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10 Non-random mating, Inbreeding and Population Structure. 
 
 
Jewelweed, Impatiens capensis, is a common woodland flower in the Eastern US.  You may 
have seen the swollen seed pods that explosively pop when you touch time, which is the 
source of an alternative name for this plant, “touch-me-not”.  Another interesting thing is that 
it produces two kinds of flowers.    
 
Many of the flowers are orange and conspicuous.   
Those flowers have various features to attract 
pollinators, primarily nectar that is secreted at the 
base of the curved spur in the back of the flower.   
Bees and hummingbirds visit the flower to feed on 
the nectar and in the process transfer some of the 
pollen from one flower to another. 
 
Most plant species produce both pollen and ovules in 
the same flower so there is a potential for self-
fertilization to occur.  That can happen either when pollen is transferred to the stigma of the 
same flower, or when pollen is transferred between flowers on the same plant.  The showy 
flowers have evolved various mechanisms to limit self-fertilization within a flower.  They 
typically produce pollen for one day, after which the anther falls off to reveal the stigma.  
Therefore pollen receipt (female function) is separated in time from pollen donation (male 
function).  Within flower selfing is minimal because pollen and stigma are not functional at 
the same time. 
 
In addition to the showy orange flowers, the plant produces another set of flowers that never 
even open.  Those tiny green cleistogamous (meaning “closed mating”) flowers look more 
like buds.  Pollen is shed inside the unopened flower directly onto its stigma, so all of the 
seeds are produced by self-fertilization.   Presumably the cleistogamous flowers have a 
reproductive assurance advantage, since they are able to produce seeds even in the absence of 
pollinators. 
 
Thus Impatiens shows two extremes of mating: 100% self-fertilization in the tiny 
cleistogamous flowers, and normal crossing between plants in the showy (“chasmogamous”) 
flowers. 
 

10.1 What are the effects of nonrandom mating on allele and genotype frequencies? 
The Hardy Weinberg Equilibrium was defined for the case of random mating. However it is 
rare that individuals in a population truly mate at random1.  Very often populations are 
                                                
1 It is important to remember that we are talking about random mating with respect to a particular locus.  Birds 
may choose mates non-randomly with respect to plumage, but since unlinked loci are inherited independently, 
they may very well be mating at random with respect to a certain enzyme locus. 
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spatially structured and individuals are more likely to mate with others that are nearby than 
with individuals from farther away.  Often social structure will  limit mating opportunities on 
others within the group.  And some species, like jewelweed, routinely self-fertilize.  
 
Self-fertilization: Lets start with the extreme case of self-fertilization.  How do allele and 
genotype frequencies change after one generation of self-fertilization?  As before we'll 
consider a single locus with two alleles, A and a.   We'll use upper case letters for the 
genotype frequencies in that population.  Let P be the frequency of AA homozygotes, H be 
the frequency of heterozygotes and Q be the frequency of aa homozygotes.   Because those 
are all of the possibilities, P+H+Q=1. 
 
After selfing, all of the AA homozygotes produce only AA offspring and all of the aa 
homozygotes produce only aa offspring.  However, selfing within the heterozygotes produces 
all three genotypes of offspring: 1/4 will be AA, 1/2 will be Aa and 1/4 will be aa.  

Genotype Initial Frequency Frequency after 
selfing 

AA P P + 1/4 H 
Aa H 1/2 H 
aa Q Q + 1/4 H 

 
The result is that the frequency of the homozygous genotypes increases with each generation 
of selfing, and the frequency of heterozygotes decreases. 
 
In particular, the change in heterozygosity with selfing is: 

H ' = 1
2
H  

That shows that the frequency of heterozygotes decreases by half each generation.  
Eventually, after many generations of complete selfing the frequency of heterozygotes will 
decline to zero. 
 
Effect of selfing on allele frequency:  You can always calculate the allele frequency as 

p = P + 1
2
H .  So after selfing, and substituting the new values for P and H we get 

 

p ' = P '+ 1
2
H '

p ' = P + 1
4
H +

1
2
1
2
H

⎛

⎝
⎜

⎞

⎠
⎟

p ' = P + 1
2
H

p ' = p

 

 
which is simply the original allele frequency.   
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That is an interesting result: non-random mating, even in the most extreme form of self-
fertilization, has no effect on allele frequency.  Selfing causes genotype frequencies to change 
as the frequency of  homozygotes increases and the frequency of heterozygotes decreases, but 
the allele frequency remains constant.    
 
Because non-random mating only reshuffles genotype frequencies with respect to their HW 
expectations, we can use the deviation of genotype frequencies from their expected values as 
a measure of inbreeding.  If Ho is the observed frequency of heterozygotes and He is the 
expected frequency under random mating, then the population inbreeding coefficient or 
fixation index is 

F =1−
Ho

He

. 

 
If there are no heterozygotes in the population then the fixation index is 1.0.  When the 
frequency of heterozygotes equals the HW expectation (as with random mating) then the 
fixation index is 0.  In cases where there is an excess of observed heterozygotes, then the 
fixation index can be negative. 
 
Example: Let's assume the population starts out in HWE.  That means the genotype 
frequencies will be p2, 2pq and q2.  Imagine that all individuals in the population reproduce 
only through self-fertilization. How will the genotype frequencies change? 
 

Genotype Initial Frequency Frequency after 
selfing 

AA p2 p2 + 1
2 p(1− p)  

Aa 2p(1-p)  
aa (1-p)2  

 
• What will be the genotype frequencies after selfing?  

 
 

• Show algebraically that the allele frequency after selfing is still p. 
 
 
 
 
The obligate self-fertilization in the tiny cleistogamous flowers will result in a steady increase 
in the frequency of homozygous genotype but it will have no effect on the allele frequencies 
in the population.  What happens with the showy flowers? Do their seeds fit the expectations 
of random mating? 
 
Observed and predicted genotypes for chasmogamous flowers: Imagine that you collect a 
sample of 200 seeds that were all produced by the showy chasmogamous flowers.   
Fertilization of those flowers requires visits by pollinators so those seeds should represent 
matings between various individuals.   You then determine the genotype of each seed to test 
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whether they fit the Hardy-Weinberg expectations.  Below are results for one enzyme locus, 
isocitrate dehydrogenase or IDH.     The two alleles are labeled “1” and “2”. 
 

IDH 
Genotype  

Observed 
number 

Predicted number  
under HWE 

11 104 92.5 
12 64 87.0 
22 32 20.5 

(Data are simplified, but are based on real information in Stewart (1994) for I. pallida) 
 

What are the allele frequencies in this population? 
p=(frequency of allele “1”)= _____________ 
q=(frequency of allele “2”)=_____________ 

 
 

Under HWE, we expect the proportions of the three genotypes to be p2, 2pq and q2.  The 
observed allele frequencies are p=0.68 and q=0.32, so the expected genotype frequencies are 
p2=0.46, 2pq=0.44, and q2=0.10 for genotypes 11, 12, and 22 respectively.  That means that in 
a sample of 200 individuals, we expect 92.5 “11”, 87.0 “12” and 20.5 “22” genotypes. 
 
For this sample the observed number of seeds of each genotype does not quite match the 
predicted numbers.    The data show an excess of the two homozygotes and a deficit of 
heterozygotes compared to the Hardy-Weinberg expectations.  Is that difference real or could 
it just be a random deviation in this sample? 

10.2 Testing for departures from HWE 

If we took repeated samples of seeds from this population we would likely find slight 
variation in the numbers of each genotype just by chance.   So it is not surprising that the 
numbers don’t exactly match the predicted numbers.  The question is whether our results are 
within the normal range of variation or not.   To decide whether it is unusual or not we need to 
do a statistical test, in this case a chi-square (

€ 

χ 2) test.  This test calculates the sum of squared 
deviations from the expected values and compares that sum to the value you would expect 
from random chance alone. The 

€ 

χ 2 value is calculated as followed: 

χ 2 =
(Oi − Ei )

2

Eii∑  

where Oi is the observed number of genotype i,  and Ei is the expected number of that 
genotype.  

IDH 
Genotype  

Observed 
number 

Expected  
number 

€ 

(O− E)2
E  

11 104 92.48 1.44 
12 65 87.04 5.58 
22 32 20.48 6.48 

Sum 200 200 13.5 
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Notice that the expected values are not integers.   The observed numbers will always be 
counts of individuals but the expected values can be, and usually are, decimal numbers.  The 
observed and expected values will always add up to the same total number of individuals, 
however. 

For our example, 

χ 2 =
(104−92.48)2

92.48
+
(65−87.04)2

87.04
+
(32− 20.48)2

20.48
=13.5  

By itself, the 

€ 

χ 2 value doesn’t mean much. Even if the population actually fit the assumptions 
for HWE we would expect slight deviations in the numbers of genotypes in our particular 
sample of individuals just by random chance.  Fortunately statisticians have calculated the 
probability of observing particular 

€ 

χ2 values by chance alone.  That probability depends on 
the degrees of freedom: the number of independent data points that we have.  For this test, 
the degrees of freedom is the number of genotypic classes (3) minus the number of parameters 
estimated from our data (1, for the allele frequency p) minus 1.  That leaves 1 degree of 
freedom. 2 
 
This figure shows the probability of observing a chi 
square value at least as big as this by chance alone.  
By convention, statisticians usually say a result is 
“statistically significant” if there is less than 5% of 
chance of it occurring by chance alone.  That 5% 
threshold corresponds to a 

€ 

χ2value of 3.84: there is 
only a 5% chance of observing a chi-square value at 
least as big as 3.84.  

The observed 

€ 

χ 2 value of 13.5 is somewhere off the 
chart to the right. The probability at that point is near zero so it is extremely unlikely that the 
deviation from expectation is simply the result of chance.  There is likely a biological reason 
for the deviation of genotype frequencies from the Hardy-Weinberg expectations. 
 

Table of critical values for 

€ 

χ 2 
DF 10% 5% 1% 

1 2.706 3.841 6.635 
2 4.605 5.991 9.210 
3 6.251 7.815 11.345 

                                                

2 You might wonder why we don’t also have to subtract another degree of freedom for the allele frequency q.  
The answer is because once p is known, we also know q since it is just 1-p. 
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More practice:  Here are similar data from the next season.  Again they collected seeds from 
the showy chasmogamous flowers and determined the genotype of each. Calculate the allele 
frequencies and the expected number of each genotype. Do these data fit the Hardy Weinberg 
expectations?  

(Remember, the chi-square test is based on the expected numbers of each genotype, not the proportions.) 
 

IDH 
Genotype  

Observed 
number 

Expected  
number 

(O − E)2

E
 

11 91   
12 74   
22 35   

sum 200   

 

10.3 Why don’t the showy flowers mate randomly? 
 
The Chi-square test showed that there was a significant deviation from the expected genotype 
frequencies.  In particular, there were fewer heterozygotes than 
expected which suggests some degree of inbreeding, even in the 
showy flowers. Although the showy flowers have a mechanism to 
prevent the transfer of pollen within a flower, it is still possible to 
have self-fertilization between two flowers on the same plant.  If 
pollinators often fly short distances that kind of selfing within a 
plant can be common. 
 
Yet another possibility is that there may be pollen transfer 
between plants that are close relatives.  The seeds of this plant do 
not travel far so it is likely that nearby plants are offspring of the 
same parents.  In general where there is spatial variation in allele 
frequencies and localized mating then there will be “inbreeding” 
relative to the population as a whole.  That kind of population 
structure will also lead to an excess of homozygous genotypes.   
 

10.4 FST is a measure of spatial structure 
Although it would be nice to just define a population as the collection of individuals that are 
mating together randomly, the boundaries of a population are often very indistinct.  A plant 
that is growing on one side of a meadow is much more likely to pollinate others growing 
nearby, so in that sense two sides of a meadow may be genetically separated. But when the 
plants are scattered evenly across that meadow, where would you draw the boundary?   In 
addition, there may be behavioral patterns that cause individuals to mate non-randomly.  If 
individuals live in family structured groups (e.g. wolves) they may be likely to mate with 
relatives.  
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The result is that populations are often genetically structured, at a variety of scales. 
Behavioral traits may result in individuals that are inbred with respect to the local 
subpopulation.  And spatial separation may result in sub-populations that are "inbred" with 
respect to the population as a whole.  In the latter case, inbreeding arises because individuals 
are on average more related to others within their own subpopulation than they are to others in 
more distant sites.  If mating takes place within a subpopulation then they are mating with 
closer relatives than they would with a truly random sample of mates from the population as a 
whole. 

In section 3.1 we used the deficit of heterozygotes  to quantify inbreeding asF =1− Hobs

Hexp

.   

Here we can use a similar approach to measure that level of inbreeding due to population 
structure, this time by comparing the heterozygosity within subpopulations relative to what 
we would expect if there were random mating over the total population.3 

FST =1− Average Expected Heterozygosity within Subpopulations
Expected Heterozygosity of the Total Population

 

or 

FST =1−
Hs

HT
 

The heterozygosity (H) is the expected proportion of heterozygous, 2pq.  If individuals mate 
at random over the entire population, then the expected total heterozygosity is simply 
HT = 2p(1− p) . 

On the other hand, if there is spatial structure and individuals mate within subpopulations then 
the frequency of heterozygotes will depend on the local allele frequency (pi) in each 
subpopulation: Hi = 2pi (1− pi )  for subpopulation i.   If there are a total of k subpopulations, 

then the average expected heterozygosity within subpopulations is: H S =
1
k

2pi (1− pi )
i=1

k

∑ . 

Example:  Imagine that there are two nearby patches of 200 plants each.  Mating takes place 
only among plants from the same local area, but within those patches mating is completely 
random.   The two subpopulations in the two areas have slightly different allele frequencies: 
In the first patch the frequency of allele A is  p = 0.8 and in second the allele frequency is p = 
0.5.  But inside both sites mating is random so the genotype frequencies exactly match the 
expected frequencies under HWE.  In the first patch the heterozygosity is 64/200 = 0.32 and 
in the second the heterozygosity is 100/200=0.5. 

                                                
3 Sewall Wright developed this index of population structure, which he called the "fixation index" or F.   That 
fixation index or inbreeding coefficient can be partitioned into the various levels of population structure.  FIS is 
the fixation index of an individual with respect to its local subpopulation and FST is the average fixation index of 
subpopulations relative to the total population.  It can be applied at any spatial scale.  Sometimes people use FST 
to measure the differentiation among distinct populations in a large region. 
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Now, imagine that when we sampled the population we didn't keep track of where each plant 
came from.  All we had was a sample of 400 
plants that we assumed was from a single 
large population. The data we collected 
showed that there were a total of 178 AA 
homozygotes, 164 Aa heterozygotes and 58 
aa homozygotes. 

 

What is the frequency of allele A in the 
combined population of all 400 plants?  p = 

_________________ 

What are the expected genotype frequencies 
in that combined sample? 

_________________ 

 

 

The allele frequency in the combined population is 0.65, so the expected heterozygosity is 
HT= 2*0.65*0.35 = 0.455. The average expected heterozygosity in the two subpopulations is 
HS= (0.32+0.5)/2 = 0.410 so 

FST =1−
Hs

HT
=1− 0.410

0.455
= 0.099  

To understand the properties of FST, we can look at some extreme conditions.  If individuals 
are mating completely at random over the entire population, then there will be no local 
variation in allele frequency and each of the subpopulations will have the same expected 
heterozygosity as the total population.  In that case Fst will be 0: there is no differentiation 
among subpopulations.  At the other extreme, each subpopulation may be completely isolated 
from all of the other subpopulations and each subpopulation may have become fixed for a 
different allele. That is the maximum level of differentiation.  If each subpopulation is fixed 
for one allele or the other, then there is no heterozygosity within subpopulations (HS =0).  In 
that case Fst will be 1.0.   

Real populations are never that extreme.  For most species of animals, FST ranges from 0 to 
0.2. Plant populations usually show somewhat higher degrees of spatial structure because 
plants are rooted in place.  Yet even for plants FST  is usually less than 0.4. 
 
But biologists can use Fst as a measure of population structure and to identify distinct 
subpopulations.   For example, you saw in a previous chapter how salmon populations can be 
identified by differences in allele frequency.  That variation can also be used to measure the 
degree of connectedness among populations.   In one study of Fraser River populations of 

 
Genotype 

Allele 
Frequency 

 AA Aa aa pA  

Subpopulation 1 128 64 8 0.8 

Expected 128 64 8  

 

Subpopulation 2 50 100 50 0.5 

Expected 50 100 50  

 

Combined 
Population 

178 164 58  

Expected      
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Chinook salmon the average Fst within the upper or lower sections of the river was low (only 
0.017 and 0.001, respectively).  That suggests that the subpopulations were not very distinct 
within each region.   However the Fst value between the upper vs lower Fraser River regions 
was much higher (0.069).    Biologists used that to support the hypothesis that the upper vs 
lower river populations should be considered as genetically distinct regions.  
 
 

10.5 Your turn: 

Researchers measured the allele frequencies in several patches of jewelweed to quantify the 
degree of local population structure. 

Here are a subset of their results: 
Site  allele  

frequency 
pi 

Expected  
Heterozygosity 
Hi 

1 0.4  
2 0.2  
3 0.35  
4 0.7  
5 0.6  

The combined allele frequency for the entire area was 0.45.  What is the value of FST? 
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Answers 
 
p 3.  After selfing, the genotype frequencies will be: 

€ 

p2+
1
2p(1−p) , 

€ 

p(1−p) , and

€ 

(1−p)2+
1
2p(1−p). 

Calculate the allele frequency as 

€ 

p = P +
1
2 H  so  

€ 

p' = p
2

+
1
2 p(1 − p) +

1
2 p(1 − p)

=p2+p(1−p)

=p2+p−p2

= p

 

p 4. p=(104+(64/2)) / 200 = 0.68;   q= (32 + (64/2)) / 200=0.32 
p 6.  

IDH 
Genotype  

Observed 
number 

Expected  
number 

€ 

(O−E )2
E  

11 91 81.92 1.01 
12 74 92.16 3.58 
22 35 25.92 3.18 

sum 200 200 7.77 
p 8.  The allele frequency in the combined population is p=0.65 
   The expected numbers for each genotype are 169, 82, and 49 
p 9. 

Site  allele  
frequency 
pi 

Expected  
Heterozygosity 
Hi 

1 0.4 0.48 
2 0.2 0.32 
3 0.35 0.455 
4 0.7 0.42 
5 0.6 0.48 

HS = 0.431.   HT = 0.495.  FST = 1 -  0.431/0.495 = 0.129 

 


