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2 Wildebeest in the Serengeti: limits to exponential growth  
 
At the beginning of the 19th century Thomas Malthus wrote extensively about the power of 
exponential growth, pointing out that no population can continue to grow forever. Eventually 
the numbers of individuals will get so large that 
they must run out of resources.  While Malthus 
was particularly interested in human populations, 
the same must be true for all kinds of populations.  
Charles Darwin used those ideas as one of the 
cornerstones of his theory of natural selection. 
 
Because of the speed at which exponentially 
growing populations can increase in size, very 
few populations in nature will show exponential 
growth.   Once a population has reached sufficient 
size to use all of the available resources, there 
should be only minor fluctuations in numbers.  
Only when there is a large perturbation of the 
environment, such as the introduction of a species 
to a new area or severe reduction in population 
size due to hunting or disease will you find 
populations increasing in an exponential manner.  
 

2.1 Wildebeest and Serengeti ecosystem 
One very well studied system for looking at 
population dynamics is the wildebeest 
(Connochaetes taurinus) on the Serengeti plains 
of East Africa.  There have been regular 
wildebeest population surveys for over 40 years. 
 
Anthony Sinclair and Simon Mduma from the 
University of British Columbia have been 
studying them for 3 decades. 
 
The Serengeti is a land dominated by rainfall patterns, with a gradient in annual rainfall from 
south to north.  In general the southeastern shortgrass plains are the driest, receiving about 
500 mm of rain per year.  The northern Mara hills in Kenya are the wettest part and receive 
about 1200 mm of rain a year.  However the rainfall is highly seasonal.  During the wet 
season from November to May the plains are marked by abundant grass and even occasional 
standing water.   Large herds of grazing herbivores (wildebeest, gazelles, zebras) take 
advantage of the flush of productivity to feed on the new growth.  But after the monsoon rains 
stop in June, the grass withers and browns and the animals struggle to find sufficient food.   

 

 
Figure 2.1. top: Herd of Wildebeest.  Bottom: Map 
of the Serengeti-Mara ecosystem showing the 
annual migration route. 
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Further, the rain is highly variable among years and locations.  Some years are marked by 
abundant rainfall, which produces more new growth, and food is plentiful for the grazers and 
browsers.  In other years the rains end early and thousands of animals starve.   
 
In response to the changing and unpredictable food supply, the wildebeest migrate across the 
landscape, producing one of the most spectacular phenomena in nature.  As the fertile 
shortgrass plains dry up at the end of the monsoon rains, herds of a million or more 
wildebeest migrate west toward Lake Victoria. When that, too, starts to dry up they move 
north to the relatively wetter hills in the Mara region. Then, with the coming of the next rains, 
they move back south to the plains, completing an enormous circuit of the Serengeti each 
year.  Early travelers were awed the “endless” plains of the Serengeti and the herds of 
migrating wildebeest that stretched as far as the eye could see. 
 

2.2 Rinderpest: a natural experiment 
In 1889 the rinderpest virus was accidentally introduced into Ethiopia in a shipment of 5 
cattle. That accidental introduction started a wildlife disease pandemic. Rinderpest is an RNA 
virus of cattle that is closely related to the human measles virus.  The virus quickly spread 
throughout the continent of Africa. Within a mere 8 years it killed an estimated 90% of the 
wild wildebeest and buffalo in east Africa.  Travelers described the scene of millions of 
carcasses dotting the savanna.  (Cattle herds, too, were decimated which caused enormous 
hardship for the traditional herding communities that depended on cattle).  In the Serengeti, 
the population of wildebeest was reduced from over a million to only about 200,000 
individuals by 1900. Throughout the 20th century periodic outbreaks of the rinderpest virus 
continued to occur and kept the population of wildebeest at a low level.  
 
That all changed in the late 1950s when a vaccine against the virus became available.  The 
Kenyan government began a systematic vaccination campaign of all domestic cattle and by 
1963 the disease was effectively 
eliminated.  The wild populations of 
ungulates that had been infected by 
the cattle-borne disease began to 
recover.   
 
The recovery of the wildebeest 
population from the rinderpest virus 
has produced an enormous natural 
experiment that allows us to examine 
the growth and regulation of the 
population on a grand scale. In the 
decade following the introduction of 
the vaccine, the population of 
wildebeest in the Serengeti increased 
from 200,000 to over a million 
animals. Then, starting about 1975, 
the population growth ceased and 

 
Figure 2.2.  Wildebeest population size estimates, 
1959 to 2001 
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stabilized at a population of around 1,200,000.  What were the factors that caused the growth 
of the population to stop?   
 

2.3 Wildebeest Population Dynamics 
The population of wildebeest has been censused every year since the late 1950s when a father 
and son team from the Frankfurt Zoological Society started using a small plane to follow and 
monitor the vast herds on the Serengeti.  The same basic technique is still in use today.  It is 
not possible to count every individual wildebeest since the population size is well over a 
million.  Instead, they must use a sampling scheme.  Generally they will fly predetermined 
transects over the plains and take photographs at regular intervals.  Later the number of 
wildebeest in each photograph is counted.  By precisely maintaining a constant altitude above 
the ground, they can determine the area covered in each photograph and hence the density of 
wildebeest.  This method is not foolproof: there will be slight biases caused by different 
observing conditions and different habitat types, but biologists have learned to make the 
necessary corrections to account for those variations. 
 
Population estimates for the Serengeti wildebeest in December of each year are shown in 
Figure 2.2.  Initially, the population grew rapidly from the low of 200,000 animals to about 
1.2 million. Then, starting around 1975 the growth of the wildebeest population ceases. 
 

 Looking only at the first 15 years of data (1960 to 1975) is the pattern of growth 
consistent with exponential increase?  How could you tell? 

 
 What factors do you think cause the population to stabilize? 

 
The pattern of rapid initial growth that is then followed by a period of stasis is common in 
biological systems, whether you are describing the growth of bacteria in culture or duckweed 
in a pond. 
 

2.4 Logistic population growth  model 
In chapter 1 we saw that under pure exponential growth only two results were possible. When  
r>0 then pops will grow exponentially without bounds.  When r<0 then the population will 
decline to extinction.  However we know that wildebeest are neither extinct nor infinite.   
These populations have existed for a long time without going extinct, so r must be positive 
when N is reasonably small.  We also know that the population is not infinite, so r must be 
negative when N is very large.  The simplest way to get that is to have r decrease linearly as 
the population size increases.   

Recall that under exponential growth  

€ 

dN
dt

= rN .  We can add an additional term to that model 

to make the growth rate decline linearly with population size: 

€ 

dN
dt

= r(1− cN)N .  

Let the constant “c” be r/K and you can rearrange to get the logistic equation: 

   

€ 

dN
dt

= rN(1− N
K
)  .    eq. 2.1 
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The new term in parentheses is sometimes called a “braking” factor that slows the rate of 
population growth as N increases. 
 
There are lots of mathematical models of density dependence that we might come up with 
besides this simple linear dependence on N.  But this simple description is a good place to 
start. As you will see, it can describe some populations very well and it can give us insights 
into some general features of population growth. 
 
The equation to predict population size from a given intrinsic rate of increase and carrying 
capacity is somewhat more complicated than the corresponding equation for exponential 
growth, but the principles involved are the same.  The population size at time t is given by: 

   

€ 

Nt =
N0K

N0 + (K − N0)e
−rt       eq 2.2 

which is shown in Figure 2.3.   
 

 
Figure 2.3 Logistic population growth model for the values r=0.1, K=1000, and N0=1. 
 

How would the graph in Figure 2.3 change if r was half as big?   
Sketch the trajectory for r=0.05 on the figure. 

 
Initially the population increases approximately exponentially.  But after several generations 
the rate of growth decreases and finally ceases altogether as the population stabilizes at a 
constant population size. In terms of equation 2.1, when N is near zero the quantity in 
parentheses is close to 1 so we have the familiar equation for exponential growth.  When N=K 
the term in parentheses is zero so dN/dt=0 and the population size stays constant. K is called 
the “carrying capacity” of the population. 
 

2.4.1 A non-rigorous derivation of the logistic equation, via a thought experiment. 
Assume that the habitat is divided into some number (“K”) locations that are each able to 
support exactly one individual.  Starting with a single individual the population can grow at a 
rate “r”. Because the locations are all empty, 100% of the sites are available.  As N increases 
and the fraction of sites begins to fill, there are fewer locations left in the environment.   The 
proportion of the original locations that are left is 1-N/K.  The population can then grow only 
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at the rate r(1-N/K).  Substituting that adjusted growth rate into the basic equation for 
population growth and rearranging, you end up with the logistic growth model:  

€ 

dN
dt

= rN(1− N
K
). 

 

2.5 Assumptions of the logistic growth model: 
 All individuals are identical. We can ignore differences between adults and juveniles 

or between males and females and simply keep track of the total population size, N. 
 The population is closed, so there is no immigration or emigration. 
 r and K are constant. 
 Density dependence is linear: each additional individual reduces the population 

growth rate by a constant amount. 
 
The logistic population growth model forms the basis of most of ecological theory.  That 
simple model is well-understood and it captures the essential features of population dynamics 
for most species.  That general pattern that populations increase when densities are low and 
resources are abundant, and then reach a relatively steady plateau of abundance when 
resources become limiting is a characteristic feature of most organisms. 
 
These assumptions are rarely, if ever, completely correct.  But the model captures the 
essential dynamics of populations and is a very useful starting point.  In later chapters we will 
use extensions of this basic model to understand competition between species. 
 
 

2.6 Exploring the logistic model 
It is interesting to explore the logistic model by graphing the function in different ways. For 
example, how does the population growth rate, dN/dt, change with population size?  For 
logistic growth the graph of dN/dt vs N is a humped curve as shown in Figure 2.4. 
(To see that it is a quadratic function of N, expand equation 2.1 and notice that there is an N2 

term). 

  
Figure 2.4  Logistic population growth model for the values r=0.1, K=1000.. 
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When the population is small the growth rate of the population is also small.   The growth rate 
increases to a maximum at intermediate population size and then decreases at larger 
population sizes.  If the population is too big, the growth rate of the population will become 
negative. 
 
In terms of equation 2.1, when population is small the dN/dt will be small because N is near 
zero.  As N approaches K, the growth rate again declines because the quantity is parentheses 
is near zero.  Then when N>K, growth rate becomes negative because the quantity in 
parentheses is negative. 
 

What would the graph of dN/dt vs N look like for pure exponential growth? 
 
The population is at equiibrium when dN/dt=0. 
By definition, the population size does not change if it is at equilibrium, i.e. dN/dt=0.  Figure 
2.4 shows that dN/dt is zero at two population sizes, so there are two equilibria.  One 
equilibrium is at N=0.  If the population starts with zero individuals there can be no births or 
deaths so the population will not change.  
 
The second equilibrium occurs when the population reaches the carrying capacity, K.   Is that 
equilibrium stable? A stable equilibrium is one where the population will return to the 
equilibrium value following a small perturbation.  For example assume a population has 
reached its carrying capacity (K) so it is no longer growing.  Now, imagine that a severe storm 
comes through and kills some individuals so N is slightly less than K.   Figure 2.4 shows that 
when N<K, the growth rate is positive so the population will grow and eventually return to 
the carrying capacity.  Similarly, if you imagine that by some perturbation the population size 
became slightly larger than K,  Figure 2.4 shows that when N>K the growth rate will be 
negative and the population will decrease in size until it is again at the carrying capacity.  
 

Is the first equilibrium (N=0)  stable? __________ 
(Again imagine a small perturbation away from equilibrium where you add a few individuals 

to a population that starts at zero.  Will the population size return to zero?) 
 
 
 
Maximum growth rate of the population 
Looking at  Figure 2.4, at what population size is the growth rate maximized?_____________ 
.   
In general, how can we determine at what population size the growth rate is maximized? The 
same way we find the maximum of any function: find the second derivative of the function, 

set it equal to zero and solve for N.  For the logistic equation, 

€ 

d2N
dt

= r − 2r N
K

.    If we set that 

equal to zero, then 

€ 

r = 2r N
K

   so 

€ 

N =
K
2

.    

 
For the logistic model, the growth rate of the population is always highest when the 
population is at half the carrying capacity. 
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The per capita growth rate declines linearly 
Remember that the logistic growth equation was derived assuming that the reproductive rate 
of an individual declines linearly as population size increases. Each additional individual in 
the population always reduces the average reproductive rate by a constant amount.  If the 

population grows at a rate dN/dt, then the per capita growth rate is 

€ 

1
N
dN
dt

.  

 
Starting with equation 2.1, write an expression for the per-capita growth rate. 

€ 

1
N
dN
dt

=_____________ 

 
Sketch a graph of the per capita growth rate as it relates to population size.  Label r and K on 
the graph.  (hint: at what population size will the per capita growth rate be highest? At what 

population size will the per capita growth rate be zero? 

 
 

How would that graph look different for exponential growth? 
 
 

 
Notice that we have used the term growth rate in related, but slightly different, ways.  The 
parameter r  is the intrinsic growth rate of the population: the rate of growth when the 
population size is very small.  In this model it is assumed to be constant.  In contrast, the 
actual growth rate of the population is measured by dN/dt.  That realized growth rate shows 
the actual number of new individuals that are added in a time step and will depend on the 
number of parents and the distance of the population size from the carrying capacity.  Finally, 
the per-capita growth rate (1/N dN/dt) shows the number of new individuals per parent.  It, 
too, depends on the distance of the population size from the carrying capacity.  In the logistic 
model it is assumed to decline linearly as N increases.   
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2.7 Density dependent growth of the wildebeest population 
 

 
 

What is the approximate carrying capacity for this population? ___________ 
 
For this real system, the logistic population growth model captures the general pattern of 
population growth but not all of the details.  Initially, the population grows almost 
exponentially and the logistic equation fits fairly well.   When the population stabilizes it is 
also fairly close to the value predicted by the logistic equation.  However, between 1970 and 
1977 the population grew much faster than expected.  And in 1994 the population suddenly 
dropped to less than a million.   
 

What kinds of factors might cause the deviations from the expected  
logistic growth? ____________________+______________ 

 

2.8 The biological basis of population regulation  
The implicit assumption of logistic population growth model is that population growth rate 
declines because the animals become limited by some resource, usually food. The reduction in 
the amount of food available per individual increases mortality (through starvation) or 
decreases birth rate, so the net population growth declines.  Nevertheless, food does not show 
up anywhere in the logistic equation.  Instead, the model uses population size as a surrogate 
for the resources that are being used.  The assumption is that in a constant environment, if 
population size increases there will be less food available per individual.  The model works 
phenomenologically, but it bypasses the actual mechanism of population regulation.   
 
In the case of wildebeest, the food available for an individual can decrease because a) rains 
don’t come or b) too many wildebeest share too little food.  The logistic model essentially 
assumes that only the latter is important.  It should be possible to get a better model for the 
regulation of wildebeest populations by directly incorporating food supply into our model.  
For example, the wildebeest population grew faster than predicted by the logistic model 
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during the years 1972 to 1977, a period of higher than average rainfall when the savannas 
remained lush and green.  The drop in population in 1994 followed an extremely severe 
drought. 
 

2.8.1 *** OPTIONAL PART *** 
How can we calculate the available food?  For that we would need to know the amount of 
grass available (which depends on rain) and the number of wildebeest that are sharing that 
resource.   Long-term studies of the rate of growth of grass on the Serengeti and he has shown 
that the amount of grass biomass production is directly proportional to rainfall.  Grass 
production per hectare can be predicted by a very simple equation:   

€ 

G =1.25R .   During the 
dry season the animals are spread over about 500,000 ha.  Combining that, the total available 
food  can be predicted with this simple formula: 
 
Food supply = 625000 * Rainfall (mm)  
 
Using data in appendix A, calculate the food available per animal in 1965 vs 1981, years with 
similar rainfall but very different population size. 

• 1965 ________ 
• 1981 ________ 

 
 

• Calculate the food available per animal in 1992 vs 1993, years with similar population 
size but different amounts of rain. 

• 1992 ________ 
• 1993 ________ 

 
 
 

 
 

-‐0.300	  

-‐0.250	  

-‐0.200	  

-‐0.150	  

-‐0.100	  

-‐0.050	  

0.000	  

0.050	  

0.100	  

0.150	  

0.200	  

0	   50	   100	   150	   200	   250	   300	  

G
ro
w
th
	  r
at
e	  
(r
)	  

Available	  Food	  (kg/animal)	  



Case Studies in Ecology and Evolution  DRAFT 

D. Stratton 2010  10 

The fit isn’t perfect, but the population growth rate clearly increases with the available food 
supply.   
 
 

What is the minimum food supply to prevent population from declining? ___________ 
 

2.9 What is the use of this model? 
In general, models are use to 1) to make a prediction and/or 2) to understand the system.  
Understanding the population dynamics of wildebeest allows us to make some predictions 
about the system.  For example, if the population declines due to another drought, how long 
will it take for the population to return to its carrying capacity?   Or, given the link between 
population growth and rainfall patterns, what is the minimum rainfall necessary to support the 
wildebeest population?  If global climate change alters the rainfall regime on the Serengeti, 
will the wildebeest population persist? 
 
It is perhaps more useful as a tool for understanding, however.  Our analysis showed us that 
population growth is density dependent and controlled by a combination of intrinsic factors 
(density) and extrinsic factors (unpredictable rainfall).  All else being equal, the logistic model 
showed us that the population size should remain stable at or near its carrying capacity. 
 
That understanding can come at various points in the analysis. For example, we found that the 
logistic growth model captured some of the most basic features of the population dynamics, 
the rapid initial growth followed by stabilization of the population at approximately 1.2 
million animals. In particular the fact that rate of population growth slowed and finally 
stabilized showed that it was not a simple case of exponential growth.  
But there were some systematic departures of the data from our simple prediction. That led us 
to notice that the population grew faster than expected during a series of years with higher 
than average rainfall, and pointed to rainfall as a key factor. 
 

2.10 Density dependent vs density independent population regulation. 
The standard logistic growth model is based only on the population density and shows that it 
is possible for density dependent processes to maintain populations at a stable carrying 
capacity.  However the actual wildebeest counts were also related to the rainfall, an extrinsic 
factor that is unrelated to population size.  There has been a longstanding debate among 
ecologists regarding the importance of density dependent factors vs density independent 
factors in regulating populations.   
 
Some ecologists point to large and erratic fluctuations in population size of organisms to say 
that populations are rarely at equilibrium and are instead kept well below their carrying 
capacity by extremes of weather or other extrinsic factors.   Graphs of per capita growth rate 
vs population size rarely show a perfect linear decline.  Others argue that even if weather can 
affect population abundance, real populations fluctuate within fairly narrow bounds that are 
determined by density dependent factors.   The jury is still out, but real populations are 
probably controlled by a combination of density dependent and extrinsic factors. 
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2.11 Further reading:  
Mduma, S. A. R., A.R.E. Sinclair, and R. Hilborn.  1999.  Food regulates the Serengeti 
wildebeest: a 40 year record.  J. Animal Ecology 68:1101-1122. 
 
Sinclair, A.R.E.  and P. Arcese (eds). 1995.  Serengeti II: Dynamics, management and 
conservation of an ecosystem. University of Chicago Press. 
 

2.12 Your turn 
 
The cockroach (Blattella germanica)  is one of the most common household pests in the 
world.  The highly-adaptable species has been associate with humans 
for thousands of years and is found throughout the world.   
Cockroaches are often associated with “uncleanliness”.  Populations 
thrive in places where there is poor sanitation (i.e. a food source), 
household clutter (i.e. hiding places) and unrepaired leaks (i.e. moisture 
source).  Adult cockroaches can breed at any time, so the population  
fits the continuous time models of population growth. 
 
One estimate of the population growth rate for cockroaches is r=0.056 
per day. The maximum density of cockroaches varies widely.  It will depend on the supply of 
food and water, but let’s say that K for an average infested kitchen is about K=400 
cockroaches. 
 
Starting with an initial pair of cockroaches, how many would there be after a year? 
 
Now imagine two scenarios: chemical control vs scrupulous sanitation.  How will each of 
those affect r and K?  
 Imagine a 75% reduction in r, or a 75% reduction in K.  Which strategy is likely to be more 
effective in controlling the cockroaches? 
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Table 1 Population size and rainfall data (from Mduma et al. 1999).  Wildebeest counts are for the number of 
Wldebeests in December, after the dry season and before new alcves are boen.  Rainfall is for the period July to 
December. 

 

Year 

Number of 
wildebeest  
 (x 1000) 

Dry 
Season 
Rainfall 

(mm) 
1959 212  
1960 232 100 
1961 263 40 
1962 307 102 
1963 356 104 
1964 403 168 
1965 439 168 
1966 461 166 
1967 483 78 
1968 520 91 
1969 570 78 
1970 630 133 
1971 693 192 
1972 773 235 
1973 897 159 
1974 1058 211 
1975 1222 258 
1976 1336 205 
1977 1440 303 
1978 1249 188 
1979 1293 85 
1980 1338 100 
1981 1273 162 
1982 1208 97 
1983 1315 230 
1984 1338 207 
1985 1215 84 
1986 1146 45 
1987 1161 114 
1988 1177 191 
1989 1192 201 
1990 1207 126 
1991 1222 255 
1992 1216 152 
1993 1209 19 
1994 917 227 
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Answers: 
 
p 3.  Growth starts out close to exponential (graph lnN vs time and see if it is linear0 
p4.  If r is half as big, N will approach K more slowly, but it will still eventually increase to K. 
p 6   dN/dt vs N is a straight line with slope=r for pure exponential growth 
  The equilibrium at N=0 is not stable 

dN/dt is maximum at 1/2 K (500) 
p 7. 

€ 

1
N
dN
dt

=r−rN
K

 

 
for exponential growth, this would be a horizontal line (i.e. r is constant) 
p. 8   K = 1,200,000 
 variation in the environment is a likely cause of the deviations 
p 9. Food/animal is 

1965: 239 kg/animal 
1981: 80 kg/animal 
1992: 78 kg/animal 
1993: 10 kg/animal 
p 10. Minimum food is about 60 kg/animal 

(from that you could figure out what the carrying capacity would be for a given rainfall amount) 
 
Cockroaches: 
After a year with logistic growth (r=0.057, K=400)  N=400 
Pesticides will affect the death rate (i.e. r) whereas food supply determines K. 
75% reduction in r: (r’=0.014) , N=182 
75% reduction in K: (K’=100) ,  N=100 
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