45 0.756  
2 0.300 0.21 0.306 1.02 
3 0.120 0.078 0.096 0.80 
4 0.036 0.018 0.018 0.50 

 
 
In this population of ferrets, the life expectancy at birth is only 1.5 years.  Nevertheless, a 2-
year-old is still expected to live an additional 1year.  How is that possible? That two-year old 
ferret has already survived the early juvenile period.  All that matters, given that it has 
survived to age 2, is the future survival probability. 

 

4.8 Reproductive value 
Another consequence of age specific fecundity and survival is that different age classes of 
individuals contribute unequally to future population growth. We call that the reproductive 
value of that age class.  For example, the death of an old individual may have little effect on 
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the growth rate of the population because that individual has already completed most of its 
reproduction.  Those older individuals have low reproductive value.  
 
We might expect that the reproductive value would be highest for a newborn, given that their 
entire reproductive potential is still ahead of them.  However there is also a chance that they 
will die before they reproduce at all.   For many populations, Vx is highest at the age of first 
reproduction. Those individuals have already survived juvenile mortality yet still have their 
entire reproductive life ahead of them.   
 
Reproductive value of an individual of age x is defined as the expected number of offspring 
produced in future years, given that the individual has already survived to age x.   

€ 

 

€ 

expected number of offspring produced at age x and all future years
probability of surviving to age x

 

 which can be written as 
 

€ 

Vx =
1
lx

lyby
y=x

k

∑
     eq. 4.10

 

Equation 4.10 works for stable populations, but not for growing populations.  The reason is 
that when populations are growing, an offspring produced now will comprise a relatively 
larger fraction of  the total population than an offspring produced in the future when the 
overall population has grown.  Therefore the value of future offspring needs to be 
"discounted" by the expected population growth.   We can use the Euler equation (eq ??) to 
find the intrinsic growth rate of the population, r.   After x years of growing at the rate r, the 
population will have grown by the fraction 

€ 

erx , so the future reproduction must be discounted 
by that expected increase in the population.  For a growing population,  

€ 

Vx =
erx

lx
e−rylyby

y=x

k

∑
     eq. 4.11 

 
 

If the population is not growing (r = 0) show that eq 4.11 reduces to eq 4.10. 
 
 
To calculate the reproductive value by hand, it is easiest to add some temporary columns to 

the life table, 

€ 

erx  and 

€ 

e−rylyby
y=x

k

∑  

 
Complete the reproductive value calculations for black-footed ferrets: (using r=0.335) 

x lx bx lxbx 

€ 

erx  

€ 

e−rylyby
y=x

k

∑  
Vx 

0 1.000 0 0 1.00 1.00 1.00 
1 0.600 1.5 0.9 1.37 1.00 2.33 
2 0.300 1.7 0.51 1.87 0.36  
3 0.120 1.8 0.216 2.57 0.10  
4 0.036 1.8 0.065 3.51 0.02  
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Which age class of ferrets has the highest reproductive value? ________ 

 
 

4.9 How do survivorship and fecundity schedules differ among species? 
 
The life table is a tidy way to summarize a lot about the basic demography and life history of 
a species.  There are broad differences among species in the form of the life table.  Some 
species "live fast and die young", meaning that they typically have low survivorship but high 
reproductive output.  Other species have a more protracted life cycle, with delayed maturity 
but relatively higher survival and longer lifespans.   Those different patterns are the result of 
inherent tradeoffs among different components of fitness.  Clearly, a population would grow 
fastest if it had both high survival and high fecundity.  But that is rarely possible.  In general, 
resources that are used to support one process, like reproduction, are not available to support 
growth and survival. 
 
The most famous attempt to summarize the variation in life histories was the idea by Robert 
MacArthur and E. O. Wilson () that organisms could be separated along an axis of "r and K 
selection".  They argued that organisms that typically occurred in low or variable densities 
would be selected for rapid population growth (high r), high reproductive output and short 
generation times.  Other species that typically occurred in high densities near the carrying 
capacity (K) of the environment would have fewer resources so selection would favor 
efficiency over rapid growth.   Those species would have fewer, larger, offspring, delayed 
maturity, and higher adult survival.   The r-K selection idea is intuitively appealing and it 
guided lots of ecological research during the 1960s and 1970s.  It is too simplistic to hope that 
a single r vs. K axis can explain all of life history variation.  But much can be learned by 
examing the survivorship and fecundity and how the influence other life history characters. 
 
One way to think about the life history of an organism is to consider the overall shape of the 
survivorship curve.  Some species have a constant risk of death over their entire life, whereas 
others have increased mortality during particular life stages (e.g. higher mortality rates among 
newborns). There are three general patterns of survivorship which have been given the 
creative names Type I, Type II, and Type III survivorship curves. 
 
In type I survivorship, there high initial survival followed by increased mortality at the end of 
life as organism becomes senescent.  Survivorship curves of this type are typical of long-lived 
mammals with extensive parental care. 
 
Type II survivorship curves show a constant risk of mortality.  Each year the population 
declines by a constant proportion.  Type II curves are sometimes seen in birds and other small 
vertebrates. 
 
Finally, Type III survivorship curves have low juvenile survival with long-lived adults. Type 
III curves are typical of many forest trees and marine invertebrates.  Most seedlings die, but  
the few surviving adult trees can survive for many decades. 



Case Studies in Ecology and Evolution  DRAFT 

© Don Stratton 2010 15 

 
Figure 4.5  Type I, II, III survivorship curve. 

 
Note the logarithmic scale on the y axis. 

 
 

These types of survivorship curves are really ideals that highlight some common differences 
among survivorship schedules.  Most real populations will have survivorship curves that are 
somewhat intermediate between those pure types.  It is even possible to have mixtures.  For 
example, many species have high juvenile mortality (as in type III) and also show a second 
increase in mortality among the oldest individuals (as in type I).  It is important to not be 
overly concerned with the particular labels, and instead think about the biological processes 
that are implied by the shape of the survivorship curve.  Is the risk of mortality constant or is 
it concentrated on the juvenile or adult stages?    
 

What kind of survivorship curve do Ferrets have? 
Imagine you start with a cohort of 100 newborns. In that case we would expect 60 

survivors after 1 year, 30 after 2 years, etc.  Graph Ln(N) vs age using the survivorhsip 
schedule for Ferrets.  What kind of survivorship curve (Type I, Type II, Type III) do they 

have? 
 
 
 
 
 

Fecundity schedules also differ dramatically among species.  Some species reproduce only 
once and then die. They are said to be semelparous.  Examples include salmon and giant 
lobelias.  Other species have multiple episodes of reproduction and are said to be 
iteroparous. There can also be large differences in the timing of reproduction.  Some species 
have an extended juvenile stage and delay reproduction until they reach large size. We see 
that, for example, in humans or forest trees.  Other species reproduce early in life. 
 
As we saw in the preceding section, the value of future reproduction is discounted by the rate 
of population growth.  So, in rapidly growing populations selection would be expected to 
favor current reproduction over delayed reproduction. That is consistent with MacArthur and 
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Wilson's idea of "r" selected species: fast growing populations reproduce early.  Similarly, in 
populations with high mortality rates the reproductive value distribution is skewed toward 
younger ages.   The reproductive value of older age classes is low because there is a relatively 
high probability of dying before that older reproduction is realized.   Therefore, the 
survivorship schedule can have a large influence on the evolution of the fecundity schedule. 

4.10 Further reading 
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4.11 Your turn: Demography of Black Bears 
 

Ferrets have a typical "fast" life cycle.  They have relatively high annual mortality rates, short 
lifespans, but they reproduce early and have a fairly high rate of population growth.  In 
contrast, eastern black bears (Ursus 
americanus)  have one of the slowest 
reproductive rates of any North 
American mammal.  Females don't 
reproduce at all until they are 5 or 6 
years old, they have small litters of 1-
3 cubs, and they have an extended 
period of parental care. How would 
that show up in the life table? 
 
 Eastern Black Bears were once 
widely distributed in North America.  
While many populations are still 
strong, encroachment by humans has fragmented the habitat and 
isolated some populations. Below are data from a large population of 
black bears from a relatively pristine environment in central Ontario, 
Canada. They are subject to hunting, so some of the adult mortality is 
reflects hunting pressure.  Bears were tagged and censused each year 
from ??1969 to 1982?? to estimate annual survival of bears of different 
ages.  Newborn cubs were counted to estimate the reproductive output 
of females. 
 

 Is this population projected to grow?  How fast? 
 What is the generation time (G) for this population of black 

bears. 
 What is the life expectancy of a newborn? 
 Which age class(es) have the highest reproductive value? 
 What might a manager do to increase the growth rate of the 

population? 
 
 

Age l(x) b(x) 
0 1.000 0 
1 0.500 0 
2 0.350 0 
3 0.294 0 
4 0.256 0 
5 0.223 0.48 
6 0.182 0.84 
7 0.153 0.36 
8 0.135 1.01 
9 0.119 1.35 

10 0.094 1.06 
11 0.073 1.08 
12 0.058 1.32 
13 0.051 1.11 
14 0.045 1.11 
15 0.037 1.11 
16 0.024 1.11 
17 0.017 1.11 
18 0.009 1.11 
19 0.003 1.11 
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4.12 (OPTIONAL) Appendix A:  Estimating Survival through Mark-Recapture 
 
The key ideas for estimating survival from mark-recapture experiments were developed by R. 
M. Cormack, G. M. Jolly and  G. A. F. Seber in the early 1960s.  In the simplest case, assume 
there is a set of marked individuals that is released into a closed population.  Some of the 
animals are later recaptured on one or more occasions, in which case they are known to be 
alive.   Others disappear from the population and are never again recaptured or resighted. 
Those may be dead, or they may have just been missed each time.   How can you estimate the 
true survival rate? 
 
One key is to have more than one recapture individuals on more than one occasion.   
Individuals that are recaptured or re-sighted at time 2 were, of course, also alive at time 1, 
even if they were not recaptured after the first time interval.  Because we know those 
individuals were actually alive even though they were missed, we can use those data to 
estimate the fraction of individuals that are not recaptured during a given census. Ecologists 
have developed sophisticated statistical models to analyze mark-recapture data to estimate the 
population size, survival rates of different age classes, and emigration rates.  
 
Each animal will have an associated capture history.  We'll denote captures with 1's and 
failure to sight that individual during a capture period with 0's.    Our raw data will then be the 
number of animals observed with each kind of capture history.  For example, imagine we 
mark and release 100 animals.   We then recapture animals on two subsequent occasions.  We 
might see something like this: 
 

Capture 
sequence N 

1,1,1 70 
1,1,0 10 
1,0,1 9 
1,0,0 11 
Total 100 

The first row shows that 70 animals marked initially were recaptured on both subsequent 
censuses.  The second row shows that 10 animals were recaptured once, but then not 
recaptured at the second census.  Nine animals were missed at time 1 but then subsequently 
recaptured at time 2.  Finally, the last 
row shows that 11 animals were never 
seen again after the initial release. 
 
How can we use those observations to 
estimate the underlying survival rates 
in the population? 
 
The first thing to do is to write down 
how the underlying processes 
(survival and recapture) relate to the 
observations. To keep things simple, 
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let's assume that the trapping program is set up consistently each time, so there is a constant 
(but unknown) probability of capturing an individual during each trapping session.   Survival, 
however, may be different in different time intervals.   During each time interval an animal 
may either live (with probability si)  or die (probability (1-si).   If the animal survives, it may 
then either be recaptured (with probability c) or missed (1-c).  That gives a "decision tree" that 
shows the following possible recapture sequences: 
 
To calculate the probability of a particular outcome, you multiply probabilities along the 
arrows of a particular path, and then sum the probabilities across all paths that produce a 
particular capture history. 
 
Let's look at the capture sequence {1,0,0}.  In that case the individual was captured and 
marked at the beginning but then never seen again.  The decision tree shows that there are 
three ways an individual could end up with that capture history: 

1. it could have died during the first interval.  That will happen with probability (1-s1) 
2. it could have survived and been missed in the first re-capture period, but then died 

during the second time interval.  That will occur with probability s1*(1-c)*(1-s2) 
3. it could have survived the whole time, but have been missed on both occasions.  That 

occurs with probability s1*(1-c)*s2*(1-c) or s1*s2*(1-c)2 
 
Adding them up, the overall probability of finding a capture history {1,0.0} would then be:  

Pr [Capture history is {1,0.0}] =(1-s1) + s1 (1-c) (1-s2) + s1 (1-c) s2 (1-c) 
 
In all, there are four possible capture histories and you can set up similar equations for each of 
them. 
 

From the decision tree above, what is the probability of observing a capture history of 
{1,1,1}? ________________ 

 
Hypothetical data: 
 
 
 
Capture history 

Observed number of 
animals with that 
capture history (Niii) 

 
 
Probability (piii) 

1,1,1 70  
1,1,0 10 s1 c s2 (1-c) + s1 c (1-s2) 
1,0,1 9 s1 (1-c) s2 c  
1,0,0 11 (1-s1) + s1 (1-c) (1-s2) + s1 (1-c) s2 (1-c) 
 
The trick, then, is to pick values of the unknown parameters (s1 c s2) such that the predicted 
number of recaptures is close to the observed number.  This could be done by trial and error, 
i.e. making a guess of the parameter values, seeing how close the prediction is to the observed 
value, and then adjusting your guesses.   
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Sometimes ratios can be useful to estimating some of the underlying processes. For example, 
what is the ratio of 

€ 

p101
p111

?  

€ 

p101
p111

=
s1(1− c)s2c
s1cs2c

=
(1− c)
c

  That ratio is solely dependent on the 

capture rate, so that provides one way to estimate c (but that method does not use all of the 
available information about c). 
 
Usually, however, a simultaneous estimation of the parameters is done by computer using an 
optimization technique such as maximum likelihood.  For example, you can calculate the log 
likelihood of the data, given a particular guess at the parameters as: 

€ 

LogLikelihood =Const + N111Log(P111)+ N110Log(P110 )+ N101Log(P101)+ N100Log(P100 )  
where the piii values are taken from the table above.    The computer then searches for the 
parameter set that maximizes the log likelihood.  Various computer programs are available to 
automate that process.  For our example data, the maximum likelihood values are s1=0.90, 
s2=0.99, and c=0.89. 
 
This basic framework can easily be extended to more complicated scenarios. For example, 
you might want to estimate survival rates separately for males and females, or for juveniles 
and adults.  The equations get longer, but the basic procedure remains the same. 
 
Assumptions for CJS models: 

• The population is closed. There is no immigration or emigration. 
• The survival probability is the same for all individuals. 
• Each individual has an equal probability of being captured. 
• Marking does not affect survival. 
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Answers: 
 
p 4.  0.2*0.2=0.04   
 l3=0.12 
 l4=0.036 
p 5.  b3=1.76 
 b4=1.76 
p 6.  lx shows the probability of survival to age x 
 bx is the expected number of offspring at age x 
p 7.  R0= 1.69    
        R0>1 so it will grow 
        G=2.83/1.69 = 1.67 years 
p. 8  G=2.5 yrs 
p 10.  R0=2, G-1.8, r=0.385 
p 11. At the stable age distribution, 60% of the ferrets will be newborns and 26% will be 1 yr olds (c0=0.60   c1=0.26) 
p 12.  Life expectancy is 1.56 for newborns and 1.26 for 1 yr olds. 
p 13. Reproductive value: V2=2.33, V3=2.19, V4=1.80 
One-yr-olds have the highest reproductive value (that is also the age of first reproduction) 
p 15. The survivorship curve or ferrets is approximately linear, so it is close to a type II survivorship curve. 

 
 
 

p 17. Black Bears 
R0=1.07, so the population is growing 
G=9.5 yrs 
Life expectancy of a newborn is 3.1 yrs 
The reproductive value is highest for 8-year-olds (5.48) 
 
 
 
 
 
 
p 19. Appendix A. The probability of observing a capture 
sequence {1,1,1} is    s1 * c * s2 * c 

Age	
   l(x)	
   b(x)	
   lxbx	
   xlxbx	
   c(x)	
   E(x)	
   V(x)	
  

0	
   1.000	
   0	
   0.000	
   0.000	
   0.28	
   3.12	
   1.00	
  
1	
   0.500	
   0	
   0.000	
   0.000	
   0.14	
   4.74	
   2.02	
  
2	
   0.350	
   0	
   0.000	
   0.000	
   0.10	
   5.56	
   2.90	
  
3	
   0.294	
   0	
   0.000	
   0.000	
   0.08	
   5.53	
   3.48	
  
4	
   0.256	
   0	
   0.000	
   0.000	
   0.07	
   5.28	
   4.03	
  
5	
   0.223	
   0.48	
   0.107	
   0.534	
   0.06	
   4.99	
   4.66	
  
6	
   0.182	
   0.84	
   0.154	
   0.924	
   0.05	
   4.98	
   5.14	
  
7	
   0.153	
   0.36	
   0.055	
   0.386	
   0.04	
   4.83	
   5.15	
  
8	
   0.135	
   1.00	
   0.136	
   1.086	
   0.04	
   4.42	
   5.49	
  
9	
   0.119	
   1.35	
   0.160	
   1.443	
   0.03	
   3.96	
   5.13	
  
10	
   0.094	
   1.05	
   0.099	
   0.990	
   0.02	
   3.88	
   4.82	
  
11	
   0.073	
   1.08	
   0.079	
   0.869	
   0.02	
   3.83	
   4.86	
  
12	
   0.058	
   1.32	
   0.076	
   0.915	
   0.02	
   3.72	
   4.82	
  
13	
   0.051	
   1.11	
   0.057	
   0.742	
   0.01	
   3.11	
   3.96	
  
14	
   0.045	
   1.11	
   0.050	
   0.695	
   0.01	
   2.50	
   3.30	
  
15	
   0.037	
   1.11	
   0.041	
   0.611	
   0.01	
   1.94	
   2.69	
  
16	
   0.024	
   1.11	
   0.027	
   0.430	
   0.01	
   1.69	
   2.41	
  
17	
   0.017	
   1.11	
   0.019	
   0.329	
   0.00	
   1.15	
   1.82	
  
18	
   0.009	
   1.11	
   0.010	
   0.174	
   0.00	
   0.80	
   1.44	
  
19	
   0.003	
   1.11	
   0.003	
   0.055	
   0.00	
   0.50	
   1.11	
  


