

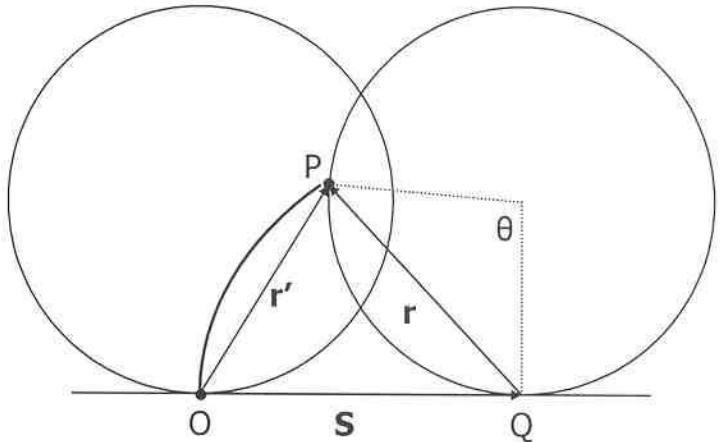
The Tautochronous Pendulum.

Let the cylinder roll without slipping on the horizontal surface from initial point of contact O to new point of contact Q. Let O be the fixed origin of the coordinate system. The initial point of contact at O has moved to a new position P. The coordinates of that point are the cycloid coordinates:

$$x = a\theta - a \sin \theta \quad (1)$$

$$y = a - a \cos \theta \quad (2)$$

where a is the radius of the circle.



Proposition I: Segment QP is perpendicular to the cycloid line at P.

Proof

We need show that the line element ds that is tangent to the cycloid at P is perpendicular to QP. Consider vectors \mathbf{S} , \mathbf{r} and \mathbf{r}' as shown in the drawing. Clearly, $\mathbf{r} = \mathbf{r}' - \mathbf{S}$. Then,

$$\mathbf{r}' = (a\theta - a \sin \theta) \mathbf{e}_x + a(1 - \cos \theta) \mathbf{e}_y$$

$$\mathbf{S} = a\theta \mathbf{e}_x$$

$$\mathbf{r} = \mathbf{r}' - \mathbf{S} = -a \sin \theta \mathbf{e}_x + a(1 - \cos \theta) \mathbf{e}_y$$

Now

$$ds = dx \mathbf{e}_x + dy \mathbf{e}_y = a(1 - \cos \theta) d\theta \mathbf{e}_x + a \sin \theta d\theta \mathbf{e}_y$$

and,

$$ds \cdot \mathbf{r} = -a^2 \sin \theta (1 - \cos \theta) d\theta + a^2 \sin \theta (1 - \cos \theta) d\theta = 0.$$

Therefore, ds is perpendicular to QP at P, QED.

Proposition II: The length of arc segment OP along the cycloid is $s = 4a(1 - \cos \frac{\theta}{2})$

Proof

$$ds = \sqrt{(dx)^2 + (dy)^2}$$

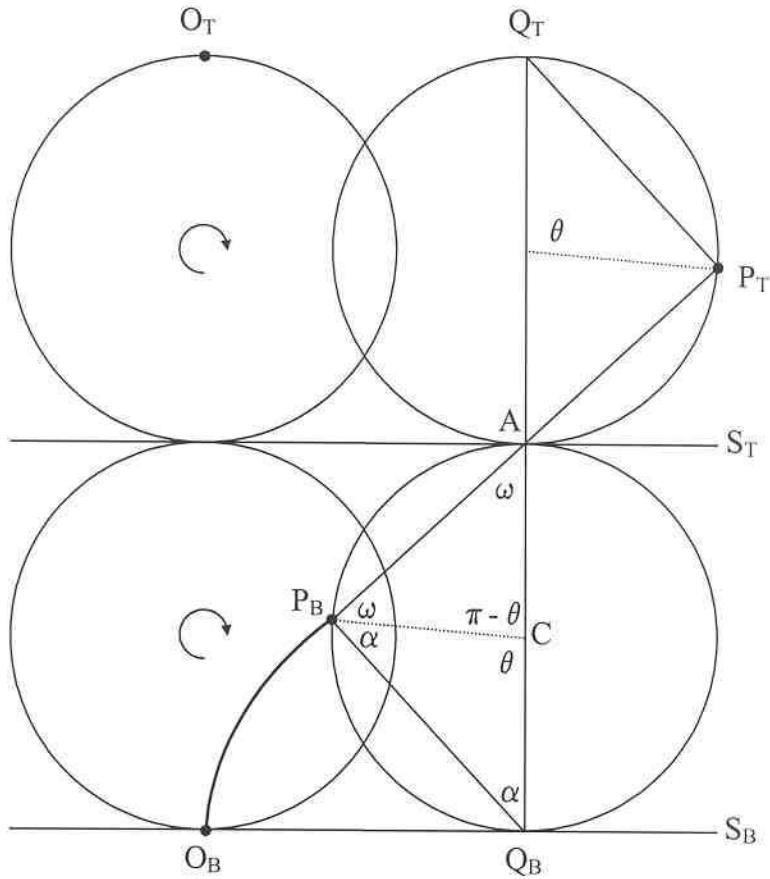
$$dx = (1 - \cos \theta) a d\theta; \quad dy = a \sin \theta d\theta$$

$$ds = a d\theta \sqrt{(1 - \cos \theta)^2 + (\sin \theta)^2} = a d\theta \sqrt{2(1 - \cos \theta)} = 2 a \sin \frac{\theta}{2} d\theta$$

$$s = 2a \int_0^\theta \sin \frac{\theta}{2} d\theta = 4a \left[-\cos \frac{\theta}{2} \right]_0^\theta = 4a \left(1 - \cos \frac{\theta}{2} \right)$$

QED.

Proposition III: Consider two identical cylinders, bottom and top. They roll without slipping on bottom and top surfaces S_B and S_T with identical velocities to the right. Let O_B and O_T be cycloid generator points for each cylinder. **When the cylinders have rotated by angle θ , line segment $P_T P_B$ is tangent to the cycloid at point P_B .**



Proof:

We need to show that segment $P_T P_B$ is perpendicular to segment $Q_B P_B$ at point P_B . Then, by Proposition I, segment $P_T P_B$ is tangent to the cycloid at point P_B .

First we note that, by symmetry, triangles AQ_BP_B and AQ_TP_T are congruent. This means that line P_TP_B has to pass through point A, the point at which the cylinders are tangent to one another.

From isosceles triangle $\triangle C P_T P_B$ we have

$$2\alpha + \theta = \pi \rightarrow \alpha = \frac{\pi}{2} - \frac{\theta}{2}$$

and from isosceles $\triangle \text{CAP}_B$

$$2\omega + (\pi - \theta) = \pi \rightarrow \omega = \frac{\theta}{2}$$

Adding the two equations gives $\alpha + \omega = \frac{\pi}{2}$ which proves the proposition.

It follows from the above that segment $P_T P_B$ is perpendicular to the tangent of the top cycloid at point P_T .