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7 Competition 
 (this chapter is still unfinished) 
Species compete in many ways.  Sometimes there are dramatic contests, such as when male 
bighorns compete for access to mates. That kind of competition, with direct encounters 
between individuals, is known as interference competition. 
Other times the competition between species is more like a race to garner a particular 
resource, where the first one to take it acquires it. That mode of competition is generally 
known as scramble competition.   
 
Very often, organisms are limited by their available food supply.  As we saw in chapter 2, 
increasing population density decreases the resources available per individual, which in turn 
reduces their survival and/or reproduction.  Eventually the population growth rate slows to 
zero and the population stabilizes at the carrying capacity of the environment.   
 
But species are usually not alone.  Consider the diverse herbivores that feed on prairie plants. 
Plants serve as food for a wide variety of herbivores, from large mammals to tiny insects, 
each of which reduces the available resources for all of the other species. When more than one 
species share the same resource,  we must keep track of the density of all of the competitors in 
order to predict the population growth of a particular species. 
 
Gary Belovsky, Jonathan Chase and Jennifer Slade studied grasshoppers on the short grass 
prairie of Montana.  The prairie at the National Bison Range Wildlife Refuge contains several 
common species of grasses and broad leafed herbs (“forbs”).  Those plants are utilized by 
mammalian herbivores as well as numerous insects.  Belofsky and coworkers focused their 
attention on two species of grasshoppers: the migratory grasshopper (Melanoplus 
sanguinipes) and the white-whiskered grasshopper (Ageneotettix deorum). They are quite 
common. Those two species comprise about three-quarters of all of the grasshoppers in the 
area.  On average you can find 5-10 of these grasshoppers in every square meter of prairie.   
 
Figure 7.1 

 
White Whiskered Grasshopper National Bison Range  Migratory Grasshopper 

	
 
With such a density of grasshoppers, do they compete for food plants?  It is not an obvious 
question.  In a famous paper, Hairston, Smith and Slobodkin argued that herbivores are 
probably only rarely limited by food, because the world generally looks green.  Because there 
appear to be lots of plants remaining as potential food for herbivores, they argued that 
herbivores must be limited by something else (perhaps predators, or density-independent 
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factors like weather).  On the other hand, plants are often well-defended with toxins and other 
chemical deterrents.  So not all of the plants may be effective food for all herbivores.   
 
How could you test whether the grasshoppers on the Montana prairie were limited by food, 
and thus potential competitors for host plants? 
 
The best evidence for food limitation in these grasshoppers comes from experiments where 
Belovsky and co-workers placed grasshoppers in small net cages on the prairie.  They added 
excess nymphs at the beginning of the summer and monitored the density of grasshoppers as 
the summer progressed.  Regardless of the starting density, the number of adult grasshoppers 
per cage would eventually stabilize at about 10 grasshoppers per m2.  That is just about the 
natural density of grasshoppers at the site.  Supplementing the available food in the cages (by 
watering some of the cages to increase the growth of the grasses) increased the survival and 
reproduction of the grasshoppers.  So it appears that they are limited by their food supply, and 
that both species require approximately the same resources (Belovsky and Slade 1995). 

	
Fig 7.2  Density of M. sanguinipes depends on the available food.  Cages with limited food 
support smaller populations of grasshoppers. 

	
 
 

7.1 Modeling Competition 
Our approach to modeling competition will be similar to what we have seen in previous 
chapters.  The main difference is that we will now need to keep track changes in population 
size of both of the species.  We will use subscripts to identify species 1 and species 2, and 
each will now have its own population size, carrying capacity and intrinsic growth rate. 
 

In chapter 2 we used the logistic equation for density dependent growth: dN
dt
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total density is a weighted measure that takes into account the numbers of each species as well 
as their ability to use the shared resource. 
 
Individuals of the different species may not use equal amounts of resources. Imagine ants 
competing with mice for seeds, or shrubs competing with trees for light.  The addition of one 
extra tree may cause a greater reduction in growth rate than the addition of one extra shrub. 
Therefore we need a conversion factor, α, that translates the number of individuals of species 
2 into “species 1 equivalents”.    For example, each shrub may only have the effect of half a 
tree (or a tree may have the effect of 2 shrubs, etc).  Therefore the available resources for the 
growth of species 1 will be reduced by the number of individuals of that species, as well as 
the weighted number of individuals of species 2: 

dN1
dt

= r1N1 1−
N1 +αN2( )
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which can also be written as 

dN1
dt

= r1N1
K1 − N1 −αN2( )
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If there are no individuals of species 2 present (N2=0), how does eq. 7.1 compare to the 
regular equation for logistic growth from Chapter 2? ____________  

 
 

 
There is a corresponding equation for the growth rate of species 2: 

dN2
dt

= r2N2
K2 − N2 −βN1( )
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Comparing equations 7.1 and 7.2, what is the meaning, in words, of the symbol β?  
 

__________________________________ 
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Those equations can be used to describe the joint population growth of both species in 
mixture. 
 
7.2 Phase planes and stability 
By definition, species 1 will reach its equilibrium population size when dN1/dt=0.   Under 
what conditions will that be true?  As we saw in chapter 2 that will be zero whenever r1=0,

 N1=0, or the quantity in parentheses =0.  The interesting case is the non-zero equilibrium
 where.

€ 

K1−N1−αN2 = 0 
 
Solving for N1, we get 

€ 

ˆ N 1 = K1−αN2     eq. 7.3 
 

In our single species model we saw that the population growth was zero when N1=K1. Now,  
the effective carrying capacity for species 1 is reduced by the number of individuals of species 
2.  Moreover, the equilibrium number of species 1 is no longer a single number (K) but will 
change, depending on the number of species 2 that are also present.  
 
To examine the joint effects of the two density of the two species, it is useful to make a graph 
with the number of species 1 along 1 axis and the number of individuals of species 2 on the 
other.  The state of the joint system of two species can then be defined by a point in this 
“phase plane”.  Any point in that space specifies a particular set of abundances of the two 
species [N1,  N2]. 
 
Figure 7.3  The two species “phase plane” graph. The current state of the system is indicated 
by a point in this space, showing the current population sizes of the two species. 

 
 
Equation 7.3 describes a straight line in this space which is known as a zero growth isocline.  
To draw that line on the phase plane, it is convenient to choose strategic points that minimize 
the arithmetic.  One such point will be where it crosses the x-axis.  At that point the number of 
species 2 is 0.  Let N2=0 in eq 7.3.  It then reduces to N1= K1.  So we know it crosses the 
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horizontal axis at K1.   The line will cross the vertical axis when N1=0. At that point  
N2=K1/α.  
 
The line connecting those two points (Fig. 7.4) describes the zero growth isocline for species 

1.  At any point along that line 
dN1
dt

= 0  so species 1 will be at equilibrium.  If the number of 

species 1 is below its isocline, then the population of species 1 will grow until it reaches the 
equilibrium.  If the number of species 1 is above its zero growth isocline, N1 will decrease 
back toward the equilibrium.  Because we are looking only at changes in species 1, the state 
of the system will move either left or right in the phase plane graph. 
 

Figure 7.4  Zero growth isocline for species 1.  dN1/dt=0 for any point along this isocline.

 
 
 

Now let’s do the same thing for species 2.  Starting with eq. 7.2 and using eq. 7.3 as a guide, 
write down the non-zero equilibrium for species 2.  N̂2 = ______________ 

 
 
The growth rate of species 2 will be zero when N2= K2- βN1.   We can draw that zero growth 
isocline for species  2 in the phase plane as we did for species 1.  When N1=0, the isocline  is 
at N2=K2.  When N2=0 the isocline passes through N1=K2/β (Fig. 7.5). 
 
Again, if the number of species 2 is below is zero growth isocline, the growth rate will be 
positive  and the population will increase towards the equilibrium.  If the number of species 2 
is above is zero growth isocline the growth rate will be negative and the population will 
decrease towards its isocline. 
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Figure 7.5  Zero growth isocline for species 2.  dN2/dt=0 for any point along this isocline. 

 
 
How will the numbers of each species change when we consider both species simultaneously?  
The joint equilibrium for both species will occur where both dN1/dt=0 and dN2/dt=0.  That 
point must fall on both of the zero growth isoclines, so it must be the intersection of the two 
lines. 
 
 
Figure 7.6 Zero growth isoclines of the two species. 

 
Starting at point A, N1 is above its isocline, so the abundance of species 1 will decrease and 
the point representing the state of the system will move to the left.  Similarly, N2 is above its 
isocline so the abundance of species 2 will decrease and the point representing the state of the 
system will move down.  The simultaneous change in both species will move the state of the 
system down and to the left, shown by the diagonal arrow from point A. 
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What will happen if the system starts at point B?  Starting at B, species 1 is now below its 
isocline so the system will move to the right.  Species 2 is above its isocline so it will decrease 
in abundance and the system will move down.  The joint effect is to move the state of the 
system down and to the right. 
 

Draw in the population change vectors for points C and D.  
 
 

The set of iscoclines in Figure 7.6 define a system where stable coexistence of the two 
competitors is possible. No matter where in the state space the system starts, the system will 
move toward the equilibrium. In other words, the joint equilibrium of the two species is 
globally stable. 
 
Let’s look closely at a case where the isoclines do not intersect. In this situation the species 
with the higher zero growth isocline will eventually outcompete the other species.    For 
example, in this scenario imagine we start the system with only a couple of individuals of 
each species.  Initially, both species 1 and species 2 are below their isocline, so the abundance 
of both species will increase.    Now consider a point when the joint abundances have changed 
and the system has reached the lower isocline.  At this point species 1 can still increase but 
species 2 will stay constant.  At the third position, species 2 is above its isocline so it will 
decrease in abundance while species 1 continues to increase.  Eventually, species 2 will 
decline to extinction and species 1 will equilibrate at K1. 
 
Figure 7.7 

 
 
 
Depending on the values of K1, K2, α and β, there are four possible configuration of isoclines 
for two competitors (Figure 7.8). 
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Figure 7.8.  Four possible arrangements of isoclines for two species in the phase plane. 

          

   
 

Choose a starting point for each of those graphs and draw in the population trajectory.  
 

7.3 An algebraic solution 
We can also consider the stability of the joint equilibrium algebraically.  At the joint 
equilibrium, both dN1/dt=0 and dN2/dt=0.  Therefore both equations 7.3 and 7.4 must be 
satisfied.  To find that joint equilibrium, substitute equation for N1 (eq.7.3) into eq.7.4: 

€ 

ˆ N 2 = K2−β(K1−αN2) 

€ 

ˆ N 2 = K2−βK1+αβN2 
 

€ 

ˆ N 2 =
K2−βK1
1−αβ     eq. 7.5 

 
By similar logic, 

€ 

ˆ N 1 =
K1−αK2
1−αβ      eq. 7.6

 

 
How can we make sense of those equations?  First, notice that those criteria for coexistence 
don’t depend on r.   The growth rate of each population affects the rate of approach to the 
equilibrium, but r has no effect in determining which species is the better competitor or 
whether coexistence is possible. 
 



Case Studies in Ecology and Evolution  DRAFT 

© Don Stratton 2010 9 

Second, we can derive some general conditions for coexistence.  Stable coexistence means 
that both species should be able to increase when rare.  Imagine a case where species 1 is rare 
(so N1 is approximately 0).  Species 2 is common and without species 1 N2 should equilibrate 
at approximately K2.    Under those conditions, can an individual of species 1 invade? 
 
Remember that the key part of eq. 7.1 in determining whether or not species 1 will increase 
was the part in parentheses.  In particular, dN1/dt will be positive when 

€ 

(K1−N1−αN2) is 
positive.   Now, can species 1 increase when rare (when 

€ 

N1 ≈ 0 and 

€ 

N2 ≈ K2)?  That will 
depend on the sign of 

€ 

(K1−0−αK2).   That expression will be positive when 

€ 

K1 >αK2 ,or  
K1 K2 >α  

 
You can also see this graphically.  In order for species 1 to increase, its isocline must be 
above the current point.   Examine Figure 7.8a and look along the vertical axis. If species 1 is 
rare the system will be at approximately [0,K2].    Species 1 can increase only if its isocline is 
higher than that point: i.e. K1/α  must be greater than K2.   
That can also be written 

K1/ K2> α 
 

Similarly, if  N2 is close to zero, that means the system will be at approximately K1.  In order 
for species 2 to increase when rare, its isocline must be higher than K2:     

K2/β   > K1. 
or 

1/β   >  K1/ K2 
 
 

With a little rearranging, those two expressions can be combined to yield the general criterion 
for coexistence of two competitors under the Lotka-Volterra competition model: 

α <
K1
K2

<
1
β      eq. 7.7

 

 

7.4 Competitive exclusion 
Equation 7.7 allows us to say a lot about the potential coexistence of two competitors.  For 
example, imagine that the two species are identical in their use of resources.  In that case, 
adding an extra individual of species 2 would have exactly the same effect on population 
growth as an addition individual of species 1: α=1.0 and β=1.0. 
 

Using equation 7.7, can those two species coexist when α=β=1.0 ?____ 
 

That result is sometimes known as the competitive exclusion principle: complete 
competitors cannot coexist. 
 
Now imagine that the two species are quite similar, but not exactly identical.  When two 
species are ecological similar and use approximately the same resources, α and β will be close 
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to 1.0.    Let’s imagine that α=β=0.9.  In that case coexistence is possible, but only if the 
carrying capacities are precisely matched.  The ratio of carrying capacities must be between 
0.9 and 1.11. 
 
If two species are only weak competitors, alpha and beta will be much less than 1.0.  In that 
case a much wider range of carrying capacities will still allow the species to coexist. 
 
 
 
7.5 Back to grasshoppers 
 

 
photo from G. Belovsky website 

Belovsky and his students set up more grasshopper cages, this time starting with mixtures of 
the two species.  They used many possible combinations of Ageneotettix and Melanoplus such 
that the total number of grasshoppers was about 10 per cage (10:0, 8:2, 5:5, etc).  In some of 
the treatments Ageneotettix was kept at a constant density by replacing any grasshoppers that 
died or disappeared.   In those cages the number of Melanoplus was allowed to decline to a 
constant density.  (The idea was to mimic Figs 7.4 and 7.5.) 
In other cages the number of Melanoplus was kept constant and Ageneotettix was allowed to 
decline toward its equilibrium density.  They then allowed the density of grasshoppers to 
equilibrate and recorded the final number of each species. 
 
Their results are shown in Fig 7.9.   
	
Figure 7.9.  Competitive isoclines for two species of Montana grasshoppers.  The isocline for 
A. deorum is shown with blue squares.  The zero growth isocline for M. sanguinipes is shown 
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by the red diamonds.

 
 
 
One important difference between this and figure 7.6 is that the changes in numbers of 
grasshoppers in the cages are entirely the result of mortality within a generation.  But because 
mortality is an important component of population growth, the within generation changes in 
mortality should at least approximate the overall population growth. 
 
The other obvious difference is that the observed isocline for M. sanguinipes is not straight.   
 
Why are the isoclines for these grasshoppers curved? The logistic equation on which our 
competition model was based assumes linear density dependence.  The grasshoppers show a 
non-linear response.  One likely reason is because the two species feed on slightly different 
host plants.  The Migratory grasshopper will eat almost all of the plants it encounters,  both 
grasses and forbs.  In contrast, the white-whiskered grasshopper prefers to eat grasses.   In 
cages it will refuse to eat broad-leafed species even when it is running out of grass.   In other 
words, M. sanguinipes has an unshared resource: forbs.  That gives it a “reserve” so its 
numbers can’t be driven completely to zero by the addition of more A. deorum.    It stabilizes 
at a minimum of about 3 per cage, regardless of the number of competitors. 
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