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Abstract

Over the last twenty years, lattice-based cryptosystems have gained interest due to
their level of security against attacks from quantum computers. The main such
systems are based on the hardness of Ring Learning with Errors (RLWE).

The Learning with Errors (LWE) problems were first introduced in 2005 by Regev
[Reg09] and in 2010, [LPR10] developed the Ring Learning with Errors (RLWE)
problems as candidates for safe encryption against quantum computers. Let K be
a number field with ring of integers OK . For a prime q, the RLWE problems rely
on samples of the form (a, b) ∈ OK/qOK × OK/qOK where a is drawn uniformly at
random and b = as + e where s ∈ OK/qOK is called the secret and e is a small error
term drawn from a Gaussian distribution.

Since the introduction of RLWE, attacks for solving the search and decision
problems have been developed to exploit vulnerabilities of underlying number fields
(mostly 2-power cyclotomic fields). An area which has been studied less rigorously
is on the bounds of the security parameters to ensure safety from attack. We aim
to study the security parameters for the Chi-Squared Attack from [CLS17a, CLS17b]
which attempt to solve the non-dual RLWE decision problem. After testing the
parameters suggested in the current literature ([CLS17b, Pei16b]), we suggest that
we can find tighter bounds that rely on the norm of the prime q ⊂ OK and the
standard deviation σ of the Gaussian distribution from which the error terms are
drawn.

Another area of interest involves the ways in which the error terms are sampled
and how to control its growth in size. This is of particular interest for the Polynomial
Ring Learning with Errors (PLWE) problems because sampling the error coefficients
require that we sample from a monogenic ring. In short, the process of sampling the
error terms amounts to choosing a “small” vector in OK and then reducing it modulo
a prime q. The PLWE problem is not typically defined for non-monogenic number
fields. However, for f(x) ∈ Z[x] a monic irreducible polynomial of degree n, the
Dedekind-Kummer Theorem tells us that while P = Z[x]/⟨f(x)⟩ is not isomorphic to
OK in most cases, OK/(q) ∼= Fq[x]/⟨f(x)⟩ when q does not divide the index of P in
OK .

Our work studies, first, the possibility of sampling “small” error vectors in the
ring Fq[x]/⟨f(x)⟩ directly. This approach was not promising. Our second approach
uses coset representatives. Suppose [OK : Z[α]] = m > 1 for a root α ∈ K of a
minimal polynomial f . Let β1, . . . , βm be coset representatives of OK/Z[α]. Suppose
we sample p(α) ∈ P according to PLWE and sample βi uniformly at random. Output
p(α) + βi ∈ OK . Calculating the statistical distance between this PLWE sampling
algorithm and the RLWE sampling algorithm, we hope to expand the PLWE sampling
to a wider class of rings of integers.
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Chapter 1

Introduction

Cryptography is the study of secure communication in the presence of an adverse

third party. Public key cryptography is a system that uses corresponding public and

private keys. A public key is used to encrypt a message, while a private (secret)

key is needed to then decrypt the message. For example, if Person A wants to send

a message (plaintext) to Person B, Person A would use Person B’s public key to

encrypt it. Then Person B would use their private key to decrypt the encrypted

message (ciphertext) back to plaintext. The security of public key cryptography is

based on “hard problems.” When we say a problem is “hard,” we mean that the

number of steps or resources needed to solve the problem grows fast when the size

of the input grows, causing our algorithm to be incredibly slow. Cryptographers

consider problems that take even the fastest known algorithms an exponential, or at

least sub-exponential, amount of time or space to solve.

RSA is one of the earliest public key cryptosystems, and it is based on the hardness

of factoring. While it is “easy” to multiply two prime numbers, such as 1489×701, it is

“hard” to do the reverse, which in this case would be to express 1043789 as its prime

factors. However, with the possibility of quantum computers becoming prevalent,

“hard” problems could be solved in a reasonable amount of time, threatening our

current cryptosystems. Shor’s Algorithm [Sho97] can find the prime factors of an
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integer using a quantum computer in polynomial time. The publication of Shor’s

Algorithm sparked the study of post-quantum cryptography. Not to be confused

with quantum cryptography, post-quantum cryptography means that encryption and

decryption take place on a classical computer but is safe against attacks performed

on both a classical and quantum computer. (In quantum cryptography, encryption

and decryption take place on a quantum computer.)

As a result, cryptographers are studying problems that are still believed to

be “hard” for both classical and quantum computers. Over the last 20 years,

lattice-based cryptosystems have started attracting interest due to their level of

security against polynomial-time attacks. In 2016, the National Institute of Standards

and Technology (NIST) opened a competition to test and standardize post-quantum

algorithms. As of August 2023, there are three schemes which are candidates for

standardization; two of these schemes are lattice-based while the third is a hash-based

cryptosystem. The lattice-based cryptosystems are based on the hardness of a

variation of the Ring Learning with Errors (RLWE) problem.

In 2005, Regev introduced the Learning with Errors (LWE) problems: the search

and decision problems [Reg09]. The drawback on the LWE problems is that the

public and private key sizes that are needed are quite large. A few years later, in

2010, [LPR10] introduced the Ring Learning with Errors (RLWE) search and decision

problems. Let K be a number field, OK its ring of integers, and q a prime unramified

in K. Given a secret element s ∈ OK/qOK , an RLWE sample is of the form

(a, b = a · s + e) ∈ OK/qOK × OK/qOK , where a is chosen uniformly at random and

e is a “small” error term. Here · denotes multiplication.

The search problem is to find the value of s ∈ OK/qOK given independent

RLWE samples. The decision problem is to determine if the given samples (a, b) ∈

OK/qOK × OK/qOK are RLWE samples or uniformly random. These problems are

sometimes referred to as the non-dual RLWE problems.
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Since the introduction of RLWE, other variations of the problems have been

developed. The dual RLWE problems utilize the dual of the ring of integers,

O∨
K = {x ∈ K : Tr(xOK) ⊆ Z},

and the Polynomial Ring Learning with Errors (PLWE) problems draw

samples from a polynomial ring. As we will see, the main difference between the

variations of the problems is the way in which the error terms are sampled. In

particular, the PLWE problems are not typically defined for non-monogenic number

fields, which is an avenue we explore in Chapter 8.

Attacks which attempt to solve the RLWE problems have been formulated to

exploit the vulnerabilities of underlying number fields (mostly 2-power cyclotomic

fields). In [CLS17a] and [CLS17b], the authors describe a Chi-Squared Attack which

attempts to solve the non-dual RLWE decision problem. Theorem 3 and Corollary 1

in [CLS17b] state bounds on the security parameters to ensure a Gaussian distribution

is indistinguishable from a uniform distribution for 2-power cyclotomic number fields.

At the same time, Theorem 5.2 in [Pei16b] states bounds on the security parameters

which ensure safety for dual RLWE for arbitrary number fields.

One of our contributions to this area of research is on the security parameter

bounds that predict when instances are safe against attacks. We converted the

parameter from [Pei16b] for the dual RLWE problem to an equivalent parameter

for the non-dual RLWE problem. Using this converted parameter, along with the

conditions from [CLS17b], we present a conjecture that there is a trade-off between

the norm of the prime and the standard deviation of the Gaussian distribution. In

doing this, we can predict that a tighter bound can be found in comparison to the

bound in [Pei16b].

Our other contribution concerns the Polynomial Ring Learning with Errors
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problems. Let f(x) ∈ Z[x] be a monic irreducible polynomial of degree n and q

be a prime such that f(x) (mod q) factors completely into linear terms. Consider

the polynomial ring P = Z[x]/⟨f(x)⟩, then P/qP = Fq[x]/⟨f(x)⟩. Given a secret

polynomial s(x) ∈ P/qP , PLWE samples are of the form (a(x), b(x)) ∈ P/qP ×

P/qP where a(x) is drawn uniformly at random and b(x) = a(x)s(x) + e(x) for a

“small” error term e(x) ∈ P/qP . To draw a small error, we draw the coefficients of

ẽ(x) ∈ P to be “small” in the power basis. When the number field K defined by f(x)

is monogenic, the polynomial ring P is isomorphic to the ring of integers OK of K.

So the process of sampling the error terms amounts to choosing a “small” vector in

OK and then reducing it modulo q. The PLWE problem is not typically defined for

non-monogenic number fields. We examine a couple of possible strategies to allow for

non-monogenic number fields to be considered.

1.1 Organization of Thesis

In Chapter 2, we define the ring of integers OK of a number field K and prove that

OK is a Dedekind domain. We also discuss the various canonical embeddings and

use them to define a lattice. Lastly, we introduce Gaussian distributions for sampling

lattice points.

We continue to discuss Gaussian distributions in the following chapter, Chapter

3. Here we define a subgaussian and a variety of sampling algorithms to sample

from a Gaussian distribution over the integers as well as to sample over a lattice.

We also discuss how we can discretize a continuous Gaussian distribution, which will

be useful when we compare security parameter bounds from both a continuous and

discrete Gaussian distribution.

In Chapter 4, we introduce the Learning with Errors (LWE) problems from [Reg09]

as an introduction into the Ring Learning with Errors problems, starting in Chapter
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5. We also discuss the variations of this problem (non-dual RLWE, dual RLWE, and

Polynomial Ring Learning with Errors (PLWE)).

In Chapter 6, we mention a few algorithms that attempt to solve the LWE and

RLWE problems. Here we introduce the Chi-Squared Attack from [CLS17a, CLS17b],

which will be of main interest for the next chapter. (This will be the attack that we

use to test the parameter bounds that we find in Chapter 7.)

In Chapter 7, we consider the known security bounds mentioned in [CLS17b,

Pei16b] for the non-dual RLWE and dual RLWE problems, respectively. Using the

relationships between the variations of the problems from Chapter 5, we convert

the security parameter from [Pei16b] to get an equivalent bound for the non-dual

RLWE problem (equivalently the PLWE problem when K is monogenic). Using the

Chi-Squared Attack from [CLS17a, CLS17b] and SageMath code from [ELOS15], we

test the security bounds to show that the results in [Pei16b] are not sharp.

In Chapter 8, we consider a variety of ways to generalize the Polynomial Ring

Learning with Errors (PLWE) sampling for non-monogenic rings of integers. To

start, we explore the Dedekind-Kummer Theorem as our inspiration for these new

sampling algorithms. Our first attempt considers reducing modulo a prime q

first and then sampling directly from OK/qOK . Due to some vulnerabilities in

this sampling algorithm, this approach is not promising. Our next attempt uses

coset representatives. Upon calculating the statistical distance between the RLWE

sampling distribution on OK and our proposed PLWE sampling distribution on OK ,

we show that our sampling algorithm is an interesting way to expand the PLWE

sampling to non-monogenic number fields that should warrant further study.

Future work to still be explored will be mentioned in Chapter 9.

5



Chapter 2

Background

2.1 Preliminaries

Definition 2.1.1. A number field K is a finite field extension of Q.

We can construct a number field as

K = Q(α) ∼= Q[x]/(f(x))

where α is a root of some monic irreducible polynomial f(x) ∈ Q[x]. We call f(x)

the minimal polynomial of α over Q.

When viewing K as a vector space over Q, we can find a basis for K.

Definition 2.1.2. A set B is a basis for a vector space V if every element of V can

be written uniquely as a linear combination of elements in B.

A vector space can have multiple bases, and each of them has a dual. Before

defining the dual of a basis, we first define the Kronecker delta function.

Definition 2.1.3. The Kronecker delta function is a mapping of two variables,
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which outputs 1 when they agree and 0 otherwise:

δjk =


1 j = k,

0 j ̸= k.

Definition 2.1.4. If B = {b1, . . . , bn} is a basis of Cn, its dual basis B∨ =

{d1, . . . , dn} is characterized by ⟨bj, dk⟩ = δjk, where δjk is the Kronecker delta

function and ⟨·, ·⟩ is the usual complex dot product.

2.2 Ring of Integers

Considering the minimal polynomial of α ∈ K over Q, we will define the set of all α

such that its minimal polynomial has integer coefficients. (Recall that we require the

minimal polynomial to be monic.)

Definition 2.2.1. For a number field K, the set of algebraic integers, elements whose

minimal polynomial over Q has integer coefficients, in K is denoted OK , and called

the ring of integers of K.

Example 2.2.2. i. For the field K = Q, its ring of integers is OQ = Z, which is

the smallest possible ring of integers.

ii. The ring of Gaussian integers Z[i] is the ring of integers for the Gaussian rationals

Q(i).

iii. Let K = Q(
√

5) = {a + b
√

5 : a, b ∈ Q}. To compute OK , let x = a + b
√

5 ∈ K.

Then x2 = a2 + 5b2 + 2ab
√

5 and 2ax = 2a2 + 2ab
√

5. Then

x2 − 2ax = a2 + 5b2 + 2ab
√

5 − 2a2 − 2ab
√

5 = 5b2 − a2.

7



Moving terms to one side, we get the form of the minimal polynomial of elements

of the form a + b
√

5 as

x2 − 2ax + a2 − 5b2 = 0.

The coefficients are integers when 2a ∈ Z and a2 − 5b2 ∈ Z. So either a ∈ Z =⇒

b ∈ Z or a ∈ 1
2Z =⇒ b ∈ 1

2Z. Thus

OK = Z

1 +
√

5
2

 =
c + d

1 +
√

5
2

 : c, d ∈ Z

.

Notice that in each of these examples, Z is a subset of the ring of integers. This

is true for all OK for any number field K, that Z ⊆ OK .

Our next goal is to show that the ring of integers of a number field is a Dedekind

domain. We will start with some useful definitions.

Definition 2.2.3. A commutative ring R with multiplicative identity 1 is called an

integral domain if R has no zero divisors.

Definition 2.2.4. An element r ∈ R integral over S if there exists a monic polynomial

p(x) ∈ S[x] such that p(r) = 0.

Definition 2.2.5. The integral closure of S in R is the ring of all r ∈ R which

are integral over S.

Example 2.2.6. If S = Z and R = K for some number field K, then the integral

closure of S in R is OK by definition of the ring of integers of K.

Definition 2.2.7. An ideal I is prime if whenever ab ∈ I, then a ∈ I or b ∈ I.

Definition 2.2.8. A commutative ring R with multiplicative identity 1 is called

Noetherian if every ideal of R is finitely generated.

Definition 2.2.9. An integral domain R is a Dedekind domain if all three

conditions hold:

8



i. R is integrally closed in its field of fractions,

ii. every non-zero prime ideal is a maximal ideal,

iii. R is Noetherian.

The ring of integers OK of a number field K is a Dedekind domain, which is a

fact we will recall in Chapter 6, when discussing the Chi-Squared Attack.

Theorem 2.2.10. Let K be a number field, OK its ring of integers. Then OK is a

Dedekind domain.

Proof. i. Suppose α ∈ K is integral over OK . Then α is a root of a monic

polynomial f(x) = a0 + . . . + an−1x
n−1 + xn, ai ∈ OK . Since Z[a0, . . . , an−1]

is finitely generated, then Z[a0, . . . , an−1, α] is finitely generated. (Note: αm for

m ≥ n, we can rewrite it using smaller powers of α.) This implies that α is

integral over Z. Thus α ∈ K ∩ Z = OK , and OK is integrally closed.

ii. Let I be a non-zero prime ideal of OK . Then I ∩ Z is a non-zero prime ideal.

Suppose I ∩ Z = (p) for some prime p. If we can show that OK/I is a field, we

win. The ring OK/I is finite over Z/(p) = Z/pZ = Fp. We also have that OK/I

is an integral domain. A finite integral domain is a field, and so OK/I is a field.

Thus I is a maximal ideal.

iii. Let {b1, . . . , bn} be a basis of K over Q. Then there exists a nonzero integer d

such dbi ∈ OK for all i, and {db1, . . . , dbn} is also a basis for K as a vector space

over Q. Therefore, without loss of generality, we may assume bi ∈ OK for all i.

Let {b∨
1 , . . . , b∨

n} be its dual basis. We want to show that

b1Z + b2Z + . . . + bnZ ⊂ OK ⊂ b∨
1Z + b∨

2Z + . . . + b∨
nZ.

Since bi ∈ OK for all i and Z ⊂ OK , we have the first inclusion. To show

the second inclusion, let α be an element of OK . Then α is a unique linear

9



combination of the b∨
j ,

α =
∑

j

cjb
∨
j

for cj ∈ K. For each i, bi and α are in OK , then their product biα is also in OK .

The trace of an element of OK is an integer, and therefore Tr(biα) ∈ Z, but we

have

Tr(biα) = Tr(bi

∑
j

cjb
∨
j )

=
∑

j

cjTr(bib
∨
j )

=
∑

j

cjδij

= ci.

Therefore α ∈ b∨
1Z+ b∨

2Z+ . . .+ b∨
nZ, and so OK is a finitely generated Z-module.

Since Z is Noetherian, any Z-submodule of OK must also be a finitely generated

Z-module, and thus OK is Noetherian.

Another fact about the ring of integers OK for a number field K is that it is a

fractional ideal.

Definition 2.2.11. Let R be an integral domain, and K its fraction field. A

fractional ideal of R is an R-submodule I of K such that rI ⊆ R for some r ∈ R.

2.3 Canonical Embedding

The canonical embedding of a fractional ideal describes a lattice in Rn. To define

this, we first talk about the embeddings of a number field K.

Let K be a number field of degree n. Then K must have exactly n embeddings
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into the complex numbers, denoted σi : K −→ C. These embeddings fix the prime

field Q and permute the roots of irreducible polynomials. An embedding whose

image is contained in R is called a real embedding; the rest are called complex

embeddings. Let s1 denote the number of real embeddings and s2 denote the number

of pairs of complex embeddings of K. Then n = s1 + 2s2.

Let σ1, σ2, . . . , σn be the real and complex embeddings of K. We order the

embeddings so that σ1, . . . , σs1 are the real embeddings and σs1+1, . . . , σs1+2s2 are

the complex embeddings where σs1+s2+k = σs1+k for k = 1, 2, . . . , s2. Let

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+k = xs1+k ∀k = 1, 2, . . . , s2}.

Then we define the canonical embedding of K in the following way.

Definition 2.3.1. The canonical embedding θ : K −→ H ⊆ Rs1 ×C2s2 is defined

as

θ(x) = (σ1(x), . . . , σn(x)).

Some authors ([CLS17b, CLS17a, ELOS15, EHL14]) define similar canonical

embeddings to describe the lattice of a fractional ideal to be used for the RLWE

problems, which we will refer to as the alternative canonical embedding and the

adjusted canonical embedding.

Definition 2.3.2. The alternative canonical embedding θALT : K → Rn is

11



defined as

θALT (α) =



σ1(α)

. . .

σs1(α)

Re(σs1+1(α))

. . .

Re(σs1+s2(α))

Im(σs1+1(α))

. . .

Im(σs1+s2(α))



.

Definition 2.3.3. The adjusted canonical embedding θADJ : K −→ Cn is defined

as

θADJ(α) =



σ1(α)

. . .

σs1(α)
√

2Re(σs1+1(α))
√

2Im(σs1+1(α))

. . .
√

2Re(σs1+s2(α))
√

2Im(σs1+s2(α))



.

We note that under a canonical embedding, we can endow K with a norm by

identifying an element with its canonical embedding and using the Euclidean norm

on Cn

||x|| := ||θ(x)||.

12



2.4 Lattices

Now, we use the canonical embedding of a fractional ideal I ⊂ K, θ(I), to define a

lattice, ΛI in H ∼= Rn where n is the degree of K.

Definition 2.4.1. A lattice in Rn is the Z-span of a R-basis of Rn.

Under the canonical embedding, ΛOK
:= θ(OK) is a lattice in Rn.

Example 2.4.2. Let K = Q(i) and OK = Z[i]. Notice that [K : Q] = 2, so we have

the pair of complex embeddings

σ1(i) = i σ2(i) = −i.

A basis of OK is 1, i. Evaluating the alternative canonical embedding at these basis

elements of OK will give the basis of the lattice θALT (OK). So

θALT (1) = (Re(σ1(1)), Im(σ1(1))) = (1, 0)

and

θALT (i) = (Re(σ1(i)), Im(σ1(i))) = (0, 1)

gives the basis of the lattice θALT (OK) as (1, 0) and (0, 1). Figure 2.1 shows θALT (OK)

in R2.

Now, we do another example involving the dual basis. This example illustrates

that, in the cases that interest us, the dual lattice ΛB∨ is much denser than the lattice

ΛB.

Example 2.4.3. Consider the lattice ΛB in R2 generated by the basis B =

{(1, 1), (0, 2)}, shown in Figure 2.2.

We will now find the dual basis of B, B∨. Given the definition of a dual basis,

we need to see when ⟨bj, dk⟩ equals 1 for j = k, and 0 for j ̸= k. So if B∨ = {d1, d2}

13



Figure 2.1: θALT (Z[i]).

Figure 2.2: The lattice ΛB with basis B.

with d1 = (a1, a2) and d2 = (a3, a4), we get the following equations

⟨b1, d1⟩ = 1a1 + 1a2 = 1

⟨b2, d1⟩ = 0a1 + 2a2 = 0

⟨b1, d2⟩ = 1a3 + 1a4 = 0

⟨b2, d2⟩ = 0a3 + 2a4 = 1

Solving for the ai’s, we get that d1 = (1, 0) and d2 =
(
−1

2 , 1
2

)
. Thus the dual basis

of the basis B = {(1, 1), (0, 2)} is B∨ =
{
(1, 0),

(
−1

2 , 1
2

)}
. The lattice ΛB∨ is shown

14



in Figure 2.3.

Figure 2.3: The lattice ΛB∨ corresponding to the dual basis B∨.

The lattice generated by the dual basis is, in fact, the dual lattice of the lattice

generated by B, i.e ΛB∨ = Λ∨
B. We will recall this example when we compare the

non-dual and dual Ring Learning with Errors problems in Chapter 5.

2.5 Gaussian Distributions

To sample lattice points, we use a Gaussian distribution.

Definition 2.5.1. For σ > 0, the continuous Gaussian function ρσ : Rn → [0, 1)

is

ρσ(x) = e−||x||2/2σ2

where || · || is the Euclidean norm.

Using the Gaussian function, we define the discrete Gaussian distributions over a

lattice.

Definition 2.5.2. Given a lattice Λ ⊆ Rn and real number σ > 0, the discrete

Gaussian distribution on Λ with standard deviation σ is given by the probability

15



distribution function

DΛ,σ(x) = ρσ(x)∑
y∈Λ ρσ(y)

for all x ∈ Λ.

Definition 2.5.3. The width r of a Gaussian distribution is defined to be r =
√

2πσ.

2.6 Subgaussians

Next, we introduce subgaussians, distributions which are dominated by centered

Gaussian distributions and have strong tail decay.

Definition 2.6.1. A (standard normal) subgaussian random variable X is a

random variable that satisfies any one of the following three properties:

• P{|X| > t} = 2√
2π

∫∞
t e−x2/2dx ≤ 2e−t2/2 for t ≥ 1,

• (E[|X|p])1/p =
√

2
Γ((1 + p)/2)

Γ(1/2)

1/p

= O(√p) for p ≥ 1,

• E[exp(tX)] = et2/2 for t ∈ R.

Note: These three properties are equivalent (see [Ver12] Lemma 5.5 for the proof).

Definition 2.6.2. Let t ∈ R. We call E[exp(tX)] the moment-generating

function of X. When X, a subgaussian random variable, has variance σ2 ̸= 1,

the moment-generating function is then

E[exp(tX)] = exp(σ2t2/2).

Definition 2.6.3 ([LPR13]). Let δ > 0. A random variable X is said to be

a δ-subgaussian with standard deviation σ > 0 if for all t ∈ R, the (scaled)

16



moment-generating function of X satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(π(
√

2πσ)2t2).

The significance of this distribution is that in the next chapter, when we discretize

a continuous Gaussian distribution, the result will be a subgaussian.

17



Chapter 3

Sampling Algorithms

Before we introduce the Learning with Errors problems, we will continue to discuss

Gaussian distributions and ways we can sample from Gaussian distributions over the

integers as well as over a lattice. We end this chapter with some insight as to how

to discretize a continuous Gaussian on Rn to a Gaussian on a given translate of a

lattice in Rn using the coordinate-wise randomized rounding sampling technique. The

ideas in this chapter will be recalled time and time again throughout the rest of this

work. In Chapter 5, we highlight that the variations of the RLWE problems differ

mainly in the way that the error terms are sampled. In Chapter 7, we compare the

security bounds from a continuous Gaussian distribution with a discrete distribution

over a lattice. Finally, in Chapter 8, we explore a new means of sampling inspired

by Polynomial Ring Learning with Errors (PLWE) and compare the probability of

sampling an element under these sampling algorithms and our proposed scheme.

3.1 Sampling Over The Integers

We begin by exploring ways in which we can sample from a discrete Gaussian

distribution over the integers. There are two ways to do this:

• rejection sampling,
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• the inversion method.

3.1.1 Rejection Sampling

[GPV08] describes this sampling algorithm as a way of sampling integers from a

discrete Gaussian distribution.

Suppose that one wishes to draw an integer from a discrete Gaussian distribution

with center c and width r =
√

2πσ, implicitly choosing n. Let f(n) be a fixed function

such that f(n) ≥ ω
√

log n. (Here ω denotes an estimate of the order of growth.) Then

choose some integer x ∈ Z ∩ [c − rf(n), c + rf(n)] uniformly at random, and with

probability ρσ(x − c), output x. Otherwise, repeat the process of choosing an integer

x ∈ Z ∩ [c − rf(n), c + rf(n)] uniformly at random until one is chosen. (Recall that

ρσ is the continuous Gaussian function.)

Example 3.1.1. Let f(n) = log n, (c, r) = (1, 3), and n = 3. Then

x ∈ Z ∩ [c − rf(n), c + rf(n)]

= Z ∩ [1 − 3 log 3, 1 + 3 log 3]

= Z ∩ [−0.43, 2.43]

= {0, 1, 2}.

Suppose we chose x = 0 uniformly at random. Then

ρσ(x − c) = ρσ(−1) = exp

− ||−1||2

2
(

3√
2π

)2


= exp

(
−π∥−1∥2

32

)

= 0.71.

So, 71% of the time, we would output x = 0, if chosen.
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Suppose we chose x = 1 uniformly at random. Then

ρσ(0) = e0 = 1

and so x = 1 is outputted 100% of the time that it is chosen.

Similarly to when x = 0, if we chose x = 2 uniformly at random, then it is

outputted 71% of the time.

3.1.2 The Inversion Method

The inversion method sampling algorithm is the following:

1. Take samples t ∈ [0, 1] uniformly at random.

2. Return the smallest number x ∈ Z such that F (x) ≥ t for the cumulative

distribution function F of a random variable.

In other words, we are choosing a percentage uniformly at random and in step 2,

returning the smallest number x in the domain such that P (X ≤ x) ≥ t.

Example 3.1.2. Suppose we have the discrete probability distribution shown in

Table 3.1.

Table 3.1: Discrete Probability Distribution

xi P(X= xi)
0 0.2
1 0.1
2 0.4
3 0.3

The cumulative distribution function (cdf) is given by

F (xi) = P (X ≤ xi).
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In other words, it is the sum all P(X= xj) where xj ≤ xi. Table 3.2 shows the cdf

corresponding to the discrete probability distribution from Table 3.1.

Table 3.2: Cumulative Distribution Function

xi F (xi)
0 0.2
1 0.3
2 0.7
3 1.0

To sample using the inversion method, we would choose t ∈ [0, 1], say t = 0.64.

Then we return the smallest number xi such F (xi) ≥ t. Then we would return xi = 2

since F (2) = 0.7 ≥ 0.64 and xi = 2 is the smallest number for which that is true.

3.2 Sampling from a Lattice

Given a lattice Λ, a basis B = {b1, . . . , bk} for this lattice, and points x, c ∈ H, we

can sample a short vector f ∈ Λ + (c − x) using the following algorithms:

• rejection sampling,

• coordinate-wise randomized rounding.

3.2.1 Rejection Sampling

[GPV08] has an algorithm to sample from a discrete Gaussian DΛ,σ,c centered at c

with standard deviation σ which follows closely to rejection sampling over the integers.

The algorithm is as follows:

1. Define πk : Rn → span(b1, . . . , bk) for k ∈ {1, . . . , n} and define b̃k = πk(bk). Let

vn = 0 and cn = c. For i = n, . . . , 1,

(a) Let c′
i = ⟨ci, b̃i⟩/⟨b̃i, b̃i⟩ ∈ R and s′

i = σ/∥b̃i∥ > 0.
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(b) Choose zi from DZ,s′
i,c

′
i
.

(c) Let ci−1 = ci − zibi and let vi−1 = vi + zibi.

2. Output v0.

3.2.2 Coordinate-Wise Randomized Rounding

Using cosets, [LPR13] describes an algorithm called coordinate-wise randomized

rounding in which we can sample a short vector from a lattice coset.

Given a coset Λ + (c − x), we represent c − x in the basis B = {b1, . . . , bn} as

c − x ≡
∑

i

aibi (mod Λ)

for ai ∈ [0, 1). Then we will randomly and independently choose fi ∈ {ai − 1, ai} to

have expectation zero, and output f = ∑
i fibi ∈ Λ + (c − x).

A note on expectation zero: Suppose the probability of choosing fi = ai − 1 is pi,

i.e. P(fi = ai − 1) = pi. Then P(fi = ai) = 1 − pi. The expected value of fi is

E[fi] = (ai − 1)pi + ai(1 − pi)

= aipi − pi + ai − aipi

= ai − pi.

So if fi is predicted to have expectation zero, then ai = pi. Thus the possible values

of fi closest to zero have the highest probability of being chosen.

Example 3.2.1. Let Λ = Z2, B = {(1, 0), (0, 1)}, x =
(

5
4 , −1

3

)
, and c =

(
1
2 , 5

3

)
. Then

the lattice coset is Λ+
(
−3

4 , 2
)
. We want to represent

(
−3

4 , 2
)

as ∑i aibi (mod Λ):
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(
−3

4 , 2
)

≡ a1(1, 0) + a2(0, 1) (mod Λ)

≡ (a1, 0) + (0, a2) (mod Λ)

≡ (a1, a2) (mod Λ)

≡
(1

4 , 0
)

(mod Λ)

And so, a1 = 1
4 and a2 = 0. Then f1 ∈

{
−3

4 , 1
4

}
and f2 ∈ {−1, 0}. Taking into

account that fi has expectation zero, then f2 = 0 with 100% probability, so there are

2 possibilities for f . We sample

f =
(

−3
4 , 0

)
with probability 25%

and

f =
(1

4 , 0
)

with probability 75%.

Another algorithm, the deterministic approach which is also mentioned in

[LPR13], follows closely. For this approach, ai ∈ [−1
2 , 1

2) instead and we output

f = ∑
i aibi.

3.3 Discretizing to a Lattice Point

These sampling algorithms can be used to discretize a sample drawn from a continuous

distribution to a lattice point drawn from a discrete Gaussian over some lattice in

Rn. With the coordinate-wise randomized rounding algorithm as motivation, [LPR13]

describes how we can sample a short vector using the randomized rounding scheme

to output a lattice point.

Given a lattice Λ, a basis B, and points x, c ∈ H, we can discretize a vector x ∈ H
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drawn from a continuous Gaussian distribution to a point y ∈ Λ + c where ∥x − y∥

is small by sampling a short vector f ∈ Λ + (c − x), and outputting the lattice point

y = x + f .

Example 3.3.1. Continuing from Example 3.2.1, we sample y = x + f ∈ Λ + c as

either y1 =
(

1
2 , −1

3

)
(with probability 25%) or y2 =

(
3
2 , −1

3

)
(with probability 75%).

Notice the lattice point y2, which is sampled with higher probability, is closer to

x =
(

5
4 , −1

3

)
, meaning ∥x − y2∥ ≤ ∥x − y1∥.

To further support our calculations in Chapter 7, we draw attention to some facts

from [LPR13]. It is first noted that f is a 0-subgaussian with standard deviation

σ = s1(B) =
√

2ℓ−2

2ℓ−1 for K = Q(ζ2ℓ) where s1 is the spectral norm. [LPR13] also

states that a Gaussian distribution is itself a subgaussian and the sum of subgaussian

distributions is also a subgaussian distribution. So if y is a (∑ δi) - subgaussian, then

it has width (∑ r2
i )1/2 where ri is the width of the δi-subgaussian. Hence, since x and

f are subgaussians, y is a subgaussian. We will utilize this fact when converting the

security parameter bounds between variations of the RLWE problems in Chapter 7.
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Chapter 4

Learning with Errors

The Learning with Errors (LWE) problems were first introduced by Regev in 2005

[Reg09]. We will explore this problem as an introduction into the Ring Learning with

Errors problems, which are the focus of the next chapter.

4.1 The Problems

The search and decision LWE problems both require samples of a special form.

Definition 4.1.1. Let q be a prime integer and n a positive integer. Given s ∈

Fn
q chosen uniformly at random and e a “small” element of Fq, an LWE sample

(a, b) ∈ Fn
q ×Fq is formed such that a is chosen uniformly at random from Fn

q and b is

computed as b = a · s + e, where · is the dot product. We define the notion of “small”

in Section 4.2.2.

Definition 4.1.2. The LWE search problem takes m LWE samples (ai, bi) and

attempts to find the secret s ∈ Fn
q .

Definition 4.1.3. The LWE decision problem takes m samples (ai, bi) ∈ Fn
q × Fq

and determines whether they are LWE samples or uniformly random samples.
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4.2 Error Term

For each LWE sample, a “small” element of Fq is drawn. This “small” element is

referred to as the error term because it adds some noise to the dot product a · s.

4.2.1 Why is noise needed?

Noise is needed to ensure that one cannot solve for s by simply using Gaussian

elimination. Notice that if ei = 0 for all i, then the LWE samples are (ai, bi = ai · s).

So we would have m many equations for the bi’s of the form:

ai1s1 + ai2s2 + . . . + ainsn = bi

in n variables and so we can solve for s = (s1, s2, . . . , sn).

The security of these problems come down to the bounds on the standard deviation

on the Gaussian distribution from which the error terms are drawn:

• If the error terms are too “big” (standard deviation is very large), then they

might wrap around when we reduce modulo q (this is an issue for decryption,

which we do not cover in detail).

• If the standard deviation is too small, then the values ei will be near zero with

high probability. In that case, it becomes probable that Gaussian elimination

can be used to solve for s successfully, as the error terms will not grow too fast

during the algorithm.

Other vulnerable instances exist which make the LWE problems “easy” to solve.

Another such case, shown in [Pei16b], is when the error term comes from a continuous

Gaussian distribution in which ei is almost always in an interval z + [−1
2 , 1

2) for some

z ∈ Z. In this case, we use integer rounding and subtract z to remove the error term
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from all samples, which brings us back to the errorless case. We will discuss these

ideas further in Chapter 6.

4.2.2 How is the error term drawn?

When the standard deviation σ of a Gaussian distribution is small, we have a high

probability of picking a small number. Since we want to pick a “small” element from

Fq, we draw from a truncated discrete Gaussian distribution.

Definition 4.2.1. Let σ > 0, C ∈ Z. The truncated discrete Gaussian

distribution on Z with variance σ2 and constraint C is given by

P (X = x) =



exp
(

−x2

2σ2

)
∑

−C≤y≤C exp
(

−y2

2σ2

) if x ∈ Z and − C ≤ x ≤ C

0 otherwise.

The error terms for LWE samples are drawn from this discrete Gaussian for some

σ where the constraint is ⌊ q
2⌋ for q an odd prime.

4.3 Drawback

The drawback of cryptography based on the LWE problems is that the public and

private key sizes needed are quite large, which is not the case for the Ring Learning

with Errors (RLWE) problems. [Reg10] states that key sizes need to be on the

order of n2 using the LWE set-up. This is due to needing at least n many vectors

a1, . . . , an ∈ Fn
q . By introducing a ring structure, we are able to reduce the key sizes

to almost linear size.
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Chapter 5

Ring Learning with Errors

The Ring Learning with Errors (RLWE) problems were introduced in 2010 by

[LPR10]. These problems are believed to be “hard” for both classical and quantum

computers due to reductions to the worst-case Approx-SIVP, a version of the shortest

vector problem, on ideal lattices on certain error distributions.

Due to the presumed difficulty of the RLWE problems, current candidates for safe

encryption against quantum computers are based on these “hard” problems. As of

August 2023, two out of the three proposed schemes for standardization from the

NIST PQC competition are based on variations of the RLWE problems.

5.1 Non-Dual RLWE

The RLWE problems follow closely to the LWE set-up with the exception that the

bi coordinates now have dimension n. It is this property that makes RLWE more

efficient.

Definition 5.1.1. A RLWE instance is R = (K, q, σ, s) where K is a number field,

q a prime integer, σ > 0 is a real number, and s ∈ OK/qOK where OK is the ring of

integers of K. We call s the secret.
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Definition 5.1.2. A (non-dual) RLWE sample for an instance R = (K, q, σ, s) is

of the form

(a, b = a · s + e (mod qOK)) ∈ OK/qOK × OK/qOK

where a ∈ OK/qOK is chosen uniformly at random and e is drawn from a Gaussian

distribution with standard deviation σ.

In analogy to the LWE problems, we have search and decision RLWE problems.

Definition 5.1.3. The search (non-dual) RLWE problem is to find the secret

s ∈ OK/qOK given m RLWE samples (ai, bi) ∈ OK/qOK × OK/qOK .

Definition 5.1.4. The decision (non-dual) RLWE problem is to determine if the

m pairs of the form (ai, bi) ∈ OK/qOK × OK/qOK are RLWE samples or uniformly

random samples.

5.2 Dual RLWE

Before defining the dual RLWE problems, we define the dual of the ring of integers,

denoted O∨
K , of a number field K.

Definition 5.2.1. Let K be a number field. For a fractional ideal I ⊂ K, the dual

ideal I∨ is I∨ = {x ∈ K : Tr(xI) ⊆ Z}.

Similar to the non-dual RLWE problem, the dual RLWE has two variations

focusing on samples (ai, bi) of a special form.

Definition 5.2.2. Let s ∈ O∨
K/qO∨

K . A dual RLWE sample is of the form

(a, b = a · s + e) ∈ OK/qOK × O∨
K/qO∨

K
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where a ∈ OK/qOK is chosen uniformly at random and e is drawn from a Gaussian

distribution with standard deviation σ.

Definition 5.2.3. The search dual RLWE problem is to find the secret s ∈

O∨
K/qO∨

K given m independent dual RLWE samples (a, b) ∈ OK/qOK × O∨
K/qO∨

K .

Definition 5.2.4. The decision dual RLWE problem is to determine if m samples

of the form (ai, bi) ∈ OK/qOK × O∨
K/qO∨

K are dual RLWE samples or uniformly

random samples.

Notice that ai ∈ OK/qOK , but here the bi coordinate is in O∨
K/qO∨

K . In [LPR10]

Section 3.3, the authors go into great detail to explain why this is the correct definition

for the dual RLWE problems. In short, having b ∈ O∨
K/qO∨

K gives the tightest

connection to worst-case ideal lattice problems. The secret s corresponds to the closest

vector in a Bounded Distance Decoding (BDD) problem. Along with a spherical

Guassian distribution, this condition on the bi also provides as much security as

possible while preserving the encryption and decryption results for cryptographic

applications.

It has been suggested in [Pei16b] that one should strongly consider a dual RLWE

instance when attempting to solve these problems, due to the lattice of O∨
K being

denser than the lattice of OK . Recall Example 2.4.3 where we found the dual basis

of the basis B = {(1, 1), (0, 2)}. Upon examining the lattices generated by B and

its dual, we saw that the points of the dual lattice were less spaced out. Due to

the lattice’s density, [Pei16b] highlights that non-dual RLWE instances may seem

safe from attack in certain situations, but are vulnerable when converted to the dual

RLWE setting.
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5.3 PLWE

The last version of the RLWE problems is the Polynomial Ring Learning with Errors

(PLWE) problems.

Let f(x) be a monic irreducible polynomial in Z[x] of degree n. Let q be a prime

such that f(x) (mod q) factors completely into linear terms. Let P = Z[x]/⟨f(x)⟩;

its elements are all polynomials of degree less than n with integer coefficients. The

power basis of P is 1, x, x2, . . . , xn−1. Then P/qP = (Z/qZ)/⟨f(x)⟩ = Fq[x]/⟨f(x)⟩.

Definition 5.3.1. Given a secret polynomial s(x) ∈ P/qP and error polynomial

e(x) drawn from a discrete Gaussian distribution over P , a PLWE sample is of the

form (a(x), b(x)) ∈ P/qP × P/qP where a(x) is chosen uniformly at random and

b(x) = a(x)s(x) + e(x) (mod qP ).

We want to bring attention to the fact that the errors are drawn from a discrete

Gaussian distribution over P . By this, we mean that we are sampling the coefficients

of the error polynomial from a discrete Gaussian over the integers. Recall from

Chapter 3, where we showed how this sampling can be performed.

Similarly to the RLWE versions mentioned above, we can define search and

decision PLWE problems as follows.

Definition 5.3.2. The search PLWE problem is to discover the secret s(x) ∈

P/qP given m PLWE samples (ai(x), bi(x)).

Definition 5.3.3. The decision PLWE problem is to determine if m pairs of the

form (ai(x), bi(x)) ∈ P/qP × P/qP are PLWE samples or uniformly random samples.
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5.4 Sampling the Error Terms

In this section, we emphasize the main difference among the variations of the problem,

which is how we sample the error terms.

• Non-dual RLWE and PLWE: ai, s ∈ OK/qOK .

– Non-dual RLWE: the error coefficients are sampled from a discrete

Gaussian distribution over the lattice ΛOK
= θ(OK).

– PLWE (when OK is monogenic): error coefficients are sampled to be

“small” in the power basis.

• Dual RLWE: ai ∈ OK , s ∈ O∨
K/qO∨

K .

– error coefficients are sampled from a Gaussian distribution over ΛO∨
K

=

θ(O∨
K).

5.5 Converting between the Problems

As mentioned in Chapter 4, an important security parameter for RLWE is the

standard deviation σ of the error distribution. In our study of this parameter, it

is essential to find relationships between the variations of the RLWE problem. To

begin, we compare the non-dual RLWE and dual RLWE set-ups.

5.5.1 Non-dual and dual RLWE Relationship

To start, we will first define the different ideal of a number field K. This discussion

follows [Con09].
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Definition 5.5.1. The different ideal of a number field K is

DK = (O∨
K)−1 = {x ∈ K : xO∨

K ⊂ OK}.

If K is monogenic, then the different ideal is principal. [Con09] states that

O∨
K = 1

f ′(α)OK ,

when K is monogenic for f a minimal polynomial of α ∈ K. In other words, DK =

(f ′(α)), the ideal generated by the derivative of the minimal polynomial of α evaluated

at α.Let γ be the generator of the different ideal DK . Then, when K is monogenic,

OK = γO∨
K . If a power basis for OK is B = {1, α, α2, . . . , αn−1}, then a power basis

for O∨
K is B∨ = {γ−1, γ−1α, γ−1α2, . . . , γ−1αn−1}.

Example 5.5.2. Let K = Q(ζ23) and OK = Z[ζ23 ]. Then OK has integral basis

1, ζ23 , ζ2
23 , ζ3

23 . Thus the basis of the lattice θ(OK) is θ(1), θ(ζ23), θ(ζ2
23), θ(ζ3

23). Then

the dual ring of integers is O∨
K = 1

22 OK = 1
4Z[ζ23 ]. The integral basis of O∨

K is
1
4 , 1

4ζ23 , 1
4ζ2

23 , 1
4ζ3

23 . Thus the basis of the lattice of O∨
K is

θ
(1

4

)
, θ
(1

4ζ23

)
, θ
(1

4ζ2
23

)
, θ
(1

4ζ3
23

)
.

Example 5.5.3. For general 2-power cyclotomics, K = Q(ζ2ℓ), the ring of integers

is OK = Z[ζ2ℓ ] and its dual is O∨
K = 1

2ℓ−1 OK = 1
2ℓ−1Z[ζ2ℓ ].

When K is not monogenic and α ∈ OK , we have that Z[α] is a fractional ideal of

K (because Z ⊂ OK). Since we also have the inclusion OK ⊂ O∨
K , then we get that

O∨
K ⊂ Z[α]∨.
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5.5.2 PLWE and RLWE Relationship

Now, we discuss the relationship between the PLWE and RLWE problems. As

mentioned, the PLWE problems are defined only for monogenic fields. Throughout

this section, suppose K is a monogenic number field, OK its ring of integers, and

O∨
K its dual. Let P = Z[x]/⟨f(x)⟩ be a polynomial ring for f(x) a monic irreducible

polynomial in Z[x].

Suppose that α ∈ OK is a root of f(x), then P ∼= OK via the map x 7→ α. By

the previous subsection, when K is monogenic, OK = γO∨
K for γ the generator of the

different ideal. So P ∼= OK = γO∨
K . In Chapter 8, we will explore ways in which we

can attempt to define PLWE-like sampling for non-monogenic rings of integers.

In PLWE, we represent elements of OK as polynomials in some α, and in RLWE,

we represent elements of Cn via the canonical embedding. To relate the two sampling

techniques, we must find the change of basis matrix to go from the non-dual/dual

RLWE setting to the PLWE setting.

Definition 5.5.4. Let 1, α, α2, . . . , αn−1 be an integral basis for OK . The matrix Mα

is the change of basis matrix with columns {θ(αi)} that maps P to θ(OK).

In other words, for a0 + a1x + . . . + an−1x
n−1 ∈ P = Z[x]/⟨f(x)⟩, then

Mα



a0

a1

. . .

an−1


∈ θ(OK).

Similarly, we have a change of basis matrix that corresponds to P and O∨
K :

Definition 5.5.5. The matrix M∨
α is the change of basis matrix that maps P

to θ(O∨
K). Let γ−1, γ−1α, γ−1α2, . . . , γ−1αn−1 be an integral basis of O∨

K , then the
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columns of M∨
α are {θ(γ−1αi)}.

We wish to highlight that the PLWE problems require discrete Gaussian

distributions, since we are sampling coefficients of the error polynomial over the

integers. However, the RLWE problems can be defined using both discrete and

continuous Gaussians. Thus to fully convert between PLWE and RLWE, we also

need to either be considering only discrete Gaussian distributions or discretize the

continuous Gaussian distribution from the RLWE problems. We refer the reader to

Chapter 3 for ways in which we can discretize a continuous Gaussian.
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Chapter 6

Known Attacks

There are a handful of attacks that attempt to solve the Ring Learning with Errors

problems [Pei09, ACPS09, AG11, MP12, EHL14, ELOS15, Pei16b, CIV16, CLS17a,

CLS17b]. While these problems are rely on the hardness of variations of the shortest

vector problem, specific instances might be unsafe due to the vulnerabilities of the

underlying number field.

To begin this chapter, we start with an algorithm which attempts to solve the LWE

problems. The decision problem attacks rely on the ability to distinguish between

a Gaussian distribution and a uniform distribution. The search problem attacks

attempt to reduce the problem to errorless samples, so that one can solve for the

secret using Gaussian elimination.

6.1 Attacking the LWE problems

Recall the LWE set-up from Chapter 4: Let q and n be positive integers. Given a

secret s ∈ Fn
q chosen uniformly at random and e ∈ Fq a “small” error term, an LWE

sample has the form

(a, b = a · s + e) ∈ Fn
q × Fq
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where a is chosen uniformly at random from Fn
q .

To begin discussing the attacks to these problems, we will first make note of

some essential components to keep in mind. In Chapter 4, we mentioned that error

terms are essential for these problems because otherwise, one can easily solve for

the secret using techniques from linear algebra. The following attacks rely on the

ability to reduce to errorless samples or distinguish between an error distribution and

a uniform distribution.

6.1.1 Linearization

Another algorithm which attempts to solve the LWE problems uses linearization.

[AG11] provides an attack that uses a change of variable technique to obtain

a system of linear equations so that we can find the secret of an LWE search

problem. The authors call this technique a “reduction to Gaussian elimination with

polynomial coefficients” because this method of reducing to Gaussian elimination

involves equations whose coefficients are low-degree polynomials.

Before stating the algorithm, we introduce the definition of linearization from

[AG11].

Definition 6.1.1. Let d, n be integers and [n] = {1, 2, . . . , n}. Let

g(z) =
∑

S⊆[n],|S|≤d

cS

∏
i∈S

zi

be a multilinear polynomial of degree d in n variables where cS ∈ F2. The

linearization of g, denoted L(g), is a linear function over the variables yS, where S

ranges over subsets of [n] of size at most d

L(g) =
∑

S⊆[n],|S|≤d

cSyS.
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We define y0 = 1, so that the number of new variables is ∑d
i=0

(
n
i

)
.

The following are assumption for this attack:

• d ∈ Z is a bound for the error terms (i.e. |ei| ≤ d),

• 2d + 1 < q.

So, by assumption, d < q−1
2 and e ∈ (− q−1

2 , q−1
2 ).

Linearization Algorithm from [AG11]:

1. Write a one variable polynomial of degree D = 2d + 1 such that P (e) = 0

for e an error term drawn according to an LWE instance (truncated discrete

Gaussian - see Chapter 4 for reference):

P (e) = e
d∏

j=1
(e + j)(e − j).

2. Let z = (zj) be a vector of variables with dimension n. Write a system of

equations that allows us to recover the secret s, with high probability, by

substituting e = a · z + b in the polynomial P (e). This gives a polynomial

of degree D of the variables zj:

(a · z + b)
d∏

j=1
(a · z + b + j)(a · z + b − j). (6.1)

3. Linearize Equation (6.1) using a variable vector y, which is indexed by vectors

v ∈ Zn such that 1 ≤ ∑n
i=1 vi ≤ D. Then yv corresponds to ∏n

i=1 z
vj

j . We denote

y0 = 1 and define yk to be the vector of all variables with total degree k, i.e.

containing all yv with ∑ vi = k. Hence

y = (1, y1, y2, . . . , yD).
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4. Let L be the linearization operator in Definition 6.1.1, which replaces each∏n
i=1 z

vj

j in the polynomial P (a · z + b) with the corresponding yv variable. The

linearized equation will be a linear constraint on the y variables,

L(P (a · z + b)) = 0.

[AG11] states that the algorithm queries an LWE oracle O(Nαq2 log q) times,

generating a system of linear equations over the y variables. Using Gaussian

elimination, one can then find the secret s, solving the LWE search problem.

6.2 Attacking the RLWE problems

The articles [EHL14, ELOS15, CLS17b, CIV16, CLS17a] introduce an attack, which

we refer to as the Chi-Squared Attack, and that attempts to solve the decision RLWE

problem. Following its algorithm, we mention how one can use the general set-up of

the Chi-Squared Attack along with the Chi-Squared Test to find the secret given

RLWE samples, solving the search problem.

We will state this attack in the non-dual RLWE setting.

6.2.1 Chi-Squared Attack

Let K be a number field and OK its ring of integers. Let q be an unramified prime

in K. The essential component of this attack is the ring homomorphism

ϕ : OK/qOK → Fqf ,

where f is a residue degree of a prime q dividing q.
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This map is due to the Chinese Remainder Theorem, modding out by qi|q,

OK/qOK
∼= OK/q1 × OK/q2 × . . . × OK/qk,

where k|n. Now, since OK is a Dedekind Domain, all the prime ideals qi for 1 ≤ i ≤ k

are maximal ideals, therefore OK/qi
∼= Fqfi for 1 ≤ i ≤ k. Thus

OK/qOK
∼= Fqf1 × . . . × Fqfk .

Hence ϕ is the map which records only one of the Fqfi coordinates in the isomorphism

above.

For an RLWE instance R = (K, q, σ, s), the Chi-Squared Attack is as follows:

1. Transport samples to (ϕ(ai), ϕ(bi)) ∈ Fqf × Fqf .

2. Consider each possible guess g ∈ Fqf , in turn, as the image of the secret ϕ(s).

3. Calculate the image of the errors as

ϕ(bi) − ϕ(ai)g = ϕ(ei).

4. If the values ϕ(bi) − ϕ(ai)g follow a non-uniform distribution, then we have

guessed correctly (g = ϕ(s)) and the samples are RLWE samples. Otherwise,

if they follow a uniform distribution, then either the guess is incorrect or the

uniform and error distributions are indistinguishable. We continue until all

possible guesses g have been made.

The Chi-Squared Attack is successful, with high probability, when the Gaussian

distribution and uniform distribution are distinguishable and q and f are small enough

that we can loop through the possible guesses in Fqf . The distributions have a higher
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probability of being distinguishable when σ is small, n is small, and q is large. It

is also helpful to have a large number of samples (ai, bi). Therefore, for the sake

of security, we must choose RLWE instances where the reduction modulo a prime q

of the error distribution is indistinguishable from uniform. In the next chapter, we

discuss the security parameter bounds for which RLWE instances are better protected

from this attack.
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Chapter 7

Security Conditions

In Chapter 6, we discussed two of attacks that attempt to solve the LWE and RLWE

problems. These attacks utilize two vulnerabilities of these problems - reduction to

errorless samples and distinguishable distributions. We saw that the choice of the

standard deviation σ for our error distribution is an essential piece of security for

RLWE instances. When σ is too small, e = 0 with high probability, allowing for

errorless samples. However, when σ is too large, the error terms run the risk of

wrapping around modulo q, which is an issue for decryption. So while we do not

want a small σ, we also need to ensure that our σ is not too large. Here, we will

discuss the current security parameter bounds in the literature for the Chi-Squared

Attack and convert between them to suggest tighter conditions.

7.1 Known Security Bounds

To start, we define the statistical distance between two distributions.

Definition 7.1.1. If P, Q are two probability distributions on the set S, then the

statistical distance between P and Q is defined as

d(P, Q) = 1
2
∑
t∈S

|P (t) − Q(t)|.
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This value tells us how similar the two distributions are: the smaller d(P, Q) is

the harder it is to distinguish P from Q. Since the decision problems rely on being

able to differentiate between a uniform and non-uniform distribution, security bounds

from [Pei16b] and [CLS17b] tell us when instances are safe.

In Theorem 5.2 of [Pei16b], conditions are given for which a dual RLWE instance

with a continuous error distribution is safe against the Chi-Squared Attack (the error

distribution is indistinguishable from uniform).

Theorem 7.1.2 (Theorem 5.2 [Pei16b]). Let q ⊂ OK be any ideal of norm N(q) ≤ 2n,

where n is the degree of the number field K. Let the width of the Gaussian distribution

r =
√

2πσ ≥ 2. Then the reduced error distribution mod qO∨
K is within statistical

distance 2−2n of a uniform distribution.

Interestingly, the bound on the standard deviation of the continuous error

distribution is fixed; it does not depend on K or q.

At the same time, for 2-power cyclotomic fields, Theorem 3 and Corollary 1 in

[CLS17b] mention conditions in which the reduction under the map ϕ : OK/qOK →

Fqf of the error distribution will be indistinguishable from uniform for the non-dual

RLWE instance (and equivalently for PLWE, since K is monogenic) using a discrete

Gaussian distribution.

Theorem 7.1.3 (Theorem 3 and Corollary 1 [CLS17b]). Let K = Q(ζ2ℓ) be a 2-power

cyclotomic field. If q ≡ 1 (mod 2ℓ) and q < (2ℓ)2, then the statistical distance between

the reduction modulo q of the error distribution, where q divides q, and a uniform

distribution is bounded above by

q − 1
2

(
2ℓ + √

q

2ℓ+1

)2ℓσ2

. (7.1)

Unlike the bound from [Pei16b], this one depends on the prime q and the standard

deviation.
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We note that since q ≡ 1 (mod 2ℓ), the norm of q in K dividing q is just q. Also,

since q < (2ℓ)2, the quotient 2ℓ+√
q

2ℓ+1 < 1. For fixed ℓ, one can keep the expression (7.1)

small by decreasing q and increasing σ. Similarly, for fixed ℓ, if q is large and σ is

small, then (7.1) is big, meaning it should be easy to distinguish between the error

distribution and a uniform distribution, making the instance vulnerable to attack.

Since the Chi-Squared Attack depends on the ability to distinguish the reduced error

distribution from a uniform distribution, this theorem suggests that there might be a

“trade-off” between the norm of the prime and the standard deviation of the Gaussian

distribution: a smaller prime can be safe with a wider distribution and a larger prime

can be safe with a narrower distribution. [Pei16b] does not appear to show this

trade-off.

Notice that the condition from [CLS17b] is for the PLWE problems, while the

condition from [Pei16b] is for the dual RLWE problems. Another note is that

[Pei16b] uses a continuous Gaussian distribution, but [CLS17b] considers a discrete

distribution. Hence, to compare these results, we want to use the relationships

from Chapter 5 to convert the parameter bound σ ≥ 2√
2π

from [Pei16b] to get its

equivalence for the PLWE setting.

For the remainder of this chapter, we convert the bounds using the change of

basis matrix and properties of subgaussian distributions. We then take our converted

bounds and test them under the Chi-Squared Attack. The results from these tests

suggest that the bound σ ≥ 2√
2π

from [Pei16b] can be made tighter.

7.2 Converting Bounds

For ease, we convert the bounds from a continuous distribution to a discrete

distribution using the width parameter and then revert back to the standard

deviation. (The bound r ≥ 2 is cleaner than σ ≥ 2√
2π

.)
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To start, recall discretizing a continuous distribution to a lattice coset Λ + c from

Chapter 3. The idea was to sample a short vector f ∈ Λ+(c−x) and output y = x+f

where y ∈ Λ + c.

Let K = Q(ζ2ℓ). In the continuous dual RLWE setting, the condition r ≥ 2

implies that the width of x as a subgaussian is r1 ≥ 2. As a consequence, the width

of f as a subgaussian is
√

2πs1(B) =
√

2π
√

2ℓ−2

2ℓ−1 = r2 where s1(B) is the spectral norm

of B, a basis of the lattice Λ, viewed as a matrix. After discretizing, we find that the

bound on the width r of y is

r ≥ (22 + (
√

2π

√
2ℓ−2

2ℓ−1 )2)1/2

= (4 + 2π
2ℓ−2

22(ℓ−1) )1/2

= (4 + π
2ℓ−1

22(ℓ−1) )1/2

= (4 + π

2ℓ−1 )1/2

=
√

4 + π

2ℓ−1 .

Thus a continuous error distribution which has width r ≥ 2 corresponds to a

discrete error distribution with width r ≥
√

4 + π
2ℓ−1 . Notice that as ℓ increases, the

discrete error distribution width approaches 2, which is what we would expect.

Converting this back to the standard deviation gives us

σ′ ≥

√
4 + π

2ℓ−1
√

2π

=
√

4 + π
2ℓ−1

2π

=
√

2
π

+ 1
2ℓ

,

as a secure bound for a dual RLWE instance with a discrete Gaussian distribution

according to [Pei16b].
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Now that we have the corresponding discrete parameter bound for the dual RLWE

setting, we can use the change of basis matrix to find the PLWE parameter bound

for a discrete error distribution.

Using the change of basis matrix code (see Appendix A), one can show that

σcan ≥
√

22ℓ

π
+ 2ℓ−1

when using the standard canonical embedding. Using the adjusted canonical

embedding (see Appendix A.2), one would find that

σadj ≥
√

22ℓ−1

π
+ 2ℓ−2,

which is expected (the adjusted canoncial embedding has an extra factor of
√

2, which

is why the two bounds only differ by that factor).

7.3 Testing Bounds

Using the bounds on σcan and σadj and the code for the Chi-Squared Attack (see

Appendix B) originally from [ELOS15], we tested the predicted security on 2-power

cyclotomic fields.

Table 7.1 shows the success rate of the Chi-Squared Attack solving the PLWE

problem from our experiments. The table shows the various primes q used, the

corresponding 1
2+ q

2ℓ+1 value (from Theorem 3 and Corollary 1 in [CLS17b]), the largest

standard deviation σ for which the PLWE problem was solved, and the results of five

separate trials of 100 attempts. All these results used the number field K = Q(ζ24).

Primes were chosen to satisfy the conditions from [CLS17b]. Here the predicted

safe is σcan ≥ 9.46 (standard canonical) or σadj ≥ 6.69 (adjusted canonical) from

previous calculations.
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Table 7.1: Largest σ for which the PLWE instance was solved for K = Q(ζ24).

Testing Bounds
q 1

2 +
√

q

2ℓ+1 σ Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
17 0.6288 13 1/100 0/100 3/100 1/100 1/100
19 0.8078 9 1/100 0/100 0/100 0/100 0/100
113 0.8322 12 0/100 0/100 1/100 0/100 0/100
193 0.9341 5 1/100 0/100 0/100 0/100 0/100
241 0.9851 1 0/100 0/100 0/100 1/100 0/100

While the first table showed the largest σ for which the PLWE problem was solved,

Table 7.2 and Table 7.3 look closer at the trials run on the smallest prime q = 17 and

the largest prime q = 241, respectively.

Table 7.2: Successes for varying σ with q = 17 and K = Q(ζ24).

Testing with small prime
σ Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
14 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
13 1 / 100 0 / 100 3 / 100 1 / 100 1 / 100
12 0 / 100 3 / 100 0 / 100 1 / 100 0 / 100
11 0 / 100 1 / 100 0 / 100 0 / 100 0 / 100
10 1 / 100 0 / 100 1 / 100 0 / 100 0 / 100
9 0 / 100 3 / 100 1 / 100 0 / 100 0 / 100
8 1 / 100 0 / 100 0 / 100 1 / 100 1 / 100
7 0 / 100 1 / 100 1 / 100 1 / 100 0 / 100
6 1 / 100 2 / 100 1 / 100 1 / 100 1 / 100
5 0 / 100 3 / 100 1 / 100 1 / 100 0 / 100

From these tables, we predict that there must be a “trade-off” between the

prime modulus and standard deviation of the Gaussian distribution that controls

the security of these problems. [Pei16b] states that N(q) ≤ 2n and σ ≥ 2√
2π

ensures

security for a dual RLWE instance with a continuous Gaussian distribution. Our

results show that there are PLWE instances with a discrete Gaussian distribution

which are secure against the Chi-Squared Attack, even if they are outside of the

range predicted by [Pei16a], showing that Peikert’s results are not sharp. Fix q = 241.
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Table 7.3: Successes for varying σ with q = 241 with K = Q(ζ24).

Testing with large prime
σ Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
10 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
9 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
8 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
7 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
6 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
5 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
4 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
3 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
2 0 / 100 0 / 100 0 / 100 0 / 100 0 / 100
1 0 / 100 0 / 100 0 / 100 1 / 100 0 / 100

Then σcan ≥ 9.46 and σadj ≥ 6.69, implying that the PLWE instance should be safe.

From Table 7.3, we see that this PLWE instance is still secure for smaller standard

deviation, when σ ≥ 2.

We hypothesize the following relationship between the prime modulus and the

standard deviation of the Gaussian distribution:

• For small primes, a large standard deviation is needed for security.

• As the prime grows larger, the standard deviation can grow smaller and still

provide security.

• There is a limit to how large the standard deviation can be due to possible

issues with decryption.

• There is a limit to how small the standard deviation can be before the instance

becomes vulnerable (reduces to an errorless RLWE).

Figure 7.1 illustrates these predictions.
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Figure 7.1: Predictions for bounds of security.
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Chapter 8

PLWE for Non-Monogenic Rings

of Integers

As defined, the Polynomial Ring Learning with Errors sampling algorithm requires

that the underlying number field K be monogenic. The reason for this requirement

is that in this case, there is a monic irreducible polynomial f(x) ∈ Z[x] of degree n

such that

OK
∼= P = Z[x]/⟨f(x)⟩.

As a consequence the elements of OK can be represented as polynomials, which can

be drawn by sampling their coefficients. As motivation for this chapter, we use the

Dedekind-Kummer Theorem to extend this type of sampling to the non-monogenic

case.

8.1 Dedekind-Kummer Theorem

We begin by stating the Dedekind-Kummer Theorem:

Theorem 8.1.1 (Dedekind-Kummer Theorem [Ded78]). Let K be a number field and

let α ∈ OK be such that K = Q(α). Let f(x) ∈ Z[x] be the minimal polynomial of α
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over Q and P = Z[α]/⟨f(x)⟩. For any prime q with q ∤ [OK : P ], write

f(x) ≡ g1(x)e1 · · · gr(x)er (mod q)

where gi(x)’s are distinct monic irreducibles in (Z/qZ)[x]. Then

qOK = qe1
1 · · · qer

r

where each qi is a prime ideal of OK and ei > 0. Futhermore, there is a bijection

between the qi’s and the gi’s such that N(qi) = qdeg gi.

The following corollary says that this is also true if q ∤ disc(P ).

Corollary 8.1.2. Let K = Q(α) be a number field and α ∈ OK have minimal

polynomial f(x) ∈ Z[x]. For any q ∤ disc(P ) where P = Z[α]/⟨f(x)⟩, the shape of the

factorizations of qOK ∈ OK and f(x) ∈ (Z/qZ)[x] agree.

Proof. Since disc(P ) = disc(OK)[OK : P ]2 and q ∤ disc(P ), then q ∤ [OK : P ] and so

it follows by the Dedekind-Kummer Theorem.

The following example illustrates that all but finitely many primes are at our

disposal to choose which satisfy the Dedekind-Kummer Theorem. We also explore

the shape of certain factorizations.

Example 8.1.3. Let K = Q( 4
√

24). Certainly P = Z[ 4
√

24] ⊂ OK . Then

disc(Z[ 4
√

24]) = 217 · 33.

So any prime q ̸= 2, 3 does not divide [OK : Z[ 4
√

24]]. Then for any prime q ̸= 2, 3,

we can show how qOK factors by computing how x4 − 24, which is the minimal

polynomial of 4
√

24, factors in (Z/qZ)[x].
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Consider q = 5, then we have

x4 − 24 ≡ (x2 + 2)(x2 + 3) (mod 5).

So qOK = q25q
′
25. We use the notation q25 and q′

25 since each of these are prime ideals

of norm 25.

Proposition 8.1.4. If a prime q does not divide [OK : P ], then

OK/(q) ∼= P/qP = Fq[x]/⟨f(x)⟩.

Proof. Let d = [OK : Z[α]]. Suppose q is a prime such that q ∤ d. Notice that

dOK ⊂ Z[α] ⊂ OK .

There exists a natural ring homomorphism Z[α]/(q) ↪→ OK/(q), which is onto. Since

Z[α] and OK are free rank n Z-modules, then both Z[α]/(q) and OK/(q) have size qn

(there are q possibilities for each of the coefficients). So the ring homomorphism is

an isomorphism, Z[α]/(q) ∼= OK/(q).

Now, we show that Z[α]/(q) ∼= Fq[x]/⟨f(x)⟩. Let f(x) ∈ Z[x] be the minimal

polynomial of α. We have that Z[α] ∼= Z[x]/⟨f(x)⟩ as rings. Then reducing modulo

q gives

Z[α]/(q) ∼= Z[x]/(f(x), q) ∼= (Z/qZ)[x]/⟨f(x)⟩ ∼= Fq[x]/⟨f(x)⟩.

So since both OK/(q) and Fq[x]/⟨f(x)⟩ are each isomorphic to Z[α]/(q), then

OK/(q) ∼= Fq[x]/⟨f(x)⟩.

For the full proof of the Dedekind-Kummer Theorem, see [Con12].
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Example 8.1.5. Let K = Q(α) ∼= Q[x]/(x3 − x − 8), which is a non-monogenic

number field. The ring of integers of K is OK = Z + Zα + Z(1
2α2 + 1

2α). Consider

q = 17. We want to show that OK/(17) ∼= F17[α], where α ≡ α (mod q). First, notice

that the elements of F17[α] are of the form a1 + a2α + a3α
2 where ai ∈ Z/17Z. The

elements of OK/(17) are of the form b1 +b2α+b3(1
2α2 − 1

2α) = b1 +(b2 − 1
2b3)α+ 1

2b3α
2

where bi ∈ Z/17Z. So we have the following maps

a1 7→ b1,

a2 7→ b2 − 1
2b3 ≡ b2 + 9b3 (mod 17),

a3 7→ 1
2b3 ≡ 9b3 (mod 17).

(Notice that 2−1 ≡ 9 (mod 17).) We want to show that these maps are surjective.

For this, it suffices to show that multiplication by 9 is surjective. We will enumerate

the possibilities since our prime is small.

0 ≡ 9 · 0 (mod 17) 1 ≡ 9 · 2 (mod 17) 2 ≡ 9 · 4 (mod 17)

3 ≡ 9 · 6 (mod 17) 4 ≡ 9 · 8 (mod 17) 5 ≡ 9 · 10 (mod 17)

6 ≡ 9 · 12 (mod 17) 7 ≡ 9 · 14 (mod 17) 8 ≡ 9 · 16 (mod 17)

9 ≡ 9 · 1 (mod 17) 10 ≡ 9 · 3 (mod 17) 11 ≡ 9 · 5 (mod 17)

12 ≡ 9 · 7 (mod 17) 13 ≡ 9 · 9 (mod 17) 14 ≡ 9 · 11 (mod 17)

15 ≡ 9 · 13 (mod 17) 16 ≡ 9 · 15 (mod 17)

We also see that F17[α] and OK/(17) are both of size 173 (since there are 17

possibilities for each of the coefficients, which is true when we have a basis). Thus we

have that OK/(17) ∼= F17[α].
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With the Dedekind-Kummer Theorem as motivation, we explore two ways in

which we attempt to expand the PLWE sampling:

• sample directly from OK/qOK ,

• use coset representatives to sample.

8.2 Sample Directly from OK/qOK

Let K = Q(α) be a number field. Let P = Z[x]/⟨f(x)⟩ be a polynomial ring where

f(x) ∈ Z[x] is the monic minimal polynomial of α ∈ K. Suppose q be a prime such

that q ∤ [OK : P ].

Our algorithm is to first reduce the ring of integers OK modulo q so that

OK/(q) ∼= P/qP = (Z/qZ[x])/⟨f(x)⟩ ∼= Fq[α].

Then P/qP is monogenic and we can sample the error terms from here, using a

truncated discrete Gaussian distribution, which we recall from Chapter 4:

Definition 8.2.1. Let σ > 0, C ∈ Z. The truncated discrete Gaussian

distribution on Fq with variance σ2 and constraint C is given by

P (X = x) =



exp
(

−x2

2σ2

)
∑

−C≤y≤C exp
(

−y2

2σ2

) if x ∈ Fq and − C ≤ x ≤ C

0 otherwise.

8.2.1 Vulnerabilities

With this proposed sampling algorithm, there are a few concerns about making the

PLWE instances more vulnerable to attack. The first concern is that the error terms
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now come from a much smaller space. Thus there are fewer values that they can take.

Algorithm 1 in [ELOS15] is an attack on the PLWE decision problem for which we

know that the error terms come from a small set of possible values. Additionally, the

Linearization Attack from [AG11], mentioned in Chapter 6, is an algorithm works

when the error terms are bounded. With these concerns and a known attack that

makes this set-up vulnerable, this sampling approach is not promising.

8.3 Coset Representatives Sampling

Let OK ̸= Z[α] be a ring of integers for a number field K = Q(α) and α ∈ OK .

Then Z(α) ⊂ OK . Suppose [OK : Z(α)] = m for some m > 1, so the cardinality of

OK/Z(α) equals m. Let β1, β2, . . . , βm be coset representatives of OK/Z[α]. Every

element of OK can be written uniquely as p(α) + βi. Let P = Z[x]/⟨f(x)⟩ be a

polynomial ring where f(x) is the minimal polynomial of α. Our proposed sampling

algorithm on OK using coset representatives is shown in Algorithm 1.

Algorithm 1 Coset Representative Sampling on OK

Require: OK , a ring of integers of a number field K = Q(α) with α ∈ OK ; [OK :
Z(α)] = m for some m > 1; β1, β2, . . . , βm be coset representatives of OK/Z[α];
P = Z[x]/⟨f(x)⟩ be a polynomial ring where f(x) is the minimal polynomial of α

Ensure: p(α) + βi ∈ OK

sample p(α) ∈ P according to PLWE sampling
sample βi uniformly at random
return p(α) + βi

8.3.1 Statistical Distance

We wish to see how our sampling algorithm on OK using coset representatives

compares to RLWE sampling on OK . To do this, we calculate the statistical distance

between these two probability distributions. Recall the definition for the statistical

distance:
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Definition 8.3.1. If P, Q are two probability distributions on the set S, then the

statistical distance between P and Q is defined as

d(P, Q) = 1
2
∑
t∈S

|P (t) − Q(t)|.

Our goal is to bound |DΛOK
(p(α)+β)−Dnew(p(α)+β)|, where DΛOK

(p(α)+β) is

the probability of sampling p(α)+β according to RLWE sampling and Dnew(p(α)+β)

is the probability of sampling p(α) + β according to our proposed sampling. We will

recall the various distributions that we have:

1. RLWE on OK : DΛOK
(θ(r)) =

exp
(

−||θ(r)||2
2σ2

)
∑

y∈ΛOK
exp

(
−||y||2

2σ2

) for r ∈ OK ,

2. RLWE on Z[α] : DΛP
(θ(p(α))) =

exp
(

−||θ(p(α))||2
2σ2

)
∑

z∈ΛP
exp

(
−||z||2

2σ2

) for p(α) ∈ Z[α],

3. PLWE on Z[α] : DZ(p) =
exp

(
−||p||2

2σ2

)
∑

y∈Zn exp
(

−||y||2
2σ2

) for p ∈ Z[α] viewed as a vector of

its coefficients,

4. Our Sampling on OK : Dnew(p(α) + β) =
1
m

exp
(

−||p||2
2σ2

)
∑

y∈Zn exp
(

−||y||2
2σ2

) for p(α) + β ∈

OK .

We first compare the RLWE distribution on OK to 1
m

times the RLWE distribution

on Z[α]. Then we compare the RLWE distribution on Z[α] with the PLWE

distribution on Z[α]. Finally, we compare 1
m

times the PLWE distribution on Z[α]

with our proposed sampling distribution on OK .

8.3.2 Compare RLWE on OK and Z[α]

Theorem 8.3.2. The statistical distance between the RLWE distribution with

standard deviation σ on OK and the RLWE distribution with standard deviation σ on
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Z[α] is bounded above by

22n+3σ2nπn/2n!C(β)
CΛP

Cβ

where n is the degree of the number field K, C(β) = maxi||θ(βi)||,

CΛP
= ∑

z∈ΛP
exp

(
−||z||2(1+γ)

2σ2

)
, and Cβ = ∑m

i=1 exp
(

−||θ(βi)||2(1+ 1
γ

)
2σ2

)
.

Proof. First, notice that

∑
y∈ΛOK

exp
(

−||y||2

2σ2

)
=

m∑
i=1

∑
z∈ΛP

exp
(

−||z + θ(βi)||2
2σ2

)

=
m∑

i=1

∑
z∈ΛP

exp
(

−||z||2 − ||θ(βi)||2 − 2∑n
j=1 zjθ(βi)j

2σ2

)
.

(8.1)

By the Cauchy-Swartz and Young’s inequality, we have

2
n∑

j=1
zjθ(βi)j = 2(z · θ(βi)) where · is the dot product

≤ γ||z||2 + 1
γ

||θ(βi)||2

for some γ > 0. Thus Equation 8.1 is bounded below by

m∑
i=1

∑
z∈ΛP

exp
−||z||2 − ||θ(βi)||2 − (γ||z||2 + 1

γ
||θ(βi)||2)

2σ2

 .

By collecting common terms and rearranging, we get

m∑
i=1

∑
z∈ΛP

exp
−||z||2 − ||θ(βi)||2 − (γ||z||2 + 1

γ
||θ(βi)||2)

2σ2


=

m∑
i=1

∑
z∈ΛP

exp
−||z||2(1 + γ) − ||θ(βi)||2(1 + 1

γ
)

2σ2


=

m∑
i=1

∑
z∈ΛP

exp
(

−||z||2(1 + γ)
2σ2

)
exp

−||θ(βi)||2(1 + 1
γ
)

2σ2


=

m∑
i=1

exp
−||θ(βi)||2(1 + 1

γ
)

2σ2

 ∑
z∈ΛP

exp
(

−||z||2(1 + γ)
2σ2

)
.
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Now, we are ready to compare the RLWE distribution on OK with 1
m

times the

RLWE distribution on Z[α]:

∣∣∣∣DΛOK
(θ(p(α) + β)) − 1

m
DΛP

(θ(p(α)))
∣∣∣∣

=

∣∣∣∣∣∣∣∣
exp

(
−||θ(p(α)+β)||2

2σ2

)
∑

y∈ΛOK
exp

(
−||y||2

2σ2

)−
1
m

exp
(

−||θ(p(α))||2
2σ2

)
∑

z∈ΛP
exp

(
−||z||2

2σ2

)
∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
exp

(
−||θ(p(α)+β)||2

2σ2

)
∑m

i=1 exp
(

−||θ(βi)||2(1+ 1
γ

)
2σ2

)∑
z∈ΛP

exp
(

−||z||2(1+γ)
2σ2

)−
1
m

exp
(

−||θ(p(α))||2
2σ2

)
∑

z∈ΛP
exp

(
−||z||2

2σ2

)
∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
exp

(
−||θ(p(α)+β)||2

2σ2

)
∑m

i=1 exp
(

−||θ(βi)||2(1+ 1
γ

)
2σ2

)∑
z∈ΛP

exp
(

−||z||2(1+γ)
2σ2

)−
1
m

exp
(

−||θ(p(α))||2
2σ2

)
∑

z∈ΛP
exp

(
−||z||2(1+γ)

2σ2

)
∣∣∣∣∣∣∣∣

(8.2)

Let CΛP
= ∑

z∈ΛP
exp

(
−||z||2(1+γ)

2σ2

)
. Also, notice that

exp
−||θ(βi)||2(1 + 1

γ
)

2σ2

 < 1

for 1 ≤ i ≤ m and so,

m∑
i=1

exp
−||θ(βi)||2(1 + 1

γ
)

2σ2

 <
m∑

i=1
1 = m.

Let Cβ = ∑m
i=1 exp

(
−||θ(βi)||2(1+ 1

γ
)

2σ2

)
. Then we can rewrite and further bound Equation

8.2 as

∣∣∣∣DΛOK
(θ(p(α) + β)) − 1

m
DΛP

(θ(p(α)))
∣∣∣∣

≤
1

CΛP

∣∣∣∣∣∣∣∣
exp

(
−||θ(p(α)+β)||2

2σ2

)
∑m

i=1 exp
(

−||θ(βi)||2(1+ 1
γ

)
2σ2

)−
1
m

exp
(

−||θ(p(α))||2
2σ2

)∣∣∣∣∣∣∣∣
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≤
1

CΛP

∣∣∣∣∣∣∣∣
exp

(
−||θ(p(α)+β)||2

2σ2

)
∑m

i=1 exp
(

−||θ(βi)||2(1+ 1
γ

)
2σ2

)−
exp

(
−||θ(p(α))||2

2σ2

)
∑m

i=1 exp
(

−||θ(βi)||2(1+ 1
γ

)
2σ2

)
∣∣∣∣∣∣∣∣

=
1

CΛP
Cβ

∣∣∣∣∣exp
(

−||θ(p(α) + β)||2
2σ2

)
− exp

(
−||θ(p(α))||2

2σ2

)∣∣∣∣∣ .
Let a = min{||θ(p(α) + β)||2, ||θ(p(α))||2} and

b = max{||θ(p(α) + β)||2, ||θ(p(α))||2}. Using the Mean Value Theorem, we get the

bound

exp
(

−||θ(p(α) + β)||2
2σ2

)
− exp

(
−||θ(p(α))||2

2σ2

)

≤ exp
(−a

2σ2

) ||θ(p(α) + βi)||2 − ||θ(p(α)||2
2σ2 .

Using the difference of squares and triangle inequality, we also get the bound on the

norms

|||θ(p(α) + β)||2 − ||θ(p(α))||2| ≤ 2b|||θ(p(α) + β)|| − ||θ(p(α))|||

≤ 2b||θ(β)||.

Let r = βr + pr(α) ∈ βr + Z[α]. Thus the statistical distance between the RLWE

distribution on OK and 1
m

times the RLWE distribution on Z[α] is bounded above by

1
2CΛP

Cβ

∑
r∈OK

∣∣∣∣∣exp
(−ar

2σ2

)
br

σ2 ||θ(βr)||
∣∣∣∣∣ (8.3)

where ar = min{||θ(r)||2, ||θ(pr(α))||2} and b = max{||θ(r)||2, ||θ(pr(α))||2}. To

further bound the statistical distance, let C(β) = maxi||θ(βi)||. Then

||θ(r) − θ(pr(α))|| = ||θ(βr)|| ≤ C(β).
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So ar ≥ ||θ(r)|| − C(β) and br ≤ ||θ(r)|| + C(β). For large enough ||θ(r)||, say

||θ(r)|| ≥ 2C(β), then ar ≥ ||θ(r)||
2 and br ≤ 2||θ(r)||. Then Equation 8.3 is bounded

above by

1
2CΛP

Cβ

∑
r∈OK

∣∣∣∣∣exp
(

−||θ(r)||
4σ2

)
2||θ(r)||

σ2 C(β)
∣∣∣∣∣

=
C(β)

CΛP
Cβ

∑
r∈OK

∣∣∣∣∣exp
(

−||θ(r)||
4σ2

)
||θ(r)||

σ2

∣∣∣∣∣
≈

C(β)
CΛP

Cβ

∫
Rn

exp
(

−||θ(x)||
4σ2

)
||θ(x)||

σ2 dV

=
C(β)

CΛP
Cβ

V ol(Sn−1)
∫ ∞

0
rn exp

(−r

4σ2

) 1
σ2 dr

=
C(β)V ol(Sn−1)

CΛP
Cβ

∫ ∞

0
(4σ2u)n exp(−u)4du (r = 4σ2u)

=
C(β)

CΛP
Cβ

V ol(Sn−1)4n+1σ2n
∫ ∞

0
un exp(−u)du

=
C(β)

CΛP
Cβ

V ol(Sn−1)4n+1σ2nΓ(n + 1)

=
C(β)

CΛP
Cβ

V ol(Sn−1)4n+1σ2nn!

=
22n+3σ2nπn/2n!C(β)

CΛP
Cβ

.

Remark 8.3.3. The statistical distance between the RLWE distribution on OK and

the RLWE distribution on Z[α] is bounded above by a quantity that depends on the

degree of the number field K. In practice, the degree n can be quite large, and so n!

is a huge constant. Thus the statistical distance bound above may suggest that the

distributions on OK and on Z[α] are vastly different. However, our intuition suggests

60



otherwise. Notice the lattice θ(OK) = ∪m
i=1θ(Z[α]) + θ(βi) is a union of m translates

of θ(Z[α]). While we do expect the distance to be bounded by a function depending

on C(β), we do not expect the distance to increase with n. Therefore, we expect that

one can find better estimates than the ones stated in the proof to show that these

two distributions are statistically close.

8.3.3 Compare RLWE and PLWE on Z[α]

We now compare the RLWE distribution on Z[α] with the PLWE distribution on

Z[α].

Theorem 8.3.4. Let M : P → θ(OK) be a change of basis matrix where P is a

polynomial ring and OK a ring of integers of a number field K. The statistical distance

between the RLWE distribution with standard deviation ||M ||σ on Z[α] and 1
m

times

the PLWE distribution with standard deviation σ on Z[α] where m = [OK : Z[α]] is

zero, showing that these two distributions are equivalent.

Proof. First, we notice that θ(p) = M · p where M is the change of basis matrix from

PLWE to RLWE and p ∈ Z[α] is a vector of its coefficients. Also, note that

∑
y∈Zn

exp
(

−||y||2

2σ2

)
=
∑

y∈Zn

exp
(

−||M ||2||y||2

2(||M ||σ)2

)

≥
∑

y∈Zn

exp
(

−||M · y||2

2(||M ||σ)2

)

=
∑

y∈Zn

exp
(

−||θ(y)||2
2(||M ||σ)2

)

=
∑

z∈ΛP

exp
(

−||z||2

2(||M ||σ)2

)
.

The spectral norm ||M || = t is the largest singular value of M . If M is a unitary

matrix, then ||M−1|| = ||M ||−1 = 1
t
.

Then the statistical distance between the RLWE distribution on Z[α] with
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standard deviation tσ and the PLWE distribution on Z[α] with standard deviation σ

is

1
2
∑

p∈Z[α]

∣∣∣∣∣∣∣∣
exp

(
−||θ(p)||2

2(tσ)2

)
∑

z∈ΛP
exp

(
−||z||2
2(tσ)2

)−
exp

(
−||p||2

2σ2

)
∑

y∈Zn exp
(

−||y||2
2σ2

)
∣∣∣∣∣∣∣∣

= 1
2
∑

p∈Z[α]

∣∣∣∣∣∣∣∣
exp

(
−||θ(p)||2

2(tσ)2

)
∑

z∈ΛP
exp

(
−||z||2
2(tσ)2

)−
exp

(
−||M−1·θ(p)||2

2σ2

)
∑

y∈Zn exp
(

−||y||2
2σ2

)
∣∣∣∣∣∣∣∣

≤ 1
2
∑

p∈Z[α]

∣∣∣∣∣∣∣∣
exp

(
−||θ(p)||2

2(tσ)2

)
∑

z∈ΛP
exp

(
−||z||2
2(tσ)2

)−
exp

(
−||M−1||2||θ(p)||2

2σ2

)
∑

z∈ΛP
exp

(
−||z||2

2(||M ||σ)2

)
∣∣∣∣∣∣∣∣

= 1
2
∑

p∈Z[α]

∣∣∣∣∣∣∣∣
exp

(
−||θ(p)||2

2(tσ)2

)
∑

z∈ΛP
exp

(
−||z||2
2(tσ)2

)−
exp

(
−||θ(p)||2

2(tσ)2

)
∑

z∈ΛP
exp

(
−||z||2
2(tσ)2

)
∣∣∣∣∣∣∣∣

= 1
2
∑

p∈Z[α]
|0| = 0,

showing that these two distributions are equivalent.

8.3.4 Compare PLWE on Z[α] and Our Sampling

Finally, we compare 1
m

times the probability of sampling with PLWE on Z[α] with

our proposed sampling algorithm on OK using coset representatives.

Theorem 8.3.5. The statistical distance between 1
m

times the PLWE distribution on

Z[α] and our proposed sampling algorithm on OK is zero.

Proof. Let r = βr + pr(α) ∈ βr + Z[α] = OK for some coset representative βr. The

statistical distance between the two probability distributions is

1
2
∑

r∈OK

∣∣∣∣ 1
m

DZ(pr(α)) − Dnew(pr(α) + βr)
∣∣∣∣
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= 1
2
∑

r∈OK

∣∣∣∣ 1
m

DZ(pr(α)) − 1
m

DZ(pr(α))
∣∣∣∣ = 0.

This shows that the distributions are equivalent.

8.4 Conclusions

Combining the results from Theorem 8.3.2, Theorem 8.3.4, and Theorem 8.3.5, we

have proved that the statistical distance between the RLWE distribution on OK and

our sampling algorithm on OK using coset representatives is bounded above by a

quantity that depends on the degree n of a number field K. While this quantity is

showing to be large, we suggest in Remark 8.3.3 that better estimates can be made

to reduce this bound. By reducing this bound, one could show that our proposed

PLWE sampling algorithm is statistically close to the RLWE sampling distribution.

Thus Algorithm 1 is an interesting PLWE sampling algorithm which could be used

to expand sampling for non-monogenic number fields and warrants further study.
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Chapter 9

Future Work

With post-quantum cryptography attracting much interest, there are a variety of

directions this area of research can go from here. We want to continue studying the

security parameter bounds for more accuracy in predicting vulnerable instances of the

RLWE problems under the Chi-Squared Attack. Knowing that there is a trade-off

between the prime and standard deviation, we want to find a bound for security

in terms of these two variables. We also want to find better estimates to bound the

statistical distance between the RLWE distribution on OK and the RLWE distribution

on Z[α]. Upon completing these calculations, we want to implement the coset

representative sampling algorithm to expand the PLWE sampling to non-monogenic

number fields.
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Appendix A

Change of Basis Matrix

We adapted the change of basis matrix code within the Chi-Squared Attack (see

Appendix B) from [ELOS15] to go from PLWE to dual RLWE. This first block of

code, Listing A.1, uses the standard canonical embedding. This is followed by the

change of basis matrix, using the adjusted canonical embedding (see Listing A.2).

Listing A.1: Change of Basis Matrix
1

2 def change_of_basis_matrix_PLWE_to_dual(f):
3 """
4 Returns a matrix M_alpha^\vee to go from PLWE to dual RLWE whose columns
5 are {theta(gamma^(-1)alpha^i)} where gamma = generator of the different
6 ideal and alpha = generator of basis of ring of integers of the number
7 field with defining polynomial f
8

9 INPUT:
10 f - a polynomial with coefficients in QQ
11

12 OUTPUT:
13 M - a matrix with entries in the real field RealField(prec)
14 where prec = 300
15 key - a tuple containing labels determining what kind of embeddings:
16 0 = real embeddings,
17 1 = complex embeddings,
18 2 = pair of complex embedding (its conjugate)
19

20 NOTE:
21 This depends on Sage outputting the complex embeddings in such a way
22 that the conjugate of a strictly complex embedding follows the embedding
23

24 """
25
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26 # N is a number field defined by minimal polynomial f.
27 #fdeg is the degree of the min polynomial
28 N.<a> = NumberField(f)
29 fdeg = f.degree()
30 f_ = derivative(f)
31 ff = fast_callable(f_, vars=[x])
32 gen= ff(a)
33 key = [0 for i in range(fdeg)] #initiate the key array
34 embs = N.embeddings(CC) # same as N.complex_embeddings()
35 M = matrix(RealField(300),fdeg,fdeg)
36 #initiate the nxn matrix where n = degree of polynomial f
37 #(as well as degree of number field)
38

39 #Reminder: for range loop starts at index 0 and will end with fdeg-1
40 apows = [a^j for j in range(fdeg)]
41 #a is the generator of the Number Field
42

43 # this loop will now fill in the matrix where the i-th column is
44 #theta(gamma^(-1)a^i) where theta is the canonical embedding and
45 #gamma is the generator of the different ideal of N
46 i = 0
47 while i < fdeg:
48 em = embs[i]
49

50 # output to assure the user that the program is not stuck in an
51 #infinite loop
52 #if Mod(i,20)==Mod(0,20) or Mod(i,20)==Mod(1,20):
53 #print("Embedding matrix: ", i, " rows out of ", fdeg,
54 #" complete.")
55

56 # test whether the embedding is real or complex.
57

58 # if block - real embedding: imag() returns the imaginary part
59 #of the embedding of a
60 if em(a).imag() == 0:
61 key[i] = 0 #denotes a real embedding
62 for j in range(fdeg):
63 M[i,j] = em((1/gen)*apows[j]).real()
64 i = i + 1
65 # else block - complex embedding
66 else:
67 key[i] = 1
68 key[i+1] = 2 #the following embedding is the complex conjugate
69 for j in range(fdeg):
70 M[i,j] = (em((1/gen)*apows[j])).real()
71 M[i+1,j] = ((em((1/gen)*apows[j]))*CC.gen()).real()
72 i = i + 2
73 return M, key, embs
74 M, key, embs = change_of_basis_matrix_PLWE_to_dual(f)
75 M_inv = M.inverse() #this gives us the matrix to go from dual to PLWE
76 M_inv

Listing A.2: Adjusted Change of Basis Matrix
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1

2 def adjusted_change_of_basis_matrix_PLWE_to_dual(f):
3 """
4 Returns a matrix M_alpha^\vee that goes from PLWE to dual RLWE whose
5 columns are {theta(gamma^(-1)alpha^i)} where gamma = generator of the
6 different ideal and alpha = generator of basis of ring of integers of the
7 number field with defining polynomial f
8

9 INPUT:
10 f - a polynomial with coefficients in QQ
11

12 OUTPUT:
13 M - a matrix with entries in the real field RealField(prec)
14 where prec = 300
15 key - a tuple containing labels determining what kind of embeddings:
16 0 = real embeddings,
17 1 = complex embeddings,
18 2 = pair of complex embedding (its conjugate)
19

20 NOTE:
21 This depends on Sage outputting the complex embeddings in such a way
22 that the conjugate of a strictly complex embedding follows the embedding
23

24 """
25

26 # N is a number field defined by minimal polynomial f.
27 #fdeg is the degree of the min polynomial
28 N.<a> = NumberField(f)
29 fdeg = f.degree()
30 f_ = derivative(f)
31 ff = fast_callable(f_, vars=[x])
32 gen= ff(a)
33 key = [0 for i in range(fdeg)] #initiate the key array
34 embs = N.embeddings(CC) # same as N.complex_embeddings()
35 M = matrix(RealField(300),fdeg,fdeg)
36 #initiate the nxn matrix
37 #where n = degree of polynomial f
38

39 #Reminder: for range loop starts at index 0 and will end with fdeg-1
40 apows = [a^j for j in range(fdeg)]
41 #a is the generator of the Number Field
42

43 # this loop will now fill in the matrix where the i-th column is
44 #theta(gamma^(-1)a^i) where theta is the canonical embedding and gamma is
45 #the generator of the different ideal of N
46 i = 0
47 while i < fdeg:
48 em = embs[i]
49

50 # output to assure the user that the program is not stuck in
51 #an infinite loop
52 #if Mod(i,20)==Mod(0,20) or Mod(i,20)==Mod(1,20):
53 #print("Embedding matrix: ", i, " rows out of ", fdeg,

69



54 # " complete.")
55

56 # test whether the embedding is real or complex.
57

58 # if block - real embedding: imag() returns the imaginary part
59 # of the embedding of a
60 if em(a).imag() == 0:
61 key[i] = 0 #denotes a real embedding
62 for j in range(fdeg):
63 M[i,j] = em((1/gen)*apows[j]).real()
64 i = i + 1
65 # else block - complex embedding
66 else:
67 key[i] = 1
68 key[i+1] = 2 #the following embedding is the complex conjugate
69 for j in range(fdeg):
70 M[i,j] = sqrt(2)*(em((1/gen)*apows[j])).real()
71 M[i+1,j] = sqrt(2)*((em((1/gen)*apows[j]))*CC.gen()).real()
72 i = i + 2
73 return M, key, embs
74 AD_M, key, embs = adjusted_change_of_basis_matrix_PLWE_to_dual(f)
75 AD_M_inv = AD_M.inverse() #this gives us the matrix to go from dual to PLWE
76 AD_M_inv
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Appendix B

Chi-Squared Attack

This code is a slight update and adaptation of [ELOS15] done by Alec Critten and

myself.

Listing B.1: Chi-Squared Attack
1

2

3 def change_of_basis_matrix(f):
4 """
5 Returns a matrix, columns basis 1, x, x^2, x^3, ... given in the
6 canonical embedding (aka the Minkowski embedding) - this matrix is the
7 change of basis matrix to go from PLWE to non-dual RLWE
8

9 INPUT:
10 f - a polynomial with coefficients in QQ
11

12 OUTPUT:
13 M - a matrix with entries in the real field RealField(300) where 300 is
14 the precision key - a tuple containing the signature of real embeddings
15 and pairs of complex embeddings
16

17 NOTE:
18 This depends on Sage outputting the complex embeddings in such a way
19 that the conjugate of a strictly complex embedding follows the embedding
20

21 """
22

23 N.<a> = NumberField(f)
24 n = f.degree()
25

26 # construct a square n*n matrix M, where n is the degree of f
27 # for key - a 0 entry indicates a real embedding; 1 and 2 respectively
28 indicate the real and complex parts of an imaginary embedding
29 key = [0 for i in range(n)]
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30 embs = N.embeddings(CC) # same as N.complex_embeddings()
31 M = matrix(RealField(300),n,n)
32

33 #print("Preparing an embedding matrix: computing powers of the root.")
34 apows = [ a^j for j in range(n) ] #a is the generator of the number field
35 #print("Finished computing the powers of the root.")
36 i = 0
37

38 while i < n:
39 em = embs[i]
40

41 # test whether the embedding is real or complex.
42 # if block - real embedding
43 if em(a).imag() == 0:
44 key[i] = 0
45 for j in range(n):
46 M[i,j] = em(apows[j]).real()
47 i = i + 1
48 # else block - complex embedding
49 else:
50 key[i] = 1
51 key[i+1] = 2 #assumes the next embedding is the complex conjugate
52 for j in range(n):
53 M[i,j] = em(apows[j]).real()
54 M[i+1,j] = (em(apows[j])*CC.gen()).real()
55 #gives different result using .imag() because of the ordering
56 #sage uses on the embeddings
57 i = i + 2
58 return M, key
59

60

61

62 def random_vec(q, n):
63 """
64 Produces a random vector from (Z/qZ)^n.
65

66 INPUT:
67 q - an integer modulus
68 n - the dimension of (Z/qZ)^n
69

70 OUTPUT:
71 - a random vector from (Z/qZ)^n
72 """
73 return vector([ZZ.random_element(0,q) for i in range(n)])
74

75

76

77 def modq(r,q):
78 """
79 Computes the result of r modulo q, for r a real number and q an integer.
80

81 INPUT:
82 r - a real number
83 q - an integer modulus
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84

85 OUTPUT:
86 t*q - the real number in [0,q) such that (r - t*q) = k*q for k an integer
87 """
88 t = r/q - floor(r/q)
89 return t*q
90

91

92

93 def call_sampler(f, sig):
94 """
95 Sets up the discrete Gaussian sampler.
96

97 INPUT:
98 f - the polynomial
99 sig - sigma for the distribution

100

101 OUTPUT:
102 sample - function which will return vectors in the discrete gaussian
103 distribution over change of basis matrix with entries in QQ and sigma
104 """
105

106 cm,key = change_of_basis_matrix(f)
107 # entries of matrix are in RealField with precision 10
108 cm53 = cm.change_ring(RealField(10))
109 cmqq = cm53.change_ring(QQ)
110 sampler = DiscreteGaussianDistributionLatticeSampler(cmqq.transpose(),
111 sig)
112 # transpose is due the Sage code convention of assuming lattice
113 #vectors are defined by rows
114 return sampler()
115

116

117

118

119 def get_sample(cm, secret, q, key, f, sig, S):
120 """
121 Creates a sample [a,b] using a Gaussian sampler on a given lattice,
122 secret, and prime.
123

124 INPUT:
125 cm - a given lattice as a matrix
126 secret - the secret
127 q - the prime modulus q
128 key - the "key" as before in change_of_basis() - signature of embeddings
129 f - polynomial function
130 sig - sigma
131 S - polynomial ring
132

133 OUTPUT:
134 [a,b] - a sample pair
135 """
136

137
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138 cm_inv = cm.inverse()
139 # e is an error in the real vector space R^n
140 e = call_sampler(f, sig).change_ring(RealField(300))
141 dim = cm.dimensions()[0] # detect dimension of lattice
142 pre_a = random_vec(q, dim) #a random vector from (Z/qZ)^n
143 a = cm*pre_a # create a, in R^n
144 b = vecmul_poly(a,secret,cm, S) + e # create b, in R^n
145 pre_b = cm_inv*b # move to basis in cm in order to reduce mod q
146 pre_b_red = vector([modq(c,q) for c in pre_b]) #modding q
147 b = cm*pre_b_red
148 return [a, b]
149

150

151

152 def setup_rings(f,q):
153

154 """
155 Sets up the parameters for attack.
156

157 INPUT:
158 f- the polynomial function
159 q - the prime modulus q
160

161 OUTPUT:
162 R - polynomial ring with variable x
163 S - polynomial ring with variable z
164 """
165

166 R.<x> = PolynomialRing(IntegerModRing(q)) #this is P in Elias 2015
167 S.<z> = R.quotient(f) #this is P_q in Elias 2015
168 #print("Setting up parameters, polynomial = ", f, " and prime = ",
169 #q, " and sigma = ", sig)
170 #print("Verifying properties: ")
171 #print("Prime?", q.is_prime())
172 #print("Irreducible? ", f.is_irreducible())
173 #print("Value at 1 modulo q?", Mod(f.subs(y=1),q))
174 return R, S
175

176

177

178 def prepare_matrices(polyonly, f):
179 """
180 Computes the lattices in the Minkowski space (determined by the
181 change_of_basis_matrix function)
182

183 INPUT:
184 polyonly - a Boolean value that determines whether the attack is a
185 Poly-LWE attack (true) or a Ring-LWE attack (false)
186 f - polynomial
187

188 OUTPUT:
189 cmqq - the change of basis matrix with rational approximations
190 """
191
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192 #print("Preparing matrices.")
193

194 # if the key is changed in this function, we'll set this value to true
195 returnKey = False
196

197 # If the attack is Poly-LWE
198 if polyonly:
199 # already thinking in terms of polynomial coefficients
200 cm = matrix.identity(f.degree())
201 key = 0
202 # If the attack is Ring-LWE
203 else:
204 #change of basis matrix goes from polynomial coefficients
205 #to lattice entries
206 cm,key = change_of_basis_matrix(f)
207 returnKey = True
208 #print("Embedding matrix prepared.")
209 #print("Inverse matrix found.")
210

211 if polyonly:
212 cmqq = cm.change_ring(ZZ)
213 else:
214 # in RLWE case, cm has real entries. provide rational approximation
215 #as in previous function
216 cm53 = cm.change_ring(RealField(10))
217 cmqq = cm53.change_ring(QQ)
218 #print("All matrices prepared.")
219

220 if returnKey == True:
221 return cm, cmqq, key
222 else:
223 return cm, cmqq, key
224

225

226

227

228 def make_poly(u,cm,S):
229 """
230 Constructs a polynomial directly from a vector in the real vector
231 space R^n, given a change of basis matrix and a variable from polynomial
232 ring.
233

234 INPUT:
235 u - the vector in R^n
236 cm - a change of basis matrix
237 S - polynomial ring with variable to use to make polynomial
238

239 OUTPUT:
240 pol - a polynomial with integer coefficients and variable determined by S
241 """
242

243 #coefficients of the polynomial are given by the change of basis matrix
244 coeffs = cm*u
245 pol = 0 #initialize a polynomial
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246 for i in range(len(coeffs)):
247 pol = pol + ZZ(round(coeffs[i]))*S.gen()^i
248 # S.gen() determines what poly ring the polynomial lives in and
249 #its variable
250 return pol
251

252

253

254 def make_vec(f,cm):
255 """
256 Constructs a vector in the Minkowski space directly from a polynomial
257

258 INPUT:
259 f - polynomial function in polynomial ring S
260 cm - change of basis matrix
261

262 OUTPUT:
263 - the vector
264 """
265

266 if f == 0:
267 coeffs = [0 for i in range(cm.ncols())]
268 #function is identically zero so all coefficients are zero
269 else:
270 coeffs = [0 for i in range(cm.ncols())]
271 #initiates vector of coefficients as all zeros
272 colist = lift(f).coefficients() #lifts f into polynomial ring S
273 for i in range(len(colist)):
274 coeffs[i] = ZZ(colist[i])
275 return cm*vector(coeffs)
276

277

278

279 def vecmul_poly(u,v,cm, S):
280 """
281 Multiplies two vectors in the Minkowski space using their forms in
282 the polynomial ring.
283

284 INPUT:
285 u & v - the vectors to be multiplied together
286 cm - change of basis matrix
287

288 OUTPUT:
289 - the result of the multiplication (passed from the function which
290 constructs the resultant vector)
291 """
292

293 # Convert vectors into polynomials
294 # z is the variable of the polynomial ring
295 # S.<z> = R.quotient(f) = P_q in Elias 2015
296 poly_u = make_poly(u,cm.inverse(),S)
297 poly_v = make_poly(v,cm.inverse(),S)
298

299 # Multiply the polynomials and return the result in vector form
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300 poly_prod = poly_u*poly_v
301 return make_vec(poly_prod,cm)
302

303

304

305 def initiate_sampler(sig, cmqq):
306 """
307 Creates the sampler on the lattice embedded in R^n or ZZ^n.
308

309 INPUT:
310 sig - the sigma of the distribution
311 cmqq - canonical matrix with rational entries
312

313 OUTPUT:
314 sampler - discrete gaussian distribution
315 """
316

317 #print("Initiating Sampler.")
318 sampler =
319 DiscreteGaussianDistributionLatticeSampler(cmqq.transpose(), sig)
320 #print("Sampler initiated with sigma", RDF(sig))
321 return sampler
322

323

324

325 def error_test(num, sampler, n):
326 """
327 This function produces some sample error vectors, so that the
328 user can verify that the sampler is working properly.
329

330 INPUT:
331 num - the number of error vectors to be produced
332 sampler
333 n - degree of f
334

335 OUTPUT:
336 none
337 """
338 #print("Testing the error vector production by producing ", num,
339 #" errors.")
340

341 # Construct a tuple of errors
342 errorlist = [sampler().norm().n() for i in range(num)]
343

344 # Compute and print avg. and max. norms
345 meannorm = mean(errorlist) # average norm
346 maxnorm = max(errorlist) # maximum norm
347 #print("The average error norm is ",
348 #RDF(meannorm/( sqrt(n)*sampler.sigma*sqrt(2*pi) )), " times sqrt(n)*s.")
349 maxratio = RDF(maxnorm/( sqrt(n)*sampler.sigma*sqrt(2*pi) ))
350 #print("The maximum error norm is ", maxratio, " times sqrt(n)*s.")
351

352 #if maxratio > 1:
353 #print("~~~~~~~~~~~~~~~~~~~~~~~ ERROR ~~~~~~~~~~~~~~~~~~~~~~~~~")
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354 #print("The errors do not satisfy a proven upper bound in norm.")
355 return
356

357

358

359 def create_secret(cm,q, n):
360 """
361 Creates the secret.
362

363 INPUT:
364 cm - change of basis matrix
365 q - prime
366 n - degree of polynomial f
367

368 OUTPUT:
369 secret - the secret
370 """
371

372 secret = cm*random_vec(q,n)
373 return secret
374

375

376

377 def create_samples(num_of_samples,cm, secret, q, key, f, sig, S):
378 """
379 Creates a list of samples from the sample distribution.
380

381 INPUT:
382 num_of_samples - the number of samples to be created
383 cm - canonical matrix
384 secret - the secret in the RLWE pronlem
385 q - prime
386 key - the signature of the embeddings
387 f - the polynomial function
388 sig - sigma
389 S - polynomial ring
390

391 OUTPUT:
392 samps - the samples
393 """
394

395 # We store the samples in a list
396 samps = []
397 #print("Creating samples")
398

399 # Create the given number of samples
400 for i in range(num_of_samples):
401 #print("Creating sample number ", i)
402 samp = get_sample(cm, secret, q, key, f, sig, S)
403 samps.append(samp)
404

405

406 #print("Done creating ", num_of_samples, "samples.")
407 return samps
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408

409

410

411 def go_to_q(u,cm,q, R):
412 """
413 Converts a vector into an integer modulo q.
414

415 INPUT:
416 u - vector in the Minkowski space (R^n)
417 cm - change of basis matrix
418 q - modulus of the polynomial ring
419 R - the polynomial ring
420

421 OUTPUT:
422 the integer value of pol_eval modded by q
423 """
424

425 pol = make_poly(u,cm,R)
426 #print(cm)
427 #print("pol: ", pol)
428 pol_eval = pol.subs(1)
429 #print("pol_eval: ", pol_eval)
430 #print("q: ", q)
431 return IntegerModRing(q)(pol_eval)
432

433

434

435

436

437

438

439 #-----------------------------------------------#
440 #ATTACK-SPECIFIC FUNCTIONS #
441 #-----------------------------------------------#
442

443

444 # Check to make sure moving to q preserves product - the last two lines equal
445 def sanity_check(f,q, S, R): #do we care about the result of this??
446 cm, key = change_of_basis_matrix(f)
447 #print("Initiating sanity check")
448 cm_inv = cm.inverse()
449 pvec1 = random_vec(q,f.degree())
450 vec1 = cm*pvec1
451 pvec2 = random_vec(q,f.degree())
452 vec2 = cm*pvec2
453 #print("vec1: ", vec1)
454 #print("vec2: ", vec2)
455 #print("q:", q)
456 vprod2 = vecmul_poly(vec1,vec2,cm, S)
457 first_thing = go_to_q(vprod2,cm_inv, q, R)
458 second_thing = go_to_q(vec1,cm_inv, q, R)*go_to_q(vec2,cm_inv,q, R)
459 #if first_thing == second_thing:
460 # print("Sanity confirmed.")
461 #else:
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462 # print("~~~~~~~~~~~~~~~~~~~~~~~ ERROR ~~~~~~~~~~~~~~~~~~~~~~~~~")
463 #print("Sanity problem:", first_thing, " is not equal to ",
464 #second_thing, ".")
465 #print("Are you sure your ring has root 1 mod q?")
466 return True
467

468

469

470 # Algorithm 2
471 # reportrate controls how often it updates the status of the loop;
472 #larger = less frequently
473 # quickflag = True will run only the secret and
474 #a few other values to give a quick idea if it works
475 def alg2(samps, reportrate, cm_inv, q, lift_secret, S, quickflag = False):
476 #print("Beginning new algorithm.", type(cminv))
477

478 T = RealDistribution('chisquared', q-1)
479 alpha = 1- 1/(10*q)
480 delta = T.cum_distribution_function_inv(alpha)
481

482 num_of_samps = len(samps)
483 a = [ 0 for i in range(num_of_samps)]
484 b = [ 0 for i in range(num_of_samps)]
485 #print("Moving samples to F_q.")
486 for i in range(num_of_samps):
487 sample = samps[i]
488 a[i] = go_to_q(sample[0],cm_inv,q, S)
489 b[i] = go_to_q(sample[1],cm_inv,q, S)
490 possibles = []
491 winner = [[],0]
492 #print("Samples have been moved to F_q.")
493 #for i in range(2):
494 #if i == 0:
495 #print("!!!!! ROUND 1: !!!!! First, checking how many samples
496 #the secret survives (peeking ahead).")
497 #iterat = [lift_secret]
498 #if i == 1:
499 #print("!!!!! ROUND 2: !!!!! Now, running the attack naively.")
500 possibles = []
501 if quickflag:
502 #print("We are doing it quickly (not a full test).")
503 iterat = range(1000)
504 else:
505 iterat = range(q)
506 import collections
507 for g in iterat:
508 #if Mod(g,reportrate) == Mod(0,reportrate):
509 #print("Currently checking residue ", g)
510 g = IntegerModRing(q)(g)
511 error_list = [] #curly E from paper
512 for i in range(num_of_samps):
513 error_list.append(b[i]-a[i]*g)
514 counts = collections.Counter(error_list)
515 chi_squared = sum([(counts[j]-num_of_samps/q)^2*q/num_of_samps
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516 for j in range(q)])
517 if chi_squared > delta:
518 possibles.append(g)
519 #potential = True
520 #ctr = 0
521 #while ctr < num_of_samps and potential:
522 # e = abs(lift(IntegerModRing(q)(b[ctr]-g*a[ctr])))
523 # if e > q/4 and e < 3*q/4: #change condition to a chi-square test
524 #potential = False
525 # if ctr == winner[1]:
526 # winner[0].append(g)
527 # print("We have a new tie for longest chain:", g,
528 # " has survived ", ctr, " rounds.")
529 # if ctr > winner[1]:
530 # winner = [[g],ctr]
531 # print("We have a new longest chain of samples
532 # survived:", g, " has survived ", ctr, " rounds.")
533 # ctr = ctr + 1
534 #if potential == True:
535 # print("We found a potential secret: ", g)
536 # possibles.append(g)
537 #if g == lift_secret:
538 # if i == 0:
539 # print("The real secret survived ", ctr, "samples.")
540 #break
541 #print("Full list of survivors of the ", numsamps, " samples:",
542 #possibles)
543 #print("The real secret mod q was: ", lift_secret)
544 #print("possibles:", len(possibles))
545 if len(possibles) == 1 and possibles[0] == lift_secret:
546 #print("Success! You found the secret.")
547 return True
548 else:
549 #print("Failure! You did not find the secret.")
550 return False
551

552 # Run a simulation.
553 def shebang(f,q,sig,num_of_samples,num_of_trials,quickflag=False,
554 polyonly=False):
555

556 n = f.degree()
557 N.<a> = NumberField(f)
558 #if polyonly:
559 #print("Welcome to the Poly-LWE Attack.")
560 #else:
561 #print("Welcome to the Ring-LWE Attack.")
562 #print("The attack should theoretically work if the following
563 #quantity is greater than 1.")
564 #print("Quantity: ",
565 #RDF( q/( 2*sqrt(2)*sqrt(2*pi)*sig*n*(q-1)^((n-1)/2/n))))
566 #timer = Timer()
567 #timer2 = Timer()
568 #timer.start()
569 #print("********** PHASE 1: SETTING UP SYSTEM ")
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570 R, S = setup_rings(f,q)
571 #removed calculating sig here and added it as an input of function
572 cm, cmqq, key = prepare_matrices(polyonly, f)
573 #for polyonly = true the two matrices are just identity matrices;
574 #for polyonly = false we use the change_of_basis_matrix function
575 if not polyonly:
576 #print("Computing the adjustment factor for s.")
577 cembs = (n - len(N.embeddings(RR)))/2
578 detscale =
579 RealField(300)((2^(-cembs)*sqrt(abs(f.discriminant())))^(1/n))
580 # adjust the sigma and sval by this value
581 #sval = sval*detscale #sval is the width of the Gaussian
582 sig = sig*detscale #WHY are we scaling this?
583 #print("Adjusted s for use with this embedding, result is ", sval)
584 sampler = initiate_sampler(sig, cmqq)
585 #print("The sampler has been created with sigma = ", RDF(sampler.sigma))
586 #print("Sampled vectors will have expected norm ",
587 #RDF(sqrt(n)*sampler.sigma))
588 error_test(5, sampler, f.degree())
589 #print("Time for Phase 1: ", timer.stop())
590 #timer.start()
591 count_successes = 0
592 #timer2.start()
593 for trialnum in range(num_of_trials):
594 #print("*~*~*~*~*~*~*~* TRIAL NUMBER ", trialnum, "*~*~*~*~*~*~*~*")
595 #print("********** PHASE 2: CREATE SECRET AND SAMPLES")
596 secret = create_secret(cm,q, n)
597 samps = create_samples(num_of_samples,cm, secret, q, key, f, sig, S)
598 sanity_check(f,q, S, R)
599 #print("Time for Phase 2: ", timer.stop())
600 #timer.start()
601 #print("********** PHASE 3: HISTOGRAMS")
602 #histogram_of_errors(sampler,cm,q)
603 #print("The histogram of errors (above) should be clustered at
604 #edges for success.")
605 #histogram_of_as(samps,cm,q)
606 #print("The histogram of a's (above) should be fairly uniform.")
607 #histogram_of_errors_2(samps,cm,q) <- this line doesn't work
608 #print("The histogram of sample errors (above) should be clustered at
609 #edges for success.")
610 #print("Time for Phase 3: ", timer.stop())
611 #timer.start()
612 #print("********** PHASE 4: ATTACK ALGORITHM")
613 lift_secret = go_to_q(secret,cm.inverse(),q, R)
614 #modding the secret by q
615 # = secret_mod_q(secret,cm,q, R)
616 result = alg2(samps, 10,cm.inverse(), q, lift_secret, R, quickflag)
617 #print("Result of Algorithm 2:", result)
618 #print("Time for Phase 4: ", timer.stop())
619 if result == True:
620 count_successes = count_successes + 1
621 #print(count_successes, " out of ", trialnum+1, " successes so far.")
622 #totaltime = timer2.stop()
623 #print("Total time for ", trialnum+1, "trials was ", totaltime)
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624 print("Total number of successes in finding the secret:",
625 count_successes, "out of", trialnum+1)
626 return count_successes
627

628

629

630

631

632

633

634

635 #-----------------------------------------------#
636 #HISTOGRAMS #
637 #-----------------------------------------------#
638

639

640 def histoq(data):
641 """
642 Given a list of elements of Z/qZ, make a histogram and zero count.
643

644 INPUT:
645 data - elements in Z/qZ
646

647 OUTPUT:
648 [hist, zeroct] - tuple with the histogram and zero count
649 """
650 hist = [0 for i in range(10)] # empty histogram
651 zeroct=0 # count of zeroes mod q
652

653 # iterate over each data element, add to the histogram or zero count
654 for datum in data:
655 e = datum
656 if e == 0:
657 zeroct = zeroct+1
658 histbit = floor(ZZ(e)*10/q)
659 hist[histbit]=hist[histbit]+1
660 return [hist, zeroct]
661

662

663

664 def histo(data,cm,q):
665 """
666 Given a list of vectors in R^n, create a histogram of their values
667 in Z/qZ under make_poly, together with a zero count.
668

669 INPUT:
670 data - vectors in R^n
671 cm.inverse() - change of basis matrix
672

673 OUTPUT:
674 - histogram of the values in Z/qZ with zero count
675 """
676 return histoq([go_to_q(datum,cm.inverse(),q) for datum in data])
677
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678

679

680 def histogram_of_errors(sampler,cm,q):
681 """
682 Create a histogram of error vectors, transported to polynomial ring.
683

684 INPUT:
685 sampler
686

687 OUTPUT:
688 none (output is printed externally)
689 """
690

691 print("Creating a histogram of errors mod q.")
692

693 # Create the list of errors
694 errs = []
695 for i in range(80):
696 errs.append(sampler())
697

698 # Construct a histogram from the error list and print it to the screen
699 hist = histo(errs,cm.inverse(),q)
700 print("The number of error vectors that are zero:", hist[1])
701 bar_chart(hist[0], width=1).show(figsize=2)
702 return
703

704

705

706 def histogram_of_as(samps,cm,q):
707 """
708 Create a histogram of the a's in the samples,
709 transported to polynomial ring.
710

711 INPUT:
712 none
713

714 OUTPUT:
715 none (output is printed externally)
716 """
717

718 print("Creating a histogram of sample a's mod q.")
719 a_vals = [samp[0] for samp in samps]
720 hist = histo(a_vals,cm.inverse(),q)
721 print("The number of a's that are zero:", hist[1])
722 bar_chart(hist[0], width=1).show(figsize=2)
723 return
724

725

726

727

728 def histogram_of_errors_2(samps,cm,q):
729 """
730 Create a histogram of errors by correct guess.
731
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732 INPUT:
733 none
734

735 OUTPUT:
736 none (output is printed externally)
737 """
738

739 print("Creating a histogram of supposed errors if sample is guessed,
740 mod q.")
741 print(q)
742

743 hist = histoq([(IntegerModRing(q)(go_to_q(sample[1],cm.inverse(),q) -
744 go_to_q(sample[0],cm.inverse(),q)*
745 go_to_q(secret,cm.inverse(),q))).lift() for sample in samps])
746 # hist = histoq([ lift(Zq(go_to_q(sample[1],cm.inverse(),q) -
747 #go_to_q(sample[0],cm.inverse(),q)*go_to_q(secret,cm.inverse(),q)))
748 #for sample in samps])
749 print("The number of such that are zero:", hist[1])
750 bar_chart(hist[0], width=1).show(figsize=2)
751 return
752

753

754

755

756 from sage.stats.distributions.discrete_gaussian_lattice
757 import DiscreteGaussianDistributionLatticeSampler
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