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Abstract

In this thesis, we investigate curves over finite fields. More precisely, fixing a base
field Fq and a genus g, we aim to enumerate a representative from each isogeny
and isomorphism class of curves defined over that field and of that genus. As a
step towards this goal, in this work we provide code that, given a finite field of any
characteristic, generates a list of models of hyperelliptic curves of genus 2 which
we can guarantee contains one representative from each isomorphism class of curves
defined over that field. Furthermore, our code allows us to sort these models into
isogeny classes. Finally, if the field is of odd characteristic, we can further sort the
models into isomorphism classes.

As an application of our software, we obtain representatives for every isogeny class
of hyperelliptic curves of genus 2 defined over the finite field F2. We also give a model
for each isogeny and isomorphism class of hyperelliptic curves of genus 2 defined over
F3. In these investigations, we discovered that Theorem 5 of Isomorphism Classes of
Genus-2 Hyperelliptic Curves Over Finite Fields by Encinas, Menezes, and Masqué
may be more accurately stated as giving the number of isomorphism classes of pointed
hyperelliptic curves rather than isomorphism classes of hyperelliptic curves.
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Chapter 1

Introduction

In this work we consider hyperelliptic curves of genus 2 defined over finite fields.

Hyperelliptic curves, which are the only kind of curve in genus 2, are introduced in

Corollary 4.1.1 in Chapter 4. (For a definition of genus, please refer to Definition

3.3.5.) Although hyperelliptic curves are a kind of projective plane curve, we begin

this thesis with presenting the simpler theory of affine varieties and curves in Chapter

2, as a segue into the theory of projective varieties and curves in Chapter 3. Our

purpose is to classify models for these curves into so-called isogeny and isomorphism

classes, which are two natural equivalence relations on curves.

The first equivalence relation we will use to classify the curves is that of isogeny.

Given a curve C, we can define its associated Jacobian variety as a certain abelian

group compatible with the structure of the curve. Two curves are isogenous if their

Jacobians admit a finite, surjective map between them. For simplicity in this thesis,

we will use a different, but equivalent, definition for isogeny. Indeed it is the case

that curves that are isogenous to each other share the same L-polynomial in their

zeta-function, which is how we will verify if two curves are isogenous. We will define
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the zeta-function and sort curves into isogeny classes in Chapter 5.

The second equivalence class that we use to classify the curves under consideration

is more strict than an isogeny relation, and is called an isomorphism relation. Two

curves are roughly thought to be isomorphic if they have the same shape and are

defined over the same finite field, however they are not identical in location. For

example, the curves y = x2 and y = (x− 2)2 are isomorphic because they are related

by the translation x 7→ (x − 2) and y 7→ y. This notation is made precise by saying

that two curves are isomoprhic if they are related by an invertible rational map.

Curves that are isomorphic to each other will form what we will call an isomorphism

class. We will sort curves into isomorphism classes in Chapter 6.

Due to limitations of the Magma software, we are able to enumerate the isogeny

classes but not the isomorphism classes of curves of genus 2 over a finite field of

characteristic 2. We carry out this classification for the field F2, and these results can

be found in Section A.1. We are able to classify curves of genus 2 defined over fields

of odd characteristic into isomorphism classes as well as isogeny classes. We find both

the isogeny classes and the isomorphism classes of curves of genus 2 defined over F3

in in Section A.2. For curves defined over F2 and F3, we also identify which isogeny

classes contain curves with no rational points.

1.1 Literature Review

There is significant interest in enumerating isomorphism classes and isogeny classes of

curves for fixed genus and base field. For example, the L-functions and modular forms

database [9] lists isogeny classes for abelian varieties defined over finite fields, and it

2



lists isomorphism classes of curves of genus 2 over the rational field Q for certain

relatively small conductors. Apart from this, mathematicians have listed curves with

certain properties, for example, curves with many rational points in [6]. However,

none of these sources list all curves of a chosen genus defined over a certain finite

field, nor do they classify them into isomorphism classes and isogeny classes.

In some cases, curves of a certain form have been enumerated. For example, Lee

[8] counts isomorphism classes of Picard curves over a field of characteristic 2, which

are a certain kind of curve of genus 3, and proves the theorem:

Theorem 1.1.1 (Theorem 4.6 of [8]). The number of isomorphism classes of Picard

curves over a finite field Fq = F2m is given by



q2 + 2q − 2, if m is odd,

3(q2 − 5), if m ≡ 2, 4 (mod 6),

3(q2 − 3), if m ≡ 0 (mod 6).

(1.1)

In addition, in [8] the author also gives reduced forms for the equations of the

curves he counts but does not organize them by isogeny class.

Apart from this, other authors have counted the number of isomorphism classes of

curves with certain properties, but have not enumerated equations for the curves. For

example, You and Zeng [14] count the number of isomorphism classes of hyperelliptic

curves of genus 4 over Fq:

Theorem 1.1.2 (Theorem 4 of [14]). The number of isomorphism classes of hyper-
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elliptic curves of genus 4 over Fq is

2(q7 − q3 + q + 3) + |G1|+ |G2|+ (q − 2)|G3|+ (q2 − 2q − 2)|G4|+ (q3 − q2 − 1)|G5|

where for i = 1, 2, 3, 4, 5, 6, Gi is the group of automorphisms of the curves contained

in a certain set Hi.

We note that since hyperelliptic curves are a subset of all curves of genus 4, this

work does not account for all curves of genus 4 over a given finite field. In addition,

as we stated above, this work does not enumerate models for the curves it does cover.

Considering a different problem in [1], Eisenträger and Lauter give a construction

for a genus-2 curve defined over a finite field with a certain number of rational points.

Their method involves computing Igusa class polynomials and applying the Chinese

Remainder Theorem. They also provide an algorithm that determines the endomor-

phism ring of the Jacobian of these genus 2 curves. A similar algorithm already exists

for elliptic curves, which is the genus 1 case, however this is the first generalization of

its kind to genus 2. While this algorithm created a way to construct curves of genus

2, because of its purpose (to construct a curve with a specified number of points) the

computations are too onerous for this project, which is to list all curves regardless of

their point count. Therefore we must use a different method so that the computations

terminate within a reasonable time frame.

1.2 Methodology

The first step in this project is to create a list of the genus 2 curves defined over a

certain finite field. While we do not need to generate all the curves, we do need to
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generate enough so that there is a representative from each and every isomorphism

class of curves defined over that field. We do so using the software Magma and code

we have written for this purpose, as described in Chapter 4. Once we have this list,

we sort each curve into its isogeny class using the the point counts of certain base

changes of the curve, as described in Chapter 5. Finally, we partition each isogeny

class into isomorphism classes, again using Magma, as described in Chapter 6. As

an added benefit of this project, we are able to give a model for a curve belonging to

each isogeny class of curves of genus 2 defined over F2 and F3 with no rational points.

We do so in Section 5.3.

1.3 Significant Findings

As described in Section 1.1, while others have studied certain aspects pertaining to

the enumeration of curves of a fixed genus over finite fields, none have gone into as

much detail as we have in this project. As far as we know, never before has anyone

enumerated every isomorphism class of genus 2 defined over F2 and F3 because the

computing power did not yet exist. Our work is a significant step in this direction.

Using Magma and the code we wrote, we were able to generate and classify curves

with a new degree of completeness.

This project has rendered several significant results. The first is a complete list

of curves of genus 2 defined over F2, sorted into isogeny classes. This is a valuable

contribution to the work found in [9].

The second significant result is a list of all the isogeny and isomorphism classes

of genus 2 defined over F3. While we did not include every curve over F3, we can
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prove that we have at least one representative curve from all isogeny and isomorphism

classes, and therefore that our list is complete.

Third, we used these isogeny classes to identify a model for curves of genus 2 with

no rational points defined over F2 and F3. These results can be found in Section 5.3.

The final result has to do with the second finding. Previous literature [2] suggests

that there are 54 isomorphism classes of curves of genus 2 defined over F3. However,

our results give 69 such classes. We found that the authors of [2] use a different notion

of isomorphism than is usual and discuss this discrepancy in Section 6.2.
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Chapter 2

Affine Varieties and Curves

While we will mainly deal with projective curves in this thesis, we first introduce

the simpler case of affine varieties and curves. Accordingly in this chapter we give

an overview of the theory and its basic definitions and results. First, we introduce

algebraic sets in Section 2.1. Then, we discuss ideals of algebraic sets in Section 2.2

and how to determine whether an algebraic set is reducible or irreducible in Section

2.3, which we use to define affine varieties. We then define the coordinate ring of an

affine variety in Section 2.4. Finally, we define affine plane curves and several of their

properties in Section 2.5. The concepts introduced in this chapter are standard and

can be found for example in [4].

2.1 Algebraic Sets

In this section, we define algebraic sets, which are the most basic objects of algebraic

geometry.

Definition 2.1.1. Let F be a field, then An(F) = Fn. We call An(F) the n-dimensional
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affine space.

Definition 2.1.2. Let F be a field and let An(F) be the n-dimensional affine space

over F. Let S be a set of polynomials in n variables with coefficients in F. We define

the algebraic set associated to S defined over F to be

V (S) = {(x1, x2, . . . , xn) ∈ An(F) : f(x1, x2, . . . , xn) = 0 ∀f ∈ S}. (2.1)

Example 2.1.3. The set of points in A2(R) whose polar coordinates (r, θ) satisfy the

equation r = sin θ is an algebraic set.

We start with the equations for Cartesian coordinates as functions of the polar

coordinates:

x = r cos θ, y = r sin θ, (2.2)

and divide both sides of the second equation by r

y

r
= sin θ. (2.3)

Since r = sin θ and y
r

= sin θ, we can say

r = y

r
. (2.4)

Multiplying both sides of this by r, we now have:

r2 = y. (2.5)

We know that Cartesian and polar coordinates satisfy the relation r2 = x2 + y2,
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so setting r2 equal to x2 + y2, we end with:

y = x2 + y2 or x2 + y2 − y = 0. (2.6)

This is a polynomial in 2 variables, and the set of points r = sin θ is its zero locus.

Therefore this set is the algebraic set associated with

S = {x2 + y2 − y}. (2.7)

2.2 Ideals of Algebraic Sets

In this section we define an important quantity associated with any algebraic set, its

ideal. This ideal is one of the main ways in which properties of algebraic sets are

defined and investigated.

Definition 2.2.1. Let F be a field and X be an algebraic set defined over F with

X ⊆ An(F).

Let

I(X) = {f ∈ F[x1, x2, . . . , xn] : f(x) = 0 ∀ x ∈ X} (2.8)

This is the set of all polynomials that vanish on X. We call I(X) the ideal of X.

Example 2.2.2. Let F be a field, X = V (S) be an algebraic set defined over F, and

let I(X) be the ideal of X. If S = {y − x2}, then we notice that

I(X) 3 y − x2, 2y − 2x2, πy − πx2, xy − x3, . . . (2.9)

In fact, I(X) = {ay − ax2 : a ∈ F[x, y]}.
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Proposition 2.2.3. Let X be an algebraic set. Then I(X) is an ideal in the algebraic

sense.

Proof. To prove that a subset of polynomials is an ideal, we must show that the

set is closed under addition and that if f(x1, . . . , xn) ∈ I(X) and g(x1, . . . , xn) is a

polynomial then (f · g)(x1, . . . , xn) ∈ I(X). First we show that if

f(x1, . . . , xn), g(x1, . . . , xn) ∈ I(X), (2.10)

then f(x1, . . . , xn) + g(x1, . . . , xn) ∈ I(X).

Let (a1, . . . , an) ∈ X. If f(a1, . . . , an), g(a1, . . . , an) ∈ I(X) then by Definition

2.2.1, f(a1, . . . , an) = 0 and g(a1, . . . , an) = 0. We can add f and g and evaluate at

(a1, . . . , an) to find the result

(f + g)(a1, . . . , an) = f(a1, . . . , an) + g(a1, . . . , an) = 0 + 0 = 0 (2.11)

for (a1, . . . , an) ∈ X, so the set is closed under addition.

Now we show that if f(x1, . . . , xn) ∈ I(X) and g(x1, . . . , xn) is any polynomial,

then f(x1, . . . , xn) · g(x1, . . . , xn) ∈ I(X). If f(x1, . . . , xn) ∈ I(X) then by Definition

2.2.1, f(a1, . . . , an) = 0 for (a1, . . . , an) ∈ X. We multiply f by a polynomial g and

evaluate at (a1, . . . , an) to get

(f · g)(a1, . . . , an) = f(a1, . . . , an)g(a1, . . . , an) = 0 · g(a1, . . . , an) = 0, (2.12)

for (a1, . . . , an) ∈ X, so f · g in the ideal I(X) (also by Definition 2.2.1). We

have shown that the subset of polynomials is closed under addition and that if
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f(x1, . . . , xn) ∈ I(X) and g(x1, . . . , xn) is a polynomial then (f ·g)(x1, . . . , xn) ∈ I(X),

so the subset of polynomials is an ideal.

We end with a proposition that illustrates the importance of this ideal to the

theory of algebraic sets.

Proposition 2.2.4 (Exercise 1.16 of [3]). Let F be a field and let V and W be alge-

braic sets in An(F). Then V = W if and only if I(V ) = I(W ).

2.3 Reducibility and Irreducibility

An important property of an algebraic set is whether it is reducible or irreducible.

This distinction will inform the definition of affine varieties, which we introduce at

the end of this section.

We begin by defining reducible algebraic sets.

Definition 2.3.1. Let X be an algebraic set. If X = X1 ∪ X2 with X1, X2 two

nonempty algebraic sets and X 6= X1, X 6= X2, then X is reducible. Otherwise, X is

irreducible.

Whether X is irreducible depends on a certain property of its ideal.

Proposition 2.3.2 (Proposition 1 of Section 1.5 of [3]). Let X be an algebraic set

and let I(X) be the ideal of X. X is irreducible if and only if I(X) is a prime ideal.

Example 2.3.3. Let V (X) = {(0, 0), (1, 1)}. This is reducible since X = X1 ∪ X2,

where X1 and X2 are:

X1 = (0, 0) = V ({x, y}) (2.13)
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and

X2 = (1, 1) = V ({x− 1, y − 1}). (2.14)

While when S = {y− x2}, V (S) is irreducible by Proposition 2.3.2 because y− x2

is a prime polynomial. As such, the ideal it generates is prime.

We are now ready to define our main object of study, with which we will be

working for the remainder of this chapter.

Definition 2.3.4. An affine variety is an irreducible algebraic set.

2.4 Coordinate Rings

In this section, we begin by defining the coordinate ring of an affine variety. This will

form the set of regular functions on the variety. From there, we define various other

sets of functions of interest on a variety.

Definition 2.4.1. Let V be an affine variety defined over a field F, by which we mean

that V ⊆ An(F) for some n. The coordinate ring of V is defined to be

Γ(V ) = F[x1, . . . , xn]/I(V ). (2.15)

Because V is a variety, its ideal I(V ) is prime and therefore Γ(V ) is a domain. As

a consequence Γ(V ) has no zero divisors, so we can form its field of fraction:

Definition 2.4.2. Let V be an affine variety and let Γ(V ) be its coordinate ring. We

define k(V ), the field of fractions of Γ(V ), to be the function field of V :

k(V ) =
{
f = a

b
: a, b ∈ Γ(V )

}
. (2.16)
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Remark 2.4.3. If f ∈ k(V ) then the representation f = a
b
is not unique. Indeed, let

V = V (x0x3 − x1x2). Then we have

f = x0

x1
= x2

x3
(2.17)

where x0, x1, x2, x3 ∈ Γ(V ), as we will se in Example 2.4.5 below.

Definition 2.4.4. Let V be an affine variety, Γ(V ) be the coordinate ring of V , and

let k(V ) be the function field of V . We say that f ∈ k(V ) is defined at P ∈ V if there

exist a, b ∈ Γ(V ) with f = a
b
and b(P ) 6= 0. If f is not defined at P then f has a pole

at P .

Example 2.4.5. Let V = V (x0x3−x1x2), Γ(V ) = F[x0, x1, x2, x3]/(x0x3−x1x2) and

let k(V ) be the function field of V . On V , x0x3 − x1x2 = 0, so:

x0x3 = x1x2 (2.18)

x0 = (x1x2)/x3 (2.19)
x0

x1
= x2

x3
. (2.20)

As a consequence, f(x0, x1, x2, x3) = x0
x1

and g(x0, x1, x2, x3) = x2
x3

represent the same

element of k(V ).

We have that P = (0, 0, 1, 1) ∈ V . Then f = x0
x1

= x2
x3

is defined at P because

f = x2
x3

and x3(0, 0, 1, 1) = 1 6= 0. However, one can show that if x1 = x3 = 0, then f

is not defined at P . For example f has a pole at x = (1, 0, 1, 0) ∈ V .

Definition 2.4.6. Let V be an affine variety and let k(V ) be the function field of V .

Let P be a point on V . Let OP (V ) be the set of functions in k(V ) that are defined at
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P . OP (V ) is called the local ring of V at P .

In summary, we can say that Γ(V ) contains the functions that are defined at every

point of V , OP (V ) contains the functions that are defined at a fixed point P , and

k(V ) contains the functions that are defined at some points of V , but not necessarily

everywhere. Therefore we have the relation

Γ(V ) ⊂ OP (V ) ⊂ k(V ). (2.21)

.

Definition 2.4.7. Let V be an affine variety, P be a point on V , and let k(V ) be the

function field of V . Let OP (V ) be the local ring of V at P We define the maximal

ideal of V at P to be

mP (V ) = {f ∈ k(V ) : f(P ) = 0} ⊂ OP (V ). (2.22)

Example 2.4.8. Let V = A1(C), then I(V ) = (0) because the only polynomial that

vanishes at all points of C = A1(C) is the zero polynomial. Then we have Γ(V ) =

C[x]/(0) = C[x] and k(V ) = C(x), the field of rational functions.

If P is the point x = 0 on V , then OP (V ) is the ring of all rational functions

without a factor of x in the denominator.

Let f ∈ OP (V ). Recall from calculus that a rational function is infinitely differ-

entiable on its domain. Therefore, we can write a Taylor series centered at x = 0 for

f since x = 0 is in the domain.
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For example,
1

1− x = 1 + x+ x2 + ... ∈ OP (V ) (2.23)

Based on this, we can say OP (V ) = {all rational functions with a Taylor series

centered at x = 0}.

Now let f(x)
g(x) ∈ k(V ), then

f(x)
g(x) = f(x)

xmh(x) (2.24)

for some nonnegative integer m, with f(x)
h(x) ∈ OP (V ). We conclude that the elements

of k(V ) are of the form

a−mx
−m + a−m+1x

−m+1 + . . .+ a0 + a1x+ . . . (2.25)

for some nonnegative integer m.

We summarize the discussion in the following table:

Elements of have the form

Γ(V )
m∑

i=0
aix

i

OP (V )
∞∑

i=0
aix

i

k(V )
∞∑

i=−m

aix
i

In the table above, although all elements are of that form, we note that not all

elements of that form belong to the set. For example,
∞∑

i=0
n!xn is of the form

∞∑
i=0

aix
i,but

it is not an element of OP (V ) since it does not represent a rational function.
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2.5 Affine Plane Curves

We now turn our attention to curves that are a subset of A2. Not only are they some

of the simplest curves, but as we restrict our attention to the case of genus 2 they are

the only curves we need to consider in this work. In this section we describe several

of their important properties.

Definition 2.5.1. Let F be a field. Two polynomials f(x, y), g(x, y) ∈ F[x, y] are said

to be equivalent if there exists a nonzero λ ∈ F such that f(x, y) = λg(x, y). This

forms an equivalence relation on the set of polynomials in F[x, y]. An affine plane

curve is an equivalence class of such nonconstant polynomials, via C = V (f(x, y)),

for any f(x, y) in the equivalence class.

In other words, an affine plane curve is simply an affine variety in A2 which is not

a point. We are interested only in a certain kind of nice plane curves, which we now

define.

Definition 2.5.2. Let C be a plane curve given by the polynomial f(x, y) = 0. A

point P = (x, y) on C is simple if

∂f

∂x
(P ) 6= 0 (2.26)

or
∂f

∂y
(P ) 6= 0. (2.27)

Then our nice curves are:

Definition 2.5.3. A plane curve with only simple points is called nonsingular.
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Recall that we define the maximal ideal of a variety at a point P in Definition

2.4.7. When C is a plane curve and P is a simple point on C, the ideal is especially

pleasing:

Proposition 2.5.4. Let C be a plane curve and P be a simple point on C. Then the

maximal ideal of C at P is a principal ideal.

Proof. By [3, Theorem 1 of Section 3.2], P is a simple point on C if and only if

OP (C) is a discrete valuation ring. By definition (see [3, Proposition 4 of Section

2.5] and the discussion that follows), the maximal ideal of a discrete valuation ring is

maximal.

In turn, the generators of this principal ideal play an important role in the theory;

in particular we will use them in Section 3.3 when we define the genus of C.

Definition 2.5.5 (Proposition 4 of Section 2.5 of [3]). Let C be a plane curve and P

be a simple point on C. Then any generator of the maximal ideal of C at P is called

a uniformizing parameter of C at P .

The uniformizing parameter of a curve at a point is crucial to the definition of the

order of vanishing of a function at that point.

Theorem 2.5.6 (Proposition 4 of Section 2.5 of [3]). Let C be a plane curve, P a

simple point on C, and t a uniformizing parameter of C at P . Then every z ∈ k(C)

can be written uniquely as z = u · tn where u ∈ OP (C) but u /∈ mP (C) (so u(P ) 6= 0)

and n is an integer.

The significance of this theorem is the following:
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Definition 2.5.7. Let C be a plane curve and let P be a simple point on C. If

f ∈ k(C) then the order of vanishing of f at P , ordP (f), is the integer n given by

Theorem 2.5.6.
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Chapter 3

Projective Varieties and Curves

The focus of this thesis is projective varieties and more precisely, projective curves,

which we introduce in this chapter. We begin by presenting the projective space

in Section 3.1. We then define projective plane curves, birational equivalence, and

weighted projective plane curves in Section 3.2. We will use birational equivalence

in Chapter 4 to determine which curves are necessary to include in order to ensure

we have at least one curve from each isomorphism class. Furthermore, it will turn

out that the curves we classify in Chapters 5 and 6 are all weighted projective plane

curves. In Section 3.3 we define an important invariant of curves, the genus and give

formulae to compute it for plane curves. Finally, in Section 3.4 we describe the point

counting process we will use to later sort curves into isogeny classes. Once again,

we have used reference [4] for standard definitions and theorems, and [5] for facts

pertaining to weighted projective curves.
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3.1 Projective Space

In this section we introduce projective space, which is the ambient space in which

projective varieties live. In other words, the space Pn we introduce below plays for

projective varieties the role that the space An plays for affine varieties.

Definition 3.1.1. Let F be a field. We define the projective line over F, P1(F), to be

P1(F) = {(X, Y ) : X, Y ∈ F, (X, Y ) 6= (0, 0)}/ ∼ (3.1)

where (X1, Y1) ∼ (X2, Y2) if there is λ 6= 0, λ ∈ F with

X1 = λX2, (3.2)

Y1 = λY2. (3.3)

Example 3.1.2. If F = R, then

(1, 2) ∼ (2, 4) ∼ (−1,−2) ∼ (1/2, 1) (3.4)

under the equivalence relation given in Definition 3.1.1.

To illustrate P1 more concretely, we give a natural representative for each equiva-

lence class belonging to P1. Let F be a field and let first (X, Y ) ∈ P1(F) be such that

Y 6= 0. In that case, taking λ = 1/Y , we have

(X, Y ) ∼ (X/Y, 1) ∼ (x, 1), (3.5)
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where we let x = X/Y .

Now let (X, 0) ∈ P1(F). If (X, 0) ∈ P1(F), it follows that X 6= 0, since (X, Y ) 6=

(0, 0). In that case, letting λ = 1/X, we have

(X, Y ) ∼ (1, 0). (3.6)

Combining these, P1(F) can be written as:

P1(F) = {(X, 1) : X ∈ F} ∪ {(0, 1)} (3.7)

or, more simply,

P1(F) = F ∪∞ (3.8)

where ∞ is the point (0, 1). This explains why we often think of P1 as the union of

A1 with a point “at infinity.”

We now move to P2, the projective plane.

Definition 3.1.3. Let F be a field. We define the projective plane over F, P2(F), to

be

P2(F) = {(X, Y, Z) : X, Y, Z ∈ F, (X, Y, Z) 6= (0, 0, 0)}/ ∼ (3.9)

where (X1, Y1, Z1) ∼ (X2, Y2, Z2) if there exists λ 6= 0, λ ∈ F with

X2 = λX1, (3.10)

Y2 = λY1, (3.11)

Z2 = λZ1. (3.12)
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Once again, to illustrate P2 more concretely, we give a natural representative for

each equivalence class belonging to P2. Let F be a field and let first (X, Y, Z) ∈ P2(F)

be such that Z 6= 0. In that case, taking λ = 1/Z, we have

(X, Y, Z) ∼ (X/Z, Y/Z, 1) ∼ (x, y, 1), (3.13)

where we let x = X/Z and y = Y/Z. We point out that this notation will appear

again in Definition 3.2.1.

Now let (X, Y, 0) ∈ P2(F) and suppose that Y 6= 0. In this case, taking λ = 1/Y ,

we have

(X, Y, Z) ∼ (X/Z, 1, 0) ∼ (x, 1, 0), (3.14)

where this time we let x = X/Y . Finally, note that if (X, 0, 0) ∈ P2(F), it follows

that X 6= 0, since (X, Y, Z) 6= (0, 0, 0), in that case, letting λ = 1/X, we have

(X, Y, Z) ∼ (1, 0, 0). (3.15)

We conclude that P2(F) = F2 ∪ F ∪ (1, 0, 0).

Alternatively, if Z = 0, we notice that sending the triple (X, Y, 0) to (X, Y ) in P1

gives an isomorphism, and therefore

P2(F) = F2 ∪ P1(F). (3.16)

We often think therefore of P2 as A2 with a copy of P1 “at infinity.”

P1 and P2 are examples of a more general space. Finally, we give the definition of

the n-dimensional projective space.
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Definition 3.1.4. Let F be a field. We define the n-dimensional projective space over

F, Pn(F), to be

Pn(F) = {(X0, . . . , Xn) : X0, . . . , Xn ∈ F, (X0, . . . , Xn) 6= (0, . . . , 0)}/ ∼ (3.17)

where (X0, X1, . . . , Xn) ∼ (X ′0, X ′1, . . . , X ′n) if there exists λ 6= 0, λ ∈ F with

X0 = λX ′0, (3.18)

X1 = λX ′1, (3.19)

. . . , (3.20)

Xn = λX ′n. (3.21)

We note that as before, we can show that Pn(F) = Fn ∪ Pn−1(F). In this case we

think of Pn as An with a copy of Pn−1 “at infinity.”

3.2 Projective Plane Curves

In this thesis we focus on a special kind of projective varieties, weighted projective

plane curves. These objects are a generalization of projective plane curves, which

are the analogues of the affine plane curves we have introduced in Section 2.5. We

therefore begin by introducing projective plane curves for simplicity. We then intro-

duce weighted projective space, and give a very quick introduction to the theory of

weighted projective curves and varieties, following our presentation for affine varieties

in Chapter 2.
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3.2.1 Projective Plane Curves

Although projective plane curves may be defined intrinsically, in this work to help

exposition we define them as the homogenization of affine plane curves. In fact, as

argued in Fulton [3, Section 4.3], there is a natural, general, one-to-one correspondence

between projective varieties in Pn that are not contained in the space Pn−1 “at infinity”

and affine varieties in An. We present here this correspondence in the special case of

plane curves.

Recall from Definition 2.5.1 that an affine plane curve is given by a single poly-

nomial in two variables. Similarly, a projective plane curve is given by a single

homogeneous polynomial in three variables. Furthermore, given an affine plane curve

given by a polynomial f , we can obtain the polynomial of associated projective plane

curve in the following manner:

Definition 3.2.1 (Definition 1.18 of [4]). Let F be a field. We associate to any

polynomial f of degree d in F[x, y] the homogeneous polynomial f ∗ ∈ F[X, Y, Z],

given by

f ∗(X, Y, Z) = Zdf(X/Z, Y/Z). (3.22)

We note that in this case, f ∗ is homogeneous of degree d.

We can now easily define the notion of projective plane curve:

Definition 3.2.2 (Definition 1.18 of [4]). Let f ∈ F[x, y] define an affine plane curve.

Then the projective plane curve associated to this curve is given by the homogeneous

equation f ∗(X, Y, Z) = 0 in P2(F). In other words, a projective plane curve C is
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given by

C = {(X, Y, Z) ∈ P2(F) : f ∗(X, Y, Z) = 0}. (3.23)

We note that given a projective curve C∗ given by a homogeneous polynomial f ∗,

we can obtain the associated affine curve C by dehomogenizing the polynomial f ∗ to

obtain a polynomial f where f(x, y) = f ∗(x, y, 1).

Example 3.2.3. Consider the affine plane curve y = x2, given by f(x, y) = y − x2.

Then the associated homogeneous polynomial is

f ∗(X, Y, Z) = Z2f
(
Y

Z
,
X

Z

)
(3.24)

= Z2
(
Y

Z
− X2

Z2

)
(3.25)

= ZY −X2. (3.26)

(3.27)

We often write this as

ZY = X2. (3.28)

We now describe the points of the projective curve f ∗(X, Y, Z) = ZY − X2 = 0.

If Z = 0, X2 = 0 so X = 0. We know that (X, Y, Z) 6= (0, 0, 0), so Y 6= 0. Therefore,

when Z = 0, we have the single point (0, Y, 0) ∼ (0/Y, Y/Y, 0/Y ) ∼ (0, 1, 0) “at

infinity.” If Z 6= 0, then (X, Y, Z) ∼ (X
Z
, Y

Z
, 1) and letting x = X

Z
and y = Y

Z
form the

affine curve y = x2.

In light of this correspondence, to a projective curve C∗ with associated affine

curve C, we can therefore assign the function field k(C). (This is not the standard

definition of the function field of C∗, but it is equivalent.) This allows us to define:
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Definition 3.2.4. Two projective curves C∗1 and C∗2 , with respective associated affine

curves C1 and C2, are birationally equivalent if and only if k(C1) ∼= k(C2).

3.2.2 Weighted Projective Plane Curves

With this machinery in place, we are now ready to introduce weighted projective

plane curves, which are how we will represent the curves we study in Chapters 4, 5,

and 6.

Definition 3.2.5. Let w0, w1, w2 be three positive integers. We define

P(w0, w1, w2) = {(X, Y, Z) ∈ F3 : (X, Y, Z) 6= (0, 0, 0)}/ ∼ (3.29)

where now (X1, Y1, Z1) ∼ (X2, Y2, Z2) if there exists λ 6= 0, λ ∈ F such that

X1 = λw0X2,

Y1 = λw1Y2,

Z1 = λw2Z2.

We note that P2 is just P(1, 1, 1).

Example 3.2.6. Hyperelliptic curves of genus g are often naturally viewed as living

in P(1, g + 1, 1). When g = 2, as in this work, the hyperelliptic curve therefore exists

in the weighted projective space P(1, 3, 1). Explicitly, here the equivalence relation is
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(X1, Y1, Z1) ∼ (X2, Y2, Z2) if there is λ 6= 0, λ ∈ F with

X1 = λX2, (3.30)

Y1 = λ3Y2, (3.31)

Z1 = λZ2. (3.32)

With our ambient space in hand, we now proceed to quickly define the main

quantities associated to weighted projective curves. As we saw in Section 2.2, the

basic objects underlying the theory of affine varieties are polynomials. The weighted

projective analogue are weighted-homogeneous polynomials, which we now introduce.

Definition 3.2.7 (Definition 3.0.7 of [5]). Let F[X0, . . . , Xn] be the polynomial ring

over F in n+ 1 variables, and let w0, w1, . . . , wn be n+ 1 positive integers forming a

vector of weights w = (w0, w1, . . . , wn). Here we will consider the variable Xi to have

weight wi. Let f ∈ F[X0, . . . , Xn], then we say that f is w-weighted-homogeneous of

degree d if each monomial in f is of weighted degree d, i.e. there exist ci ∈ F and

some m ∈ N such that

f =
m∑

i=1
ci

 n∏
j=0

x
d

(i)
j

j

 (3.33)

and, for all 0 ≤ i ≤ n,
m∑

j=0
wjd

(i)
j = d. (3.34)

To emphasize the weight of the variables, we write f ∈ Fw[X0, . . . , Xn]. Furthermore,

we write Fw[X0, . . . , Xn]d ⊂ Fw[X0, . . . , Xn] to mean the additive group of all weighted-

homogeneous polynomials of degree d.

We now continue as in Chapter 2, and introduce the weighted projective version
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of every object we have introduced there, beginning with the notion of a weighted

algebraic set:

Definition 3.2.8 (Definition 3.1.1 of [5]). Let S ⊆ Fw[X0, . . . , Xn] be a set of ho-

mogeneous polynomials. Then the weighted projective algebraic set (associated to S)

is

V (S) = {P ∈ P(w0, · · · , wn) : f(P ) = 0 for all f ∈ S}. (3.35)

To such a set we can associate an ideal in the same way as we did in Definition

2.2.1, but restricting our attention to weighted homogeneous polynomials. (See [5,

Definition 3.1.1], but note that there the author calls any algebraic set a variety and

does not reserve the word “variety” for irreducible varieties.) In this setting, the ideal

associated to a weighted projective algebraic set will be a weighted-homogeneous ideal

by [5, Lemma 3.2.1] , where such an ideal is defined to be:

Definition 3.2.9 (Definition 3.0.9 of [5]). We say that an ideal I C F[X0, . . . , Xn] is

w-weighted-homogeneous if it is generated by w-weighted homogeneous elements (of

not necessarily the same degree).

Then as in the theory of affine varieties, we can define a weighted projective

algebraic set to be irreducible if it does not have a decomposition into nontrivial

algebraic subsets. As before, this will correspond to the associated ideal being prime,

where by [5, Lemma 3.0.12], a weighted homogeneous ideal is prime if and only if

whenever fg ∈ I with f and g two homogeneous polynomials, then f ∈ I or g ∈ I.

From there we may define the coordinate ring of a weighted projective variety:

Definition 3.2.10 (Definition 3.3.1 of [5]). Let V be a non-empty weighted projective

variety and let I(V ) be the ideal of that variety. Then define the weighted-homogeneous
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coordinate ring of V to be

Γ(V ) = F[X0, . . . , Xn]
I(V ) . (3.36)

Finally, to recover the notion of the function field of V , which should coincide

with the definition we gave for plane projective curves immediately before Definition

3.2.4, we define:

Definition 3.2.11. Let V be an affine variety and let Γ(V ) be its coordinate ring.

We define k(V ), the field of fractions Γ(V ), to be the function field of V :

k(V ) =
{
f = a

b
: a, b ∈ Γ(V ), a and b homogeneous of the same degree

}
. (3.37)

We can now define weighted projective plane curves in analogy to affine and pro-

jective plane curves:

Definition 3.2.12 (Definition 5.0.4 of [5]). Let f = f(X0, X1, X2) ∈ Fw[X0, X1, X2]

be an irreducible weighted-homogenous degree d polynomial. Then

Cf = V (f) ⊆ P(w0, w1, w2) (3.38)

is a degree-d weighted projective plane curve in P(w0, w1, w2).

3.3 Differentials and the Genus

An important invariant of a projective curve is its genus; it is so important that in

our later work we will organize the curves we enumerate by genus and base field. For

a curve defined over C, the genus is roughly the number of “handles” of the curve,
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but when the curve is defined over a finite field, as our curves will be, this intuition

does not make sense. Instead, in order to define the genus, we must begin by giving

the definition of a differential on a plane curve. We note that our definition of genus

is standard, although for a more technical definition, we refer the reader to Definition

5.55 of [4].

Definition 3.3.1. Let C be a weighted projective plane curve. We define Ω(C), the

space of differentials of C, to be the quotient of the free k(C)-module on the symbols

dx for x ∈ k(C) by the relations:

• For any two x, y ∈ k(C), d(x+ y) = dx+ dy.

• For any x ∈ k(C) and λ ∈ F, d(λx) = λdx.

• For any two x, y ∈ k(C), d(xy) = ydx+ xdy.

We note that Ω(C) is both a k(C)-vector space and an F-vector space if the curve

C is defined over the field F.

We now wish to define a subset of Ω(C), that of the holomorphic differentials.

Recall that for C an affine plane curve, we defined a simple point and a uniformizing

parameter in Definitions 2.5.2 and 2.5.5. Since these notions are local, they make

sense for weighted projective curves as well.

Proposition 3.3.2. Let C be a weighted projective plane curve, P a simple point on

C, t a uniformizing parameter of C at P , and ω ∈ Ω(C). Then there is f ∈ k(C)

such that ω = fdt.

Proof. By [3, Proposition 6 of Section 8.4], Ω(C) is one-dimensional over k(C).
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This proposition will allow us to define the order of vanishing of a differential at

a point.

Definition 3.3.3. Let C be a weighted projective plane curve, P a simple point on

C, and ω ∈ Ω(C). Then the order of vanishing of ω on C at P , ordP (ω), is the order

of vanishing of f on C at P , ordP (f), for any f as in Proposition 3.3.2.

With this definition, we are now ready to define the subset of Ω(C) that interests

us.

Definition 3.3.4. Let C be a weighted projective plane curve. Then the holomorphic

differentials Ω1(C) on C is the subset of elements ω of Ω(C) such that

ordP (ω) ≥ 0 for all P on C. (3.39)

With this somewhat complicated object in hand, it is now easy to define the genus:

Definition 3.3.5. The genus of a (weighted projective plane) curve C defined over a

field F is the dimension of Ω1(C) as a vector space over the field F.

Thankfully, for plane curves there is an easy formula to compute the genus:

Theorem 3.3.6 (Theorem 5.3.6 of [5]). Let C be a projective plane curve of degree d

in P2 given by a polynomial f ∗(X, Y, Z) = 0. If C is nonsingular then the curve has

genus

g = (d− 1)(d− 2)
2 . (3.40)

As we will be working with weighted projective curves, we must use the analagous

result in this setting:
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Theorem 3.3.7 (Theorem 5.3.7 of [5]). Let C be a plane curve of degree d in the

weighted projective plane P(w0, w1, w2) given by a polynomial f ∗(X, Y, Z) = 0. If C

is nonsingular then the curve has genus

g = 1
w0w1w2

(
(d− 1)(d− 2)

2 −
[
b(C)

2 + 1− w0w1w2

])
(3.41)

where b(C) is given by

b(C) = (d− 1)
3∑

i=1
(wi − 1) +

3∑
i=1


(wi − 1) if wi|d;

(w0w1w2 − 1) if wi 6 |d.
(3.42)

As we will see in Section 4.2, over a field of odd characteristic and when the genus

is even, we can always write an affine model for a hyperelliptic curve of genus g of

the form

y2 = f(x),

for f of degree 2g + 2 or 2g + 1. However, the projectivization of this curve in the

usual projective plane P2 is singular at infinity when the degree of f is strictly greater

than 4. We can avoid this singularity by considering the weighted projective curve

Y 2 = f(X,Z)

in P(1, g+ 1, 1), where f is homogeneous of weight 2g+ 2. This model is nonsingular.

As an application of Theorem 3.3.7, we show that this model indeed gives a curve of

genus g:

Example 3.3.8. Let C be a plane curve given by a polynomial f ∗(X, Y, Z) = Y 2 −
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f(X,Z) for f(X,Z) homogeneous of degree 2g + 2 and where Y is a variable of

weight g + 1. We apply Theorem 3.3.7 to find the genus of C. First, we note that

w0 = 1, w1 = g + 1 and w2 = 1.

Next, we find b(C):

b(C) = ((2g + 2)− 1)
3∑

i=1
(wi − 1) +

3∑
i=1


wi − 1 if wi|(2g + 2);

w0w1w2 − 1 if wi 6 |(2g + 2).

b(C) = ((2g + 2)− 1)
3∑

i=1
(wi − 1) +

3∑
i=1

(wi − 1)

b(C) = (2g + 1)((1− 1) + (g + 1− 1) + (1− 1)) + ((1− 1) + (g + 1− 1) + (1− 1))

b(C) = (2g + 1)g + g

b(C) = 2g2 + g + g

b(C) = 2g2 + 2g.
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Now, we find gC, the genus of C:

gC = 1
w0w1w2

(
(d− 1)(d− 2)

2 −
[
b(C)

2 + 1− w0w1w2

])

gC = 1
1 · (g + 1) · 1

(
(2g+2-1)(2g+2-2)

¯
2−

[
2g2 + 2g

2 + 1− (1 · (g + 1) · 1)
])

gC = 1
g + 1

(
(2g + 1)(2g)

2 −
[

2g2 + 2g
2 + 1− (g + 1)

])

gC = 1
g + 1

(
(2g + 1)(g)−

[
(g2 + g) + 1− g − 1

])
gC = 1

g + 1
(
2g2 + g −

[
g2 + g − g

])
gC = 1

g + 1
(
2g2 + g − g2

)
gC = 1

g + 1
(
g2 + g

)
gC = 1

g + 1 (g(g + 1))

gC = g.

And indeed we see that the hyperelliptic curves we are considering have genus g.

3.4 Counting Points

As we will explain in Section 5.2, our method for sorting curves into isogeny classes

will be to count their points over certain field extensions. While we will use Magma

to count the points of our curves in this project, in this section we work out a short

example to show explicitly what we mean. We first do the example by hand, and

then demonstrate how we would complete the same process in Magma.

Example 3.4.1. Consider the projective curve ZY 2 = X3 +Z3 over the field F5. We
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now count its rational points. We do this in two steps.

First, we will count the number of points with Z = 0. This is the easiest task,

because there is only one. Indeed if Z = 0, then X2 = 0, so X = 0, and the only

point at infinity is (0, Y, 0) ∼ (0, 1, 0).

Then, in F2
5, we will count the points where Z 6= 0. In that case (X, Y, Z) ∼

(X
Z
, Y

Z
, 1) so letting x = X

Z
and y = Y

Z
, these are exactly the solutions to y2 = x3 + 1

when x, y ∈ F5. We will perform these steps both by hand and with Magma.

In Table 3.1, we have found all possible values of x and x3 in F5. We have done

the same in Table 3.2 for values of y and y2.

Table 3.1: Values of x, x3 in F5

x 0 1 2 3 4

x3 0 1 3 2 4

Table 3.2: Values of y, y2 in F5

y 0 1 2 3 4

y2 0 1 4 4 1

Starting with x = 0:

x = 0 =⇒ x3 = 0. (3.43)

Therefore,

y2 = 0 + 1 = 1. (3.44)

According to Table 3.2, y2 = 1 when y = 1 or y = 4. Therefore, the two solutions

with x = 0 are (0,1) and (0,4).
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For x = 1:

x = 1 =⇒ x3 = 1. (3.45)

Therefore,

y2 = 1 + 1 = 2. (3.46)

According to Table 3.2, there is no value y in F5 such that y2 = 2, and therefore

no point with x = 1.

For x = 2:

x = 2 =⇒ x3 = 3. (3.47)

Therefore,

y2 = 3 + 1 = 4. (3.48)

According to Table 3.2, y2 = 4 when y = 2 or y = 3. Therefore, the two solutions

with x = 2 are (2, 2) and (2,3).

For x = 3:

x = 3 =⇒ x3 = 2. (3.49)

Therefore,

y2 = 2 + 1 = 3. (3.50)

According to Table 3.2, there is no value y in F5 for y such that y2 = 3, and

therefore no point with x = 1.

For x = 4:
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x = 4 =⇒ x3 = 4. (3.51)

Therefore,

y2 = 4 + 1 = 5 = 0. (3.52)

According to Table 3.2, y2 = 0 when y = 0. Therefore, the solution with x = 4 is

(4, 0).

We now show how to obtain these solutions using the software Magma:

F5 := FiniteField(5);

testlist := [[x,y] : x,y in F5 | y2 eq x3 + 1];

testlist

Which gives the output:

[0,1],[0,4],[2,2],[2,3],[4,0]

In our calculations by hand and according to Magma, we have found six total

solutions, including the single solution when Z = 0:

(0, 1, 0), (0, 1, 1), (0, 4, 1), (2, 2, 1), (2, 3, 1), (4, 0, 1).
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Chapter 4

Generating Hyperelliptic Curves

Our first task is to list models of hyperelliptic curves that we will later sort into isogeny

and isomorphism classes in Chapters 5 and 6. To obtain complete lists, we need at

least one model from each isomorphism class. This chapter outlines the process of

generating models of hyperelliptic curves of a given genus and defined over a given

finite field. It details both the theorems used to identify which models are necessary

to include, as well as the methodology behind the code created to automatize the

process. Unless otherwise noted, the source used for this chapter is [4].

In Section 4.1, we define the general form of a hyperelliptic curve and explain how

our code will generate the necessary lists of models. In Section 4.2 we will identify

which models are necessary to include based on the cardinality of the base field being

considered.
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4.1 Automation in Magma

We define a hyperelliptic curve to be a projective curve C admitting a map of degree

two to P1, the projective line. We note that this map may only be definable over the

algebraic closure of the base field of C. Using the Riemann-Roch theorem, one can

show that every curve of genus 2 is hyperelliptic in this sense. Therefore, if we aim

to enumerate curves of genus 2, we can focus on enumerating hyperelliptic curves.

It is well-known that over an algebraically closed field of odd characteristic, a

hyperelliptic curve can be given the simple affine model y2 = f(x), for f of degree

2g + 1. However, in this work we focus on finite fields, which are not algebraically

closed, and include fields of characteristic two. As such, listing the possible models for

hyperelliptic curves is much more delicate. We first note that a hyperelliptic curve can

be guaranteed to have one of the “standard” models, y2 = f(x) in odd characteristic

or y2 + h(x)y = f(x) in even characteristic, only if the genus is even [12, Footnote

1]. (In that case one can guarantee that the quotient of the hyperelliptic curve by

its hyperelliptic involution has a rational point over the base field of the hyperelliptic

curve.) Thankfully, as we work in genus 2 here, all curves we consider will have such

a standard model.

In this case, we can use the following corollary:

Corollary 4.1.1 (Corollary 7.93 of [4]). Let F be a field, F be the algebraic closure

of F, and let genus g ≥ 2. A hyperelliptic curve C1 of genus g defined over F is

birationally equivalent to a curve

C2 = V (y2 + h(x)y + f(x)), (4.1)
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where h(x) ∈ F[x] is a polynomial of degree at most g + 1, f(x) ∈ F[x] is a monic

polynomial of degree 2g + 1 or 2g + 2, and there are no solutions (x, y) ∈ F × F

which simultaneously satisfy the equation y2 +h(x)y = f(x) and the partial derivative

equations 2y + h(x) = 0 and h′(x)y − f ′(x) = 0.

In light of Corollary 4.1.1, to attain our goal of generating a list of models contain-

ing at least one representative for each isomorphism class of hyperelliptic curves of a

given genus, we must first generate all possible f(x) and h(x) polynomials satisfying

the conditions described in Corollary 4.1.1 and with coefficients in a given finite field.

Then, we must systematically form pairs (f(x), h(x)) that determine hyperelliptic

curves of the form y2 + yh(x) = f(x) which satisfy the partial derivative conditions

noted in Corollary 4.1.1. To accomplish this goal we write two functions which we

now describe.

4.1.1 AllPolys(Fq, d) Function

Our first task is creating a function that can form all possible polynomials of a certain

degree, with coefficients in a given finite field. Our function AllPolys(Fq, d) does so

in several steps. Given a degree d and a finite field Fq, we recall that the polynomial

will have the form

adx
d + ad−1x

d−1 + ad−2x
d−2 + · · ·+ a1x+ a0. (4.2)

To obtain this form, we begin by generating all possible ordered lists of d+1 elements

of Fq; these will form the d + 1 coefficients of the polynomial. However, whenever

ad = 0, we will obtain a polynomial of degree strictly less than d, which we do not
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want to output. Therefore as a last step we choose only the polynomials of degree

equal to d to include in the output list.

Example 4.1.2. Consider the case of degree d = 2 and the finite field F2. The

polynomials we want to output have the form

a2x
2 + a1x+ a0, (4.3)

where the coefficients a2, a1, a0 are the elements of F2. As such, they can take the

values 0 and 1. We find all possible ordered lists of (a2, a1, a0) to be

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1). (4.4)

These ordered lists generate the polynomials

0, x2, x, x2 + x, 1, x2 + 1, x+ 1, x2 + x+ 1. (4.5)

Finally, we include only the polynomials whose degree is d = 2. Therefore, for

degree d = 2 and finite field F2, we obtain the 4 polynomials

{x2, x2 + x, x2 + 1, x2 + x+ 1}. (4.6)

The function AllPolys(Fq, d) returns a list of polynomials of degree d. By iter-

ating the function over different values of d, we can obtain all models described in

Corollary 4.1.1 for any genus g and finite field Fq.
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4.1.2 MyHyperCurves(Fq, g) Function

We use the MyHyperCurves(Fq, g) function to generate hyperelliptic curves of genus g

defined over a finite field Fq. The first step is to define the f(x) and h(x) polynomials.

Our f(x) polynomials are a concatenation (cat in Magma) of two lists of poly-

nomials. Given a genus g and finite field Fq, the first list is all the polynomials of

degree d = 2g + 1 with coefficients in Fq. The second list is all the polynomials of

degree d = 2g + 2 with coefficients in Fq. In Magma, this is written as

AllPolys(Fq, 2g + 1) cat AllPolys(Fq, 2g + 2). (4.7)

Our h(x) polynomials are a concatenation of many lists of polynomials. We will

once consider only polynomials with coefficients in Fq. The degrees will now be

d = 0, 1, 2, · · · (g+1). We then concatenate these lists together. A simplified notation

of this process in Magma is

AllPolys(Fq, 0) cat AllPolys(Fq, 1) cat · · · cat AllPolys(Fq, g + 1). (4.8)

Now that we have the f(x) and h(x) polynomials, we can form hyperelliptic

curves. Some combinations of f(x) and h(x) do not form hyperelliptic curves as

they do not satisfy the partial derivative conditions. We use a Magma function,

IsHyperellipticCurve(f(x), h(x)), to test every possible combination of f(x) and

h(x) and if they form a hyperelliptic curve, we include them in the list. The function

MyHyperCurves(Fq, g) returns this list for a given finite field Fq and genus g.

42



4.2 Identifying Necessary Models

The process described in Section 4.1 can be used to form a complete list of models

of hyperelliptic curves of any genus and over any finite field. However, if the goal is

only to give one representative for each isomorphism classes of curves, the list can

be considerably shortened when working over a field of odd characteristic. We note

that this is not the case for fields of even characteristic, in which case we must list

all suitable pairs (f(x), h(x)) according to Corollary 4.1.1, to ensure that we obtain

a representative from each isomorphism class.

Indeed, the method we give above generates a list that contains several duplicates

that are birationally equivalent to each other. We use the following theorem in order

to limit this kind of replication:

Theorem 4.2.1 (Theorem 7.94 of [4]). Let F be an algebraically closed field of char-

acteristic zero or of odd characteristic. Then a curve of genus g is hyperelliptic if and

only if it is birationally equivalent to a curve C = V (y2−f(x)), where the polynomial

f(x) ∈ F[x] has degree 2g + 1 and no square factors.

Because the fields we consider are not algebraically closed, there are two aspects

of this theorem that we can use, and one that we cannot. We can indeed narrow

down the list of hyperelliptic curves defined over a field of odd characteristic by only

considering the f(x) polynomial in their construction, and setting h(x) = 0. This is

because it is always possible to complete the square over a field of odd characteristic.

In addition, as discussed in Section 4.1, as we are working in even genus we may

assume that the hyperelliptic curve has one of the standard models, since its quotient

by the hyperelliptic involution has a rational point.

43



However, we cannot use this theorem to neglect f(x) polynomials of degree d =

2g+ 2 because in its proof we find that the theorem assumes that the polynomial has

a root in the given finite field. While this is always the case when F is algebraically

closed, over finite fields there exist hyperelliptic curves with no rational branch points,

in which case f(x) must be taken to be of degree d = 2g + 2.

In summary, when dealing with hyperelliptic curves of even genus defined over a

field of odd characteristic, to ensure that we obtain a model for each isomorphism

class of curves we need only include models of the form

y2 = f(x) (4.9)

for f(x) of degree d = 2g+ 1 or d = 2g+ 2 as opposed to more general models of the

form

y2 + h(x)y = f(x). (4.10)

This considerably shortens the list of curves we must sort without neglecting any

isomorphism classes.

Example 4.2.2. When g = 2 and we work over F3, the list of hyperelliptic curves

formed when using the method described in Subsection 4.1.2 has 96,228 elements.

When we use Theorem 4.2.1 to set h(x) = 0, the list shortens to 1,296 models.

Shortening the list of models over F3 without sacrificing necessary models to repre-

sent all isomorphism classes enabled us to perform the processes described in Chapters

5 and 6 much more efficiently. We note that further speed ups are possible, but as

they were not necessary for this project we did not implement them.
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Chapter 5

Sorting Into Isogeny Classes

This chapter details the process of sorting curves into isogeny classes. In Section 5.1,

we give an introduction to the zeta function and the L-polynomial. In Section 5.2,

we explain how two curves are isogenous if their L-polynomials agree. The results of

our computations can be found in the appendix. Unless otherwise noted, this chapter

again uses [4] as a main reference.

5.1 Zeta Function and L-polynomial

We will determine the isogeny class of a curve using an object called the L-polynomial.

In order to define this polynomial, we will first introduce the zeta function.

Definition 5.1.1 (Theorem 9.7 of [4]). Let C be a curve defined over a finite field

Fq. For i = 1, 2, . . ., let Ni = #C(Fqi). We define the zeta function of C to be

Z(C, t) = exp
( ∞∑

i=1

Nit
i

i

)
. (5.1)
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While this definition might seem unwieldy at first sight, a beautiful theorem, first

conjectured by Weil and later proved by Grothendieck, Artin and Verdier shows the

following:

Theorem 5.1.2 (Proposition 9.8 of [4]). Let C be a curve defined over a finite field

Fq and let g be the genus of C. The zeta function of C is a rational function of t.

More precisely, it can be written as

Z(C, t) = L(t)
(1− t)(1− qt) , (5.2)

where

L(t) = Lq(t) =


1, for g = 0,

1 +∑2g−1
i=1 ait

i + qgt2g, for g ≥ 1.
(5.3)

In addition, note that L(t) ∈ Z[t].

We define the numerator of the zeta-function, L(t), to be the L-polynomial of C

over Fq. There are several properties of the L-polynomial that we will utilize for this

project.

Proposition 5.1.3 (Proposition 9.9 of [4]). Let C be a curve of genus g defined over

Fq. The L-polynomial of C has the following properties:

1. L(t) = qgt2gL((qt)−1) = 1 + a2g−1q
g−1t+ · · ·+ qgt2g;

2. a2g−i = qg−iai for i = 0, . . . , g.

Thanks to this proposition, computing the L-polynomial, and therefore the zeta-

function, reduces to a finite computation:
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Corollary 5.1.4. Because of this symmetry of the L-polynomial, we can conclude

that in order to find the L-polynomial, it suffices to compute the point counts Ni of

C, where

Ni = #C(Fqi), (5.4)

for i = 1, 2, . . . , g, where g is the genus of C.

To illustrate Theorem 5.1.2 and Proposition 5.1.3, we provide an example.

Example 5.1.5. Let P1 be the projective line and let Fq be a finite field of cardinality

q. Recall that

P1(Fq) = Fq ∪∞ (5.5)

Therefore, we find the number of points of P1(Fq) to be

#P1(Fq) = #(Fq ∪∞) = q + 1 (5.6)

because there are q finite points and one "point at infinity". In general, in the same

manner, we can say

#P1(Fqi) = #(Fqi ∪∞) = qi + 1 (5.7)

By Definition 5.1.1,

Z(P1, t) = exp
( ∞∑

i=1

#P1(Fqi)ti
i

)
(5.8)
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Substituting #P1(Fqi) = qi + 1, we get

Z(P1, t) = exp
( ∞∑

i=1

(qi + 1)(ti)
i

)
(5.9)

= exp
( ∞∑

i=1

(qt)i

i
+
∞∑

i=1

ti

i

)
(5.10)

Using the fact that ln(1− x) = −∑∞i=1
xi

i
, we can simplify further:

Z(P1, t) = exp(− ln(1− qt)− ln(1− t)) (5.11)

= exp(ln(1− qt)−1 + ln(1− t)−1) (5.12)

= exp(ln(1− qt)−1) · exp(ln(1− t)−1) (5.13)

= (1− qt)−1 · (1− t)−1 (5.14)

= 1
(1− qt)(1− t) (5.15)

We see that L(t) = 1, which agrees with Proposition 5.1.3 because P1 has genus

g = 0.

5.2 Using L-polynomials to Determine

Isogeny Classes

In order to use the L-polynomial for our project, we use Theorem 2.3 of [7].

Definition 5.2.1 (Theorem 2.3 of [7]). Two curves of the same genus g defined over

the same finite field Fq are said to be isogenous if their L-polynomials agree.

Remark 5.2.2. Usually the notion of isogeny is reserved for abelian varieties; we
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explain how our notion of isogeny between curves is merely an abuse of language for

the more usual meaning. Given two curves C1 and C2, we can form their Jacobian

varieties J1 and J2, respectively, which are abelian varieties (see Milne [11], for ex-

ample, for a full account of the theory of Jacobian varieties). In the theory of abelian

varieties, an isogeny is a rational map from one abelian variety to another that sends

the origin of one abelian variety to the origin of the other and that has finite kernel.

We say two abelian varieties are isogenous if there is an isogeny between them, and

this is an equivalence relation. By Theorem 1 of [13], two abelian varieties are isoge-

nous if and only their L-polynomials are equal. By work of Weil, the L-polynomial of

a curve is equal to that of its Jacobian. Therefore it follows that our definition of two

curves being isogenous is equivalent to the usual definition of their Jacobians being

isogenous.

In order to test whether two curves are isogenous, we will utilize Corollary 5.1.4.

We will compare the first g point counts of the two curves in order to conclude that

they are isogenous. In order to do this, we created a function in Magma that executes

the following steps for two hyperelliptic curves C1 and C2.

1. Compare the point counts of C1 and C2 over the finite fields Fq1 ,Fq2 , · · ·Fqg

using the BaseChange function supplied by Magma.

2. Stop the comparison if at any point, the point counts do not match.

3. If the first g point counts match, determine the two curves to be isogenous.
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5.2.1 Validation of Results

In the case of hyperelliptic curves of genus 2 defined over F2, the work of [9] tells us

that we should obtain 20 isogeny classes. Using our program, we found all 20 isogeny

classes and have summarized our results in Appendix A.1.

In the case of hyperelliptic curves of genus 2 defined over F3, we know that we

should obtain 50 isogeny classes, again based on the work of [9]. Using our program,

we found all 50 isogeny classes and have summarized our results in Appendix A.2.

5.3 Curves with No Rational Points

As an interesting result, we are now in a position to give models of curves with no

rational points defined over the fields F2 and F3.

Recall that over F2, we are only able to classify curves into isogeny classes. Ac-

cording to our results, and corroborated by the data of [9], there is one isogeny class

of curves of genus 2 defined over F2 with no rational point. In the notation of Ap-

pendix A.1, this is isogeny class 20, and in the notation of [9], this is the isogeny class

labeled 2.2.ad_f . According to our computations, an example of a curve defined over

F2 with no rational point is y2 + (x3 + x2 + 1)y = x6 + x5 + 1.

According to our results, and again corroborated by the data of [9], there is again

one isogeny class of curves of genus 2 defined over F3 with no rational point. In the

notation of Appendix A.2, this is isogeny class 50, and in the notation of [9], this is

isogeny class 2.3.ae_i. We note that this isogeny class contains only one isomorphism

class, and therefore up to isomorphism, y2 = 2x6 + x5 + x4 + x3 + x + 2 is the only
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hyperelliptic curve of genus 2 defined over F3 without a rational point.
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Chapter 6

Sorting Into Isomorphism Class

In this chapter, we turn our attention to a more strict equivalence relation between

curves, that of isomorphism. We begin in Section 6.1 by explaining the code we wrote

to perform the classification of curves according to isomorphism classes. We note that

due to the limitations of Magma, we are unable to compute the isomorphism classes

for hyperelliptic curves defined over fields of even characteristic. However, our code

will work for any field of odd characteristic, and we illustrate it here for the field F3.

Our results from this process differ from those of Theorem 5 of [2], which states

there are 54 isomorphism classes for curves of genus 2 defined over a field of cardinality

3 and that have a rational branch point. Indeed, we find 32 such classes. We expand

on this discrepancy further in Section 6.2. Finally, we present the isomorphism classes

we have found in Appendix A.2.

Unless otherwise noted, again the source for general definitions in this chapter is

[4].
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6.1 Finding Isomorphism Classes

In this section we will explain the process we used to further sort the elements of an

isogeny classes into isomorphism classes for curves of genus 2 over the finite field F3.

We first begin with the definition of isomorphism:

Definition 6.1.1. Two curves are isomorphic if there exists an invertible rational

map between them.

To classify the curves, the function we created in Magma utilizes a preset function

in Magma called IsIsomorphic. Given two curves, C1 and C2, IsIsomorphic tests

whether C1 can be transformed into C2 via invertible morphisms.

The function we created to sort curves into their isomorphism classes does so in

several steps:

1. Choose the first isogeny class isog1.

2. Create an empty set that will become the first isomorphism class, isom1.

3. Choose the first curve in isog1, C1 and append it to isomorphism class isom1.

4. Test each curve in isog1 against curve C1 using IsIsomorphic. If it is iso-

morphic to C1, add it to isom1 and remove it from isog1 (temporarily, for the

purposes of the function). If it is not, move to the next curve.

5. Once all curves in isog1 have been tested against C1, consider isom1 com-

plete and begin another isomorphism class to test the remaining curves in isog1

against. Continue forming isomorphism classes in this way until all curves in

isog1 have been sorted into isomorphism classes.
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6. Once isog1 is empty, move onto isog2. Repeat steps 2 to 5 for every isogeny

class.

The output of this function is a list of isomorphism classes grouped by isogeny

class.

6.2 Results for Genus 2 Curves Over F3

Based on the tables found in [9], we expected to find 50 isogeny classes of hyperelliptic

curves of genus 2 defined over F3. Using the Magma program described in 5.2, we

successfully found exactly 50. We then sorted these isogeny classes into isomorphism

classes and found 69 total isomorphism classes defined over F3.

To verify the accuracy of our results, we compared what we obtained and the

results given in [2], in which the authors count the number of isomorphism classes

of hyperelliptic curves with a rational branch point and defined over a field of odd

characteristic. In effect, this amounts to counting the number of isomorphism classes

of curves that can be given by a model of the form y2 = f(x) for f(x) of degree 2g+1

(rather than counting those given by models of the form y2 = f(x) for f(x) of degree

2g + 1 and 2g + 2, as required by the discussion following Theorem 4.2.1).

Running our code on hyperelliptic curves only of this form, we obtained 32 iso-

morphism classes of curves with a rational branch point. However in [2], the authors

show:

Theorem 6.2.1 (Theorem 5 of [2]). Let H be the set of equations of the form

y2 = x5 + a4x
3 + a6x

2 + a8x+ a10 (6.1)
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where the discriminant of y2 = x5 + a4x
3 + a6x

2 + a8x + a10 is not zero. Let G be

the group of transformations of the form (x, y) 7→ (α2x, α5y), α ∈ Fq\{0}. H/G is

the set of isomorphism classes of such curves. The number of isomorphism classes

of genus 2 curves defined over Fq is |H/G| = 2q3 + r(q), where r(q) is given in the

following table:

r(q) q ≡ 1 (mod 8) q 6≡ 1 (mod 8), q ≡ 1 (mod 4) q 6≡ 1 (mod 4)

q ≡ 1 (mod 5) 2q + 10 2q + 6 8

q 6≡ 1 (mod 5) 2q + 2 2q − 2 0

From this theorem it follows that the number of isomorphism classes of curves

defined over F3 with a rational root should be 54. After investigating this discrepancy,

we found that the notion of isomorphism used by the authors of [2] does not agree

with ours.

Since the number of isomorphism classes we find is smaller than the number of

isomorphism classes found by the authors of [2], it follows that we consider certain

curves to be isomorphic that the authors of [2] do not consider to be isomorphic.

Indeed, upon more careful consideration, despite the fact that the authors specify

that they will consider two curves to be isomorphic when they admit an isomorphism

of varieties (which is the notion we use in this work), we find that the main reference

they use in proving Theorem 5 does not use this same notion of isomorphism. The

proof of Theorem 5 of [2] relies crucially on Proposition 1.2 of [10]. However, the work

[10] concerns itself with pointed hyperelliptic curves, or in other words, hyperelliptic

curves equipped with a rational branch point. As such, this reference considered two

pointed hyperelliptic curves to be isomorphic if there is not only an isomorphism of

varieties between them, but if this isomorphism sends the distinguished branch point
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of one curve to the distinguished branch point of the other curve.

We stress that this is not the customary definition of isomorphism of curves, and

that indeed this notion is more restrictive as the isomorphism must satisfy an extra

condition that is not satisfied by every isomorphism (that of sending the distinguished

branch point of one curve to the distinguished branch point of the other curve). This

explains completely why the reference [2] finds more isomorphism classes.

An example of two curves that our code sorted into the same isomorphism class

but that would fall into two different classes according to [2] are the following. For

the sake of this explanation, we call them C1 and C2.

C1 : y2 = x5 + 1 (6.2)

C2 : y2 = x5 + x3 + 1. (6.3)

In order to prove that these two curves are isomorphic, as Magma claims they

are, we may exhibit a map between them. We recall that while we use affine models

throughout, these curves are really weighted projective curves. Since we seek an

isomorphism of projective curves, we work with their weighted projective models:

C1 : Y 2 = ZX5 + Z6 (6.4)

and

C2 : Y 2 = ZX5 + Z3X3 + Z6. (6.5)

We now give the isomorphism we seek as a composition of several simple isomor-
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phisms. The first isomorphism is

φ1 : C1 → C ′1

X 7→ Z

Z 7→ X

Y 7→ Y

We will first reverse X and Z in C1. Reversing X and Z in C1, we obtain:

C ′1 : Y 2 = X6 +XZ5 (6.6)

The next isomorphism is

φ2 : C ′1 → C ′2

X 7→ X + 2Z

Z 7→ Z

Y 7→ Y.
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Note that the inverse of φ2 is:

X 7→ X − 2Z

Z 7→ Z

Y 7→ Y,

so φ2 is invertible. We have

C ′2 : Y 2 = (X + 2Z)6 + (X + 2Z)Z5

Y 2 = ((X + 2Z)3)2 + (X + 2Z)Z5

Y 2 = (X3 + (2Z)3)2 + (X + 2Z)Z5

Y 2 = (X3 + 8Z3)2 + (X + 2Z)Z5

Y 2 = X6 +X3Z3 + Z6 + Z5X + 2Z6

Y 2 = X6 +X3Z3 + Z5X + 3Z6

C ′2 : Y 2 = X6 +X3Z3 + Z5X

where in the third line we use that (X + 2Z)3 = X3 + (2Z)3 in characteristic 3.
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The last isomorphism is

φ3 : C ′2 7→ C2

X 7→ Z

Z 7→ X

Y 7→ Y

And we find that

C2 : Y 2 = Z6 + Z3X3 +X5Z (6.7)

This is indeed the projective model for C2. We now note that the composition

φ3 ◦ φ2 ◦ φ1 is an isomorphism since each φi is an isomorphism, and a composition of

isomorphisms is an isomorphism. Therefore, C1 and C2 are isomorphic.

However, the authors of [2] would not consider these two curves to be isomorphic,

since the distinguished branch point (1, 0, 0) on C1 is not sent to the point (1, 0, 0) on

C2. Indeed:

φ3 ◦ φ2 ◦ φ1(1, 0, 0) = φ3 ◦ φ2(0, 0, 1)

= φ3(2, 0, 1)

= (1, 0, 2) 6= (1, 0, 0).

Therefore this isomorphism does not fix the distinguished branch point.
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Appendix A

Summary Tables for Isogeny and

Isomorphism Classes

A.1 Genus 2 Curves Defined Over F2

We were able to obtain the isogeny classes, but not the isomorphism classes, for

curves of genus 2 defined over F2. We were also able to organize these classes to

match the label format found in [9]. Found in this section is a detailed list of these

isogeny classes and their corresponding point counts and LMFDB labels from [9]. A

complete list of curves from each of these classes can be found in Appendix B.
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Isog. Class LMFDB Label Point Counts First Curve in Class

1 2.2.a_a (5,25) y2 + y = x5

2 2.2.b_c (10,40) y2 + (x2 + 1)y = x5

3 2.2.b_b (9,27) y2 + (x3 + x2 + 1)y = x5

4 2.2.b_d (11,55) y2 + (x3 + x+ 1)y = x5

5 2.2.c_c (13,13) y2 + (x3 + x2 + x+ 1)y = x5

6 2.2.c_e (15,45) y2 + y = x5 + x4

7 2.2.b_a (8,16) y2 + (x+ 1)y = x5 + x4

8 2.2.c_d (14,28) y2 + (x2 + x+ 1)y = x5 + x4

9 2.2.d_f (19,19) y2 + (x3 + x2 + 1)y = x5 + x4

10 2.2.a_c (7,49) y2 + y = x5 + x4 + x3

11 2.2.a_b (6,36) y2 + (x2 + x+ 1)y = x5 + x4 + x3

12 2.2.ab_c (4,40) y2 + xy = x5 + x4 + x

13 2.2.ab_a (2,16) y2 + (x2)y = x5 + x4 + x

14 2.2.a_ab (4,16) y2 + (x2 + x)y = x5 + x4 + x

15 2.2.ac_e (3,45) y2 + y = x5 + x4 + 1

16 2.2.ac_d (2,28) y2 + (x2 + x+ 1)y = x5 + x4 + 1

17 2.2.ab_d (5,55) y2 + (x3 + x2 + 1)y = x5 + x4 + 1

18 2.2.ac_c (1,13) y2 + y = x5 + x3 + 1

19 2.2.ab_b (3,27) y2 + (x3 + x2 + 1)y = x5 + x3 + 1

20 2.2.ad_f (1,19) y2 + (x3 + x2 + 1)y = x6 + x5 + 1
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A.2 Genus 2 Curves Defined Over F3

Outputs listed in this table are the polynomials f(x) in the hyperelliptic curve form

y2 = f(x). (A.1)

Isog denotes the isogeny class number and Isom denotes the isomorphism class num-

ber. Label denotes the isomorphism and isogeny classes of each representative curve.

For example, a curve in the isogeny class number 15 and the first isomorphism class

within that isogeny class would be marked 15.1.
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Label Isog Isom Point Counts First Curve f(x)

1.1 1 1 (12,144) x5 + x

1.2 1 2 (12,144) 2x6 + 2x4 + x3 + x2 + 1

2.1 2 3 (8,64) 2x5 + x

2.2 2 4 (8,64) x5 + 2x4 + x2 + x

3.1 3 5 (8,128) x5 + x4 + x

3.2 3 6 (8,128) x5 + x3 + x2 + x+ 1

4.1 4 7 (22,132) 2x5 + x4 + x

4.2 4 8 (22,132) x6 + x5 + 2x4 + 2x2 + 1

5.1 5 9 (16,128) x5 + 2x4 + x

5.2 5 10 (16,128) x5 + 2x4 + 2x3 + x+ 1

6.1 6 11 (6,132) 2x5 + 2x4 + x

6.2 6 12 (6,132) 2x6 + 2x5 + 2x4 + x+ 1

7.1 7 13 (14,196) 2x5 + x3 + x

8.1 8 14 (20,80) x5 + x4 + x3 + x

8.2 8 15 (20,80) 2x5 + 2x4 + 2x2 + x

9.1 9 16 (4,48) 2x5 + x4 + x3 + x

10.1 10 17 (4,80) x5 + 2x4 + x3 + x

10.2 10 18 (4,80) 2x5 + x4 + x2 + x

11.1 11 19 (12,48) 2x5 + 2x4 + x3 + x

12.1 12 20 (8,192) x5 + x4 + x3 + x2 + x

12.2 12 21 (8,192) 2x6 + 2x2 + 1

13.1 13 22 (10,100) 2x5 + 2x4 + x3 + x2 + x

13.2 13 23 (10,100) 2x5 + 2x4 + 2x3 + x2 + x
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Label Isog Isom Point Counts First Curve f(x)

14.1 14 24 (24,192) x5 + 2x4 + x3 + 2x2 + x

14.2 14 25 (24,192) 2x6 + x4 + 1

15.1 15 26 (17,153) x5 + 2x4 + 1

15.2 15 27 (17,153) x5 + x3 + 2x2 + 1

16.1 16 28 (28,112) 2x5 + x3 + 1

17.1 17 29 (9,153) 2x5 + x4 + x3 + 1

17.2 17 30 (9,153) 2x5 + x3 + x2 + 1

18.1 18 31 (14,84) x5 + 2x4 + x3 + 1

19.1 19 32 (15,105) x5 + x4 + x2 + 1

19.2 19 33 (15,105) 2x5 + 2x4 + x3 + x+ 1

20.1 20 34 (18,180) x5 + x4 + x3 + x2 + 1

21.1 21 35 (27,81) 2x5 + 2x4 + x3 + x2 + 1

22.1 22 36 (7,105) 2x5 + 2x4 + x3 + 2x2 + 1

22.2 22 37 (7,105) 2x5 + x4 + x+ 1

23.1 23 38 (29,145) 2x5 + x+ 1

24.1 24 39 (19,209) x5 + 2x4 + x+ 1

25.1 25 40 (5,65) x5 + x4 + x3 + x+ 1

26.1 26 41 (10,180) 2x5 + x2 + x+ 1

27.1 27 42 (13,65) 2x5 + x4 + 2x3 + x2 + x+ 1

28.1 28 43 (11,209) 2x5 + 2x4 + 2x2 + x+ 1

29.1 29 44 (6,84) x5 + 2x4 + x3 + 2x2 + x+ 1

30.1 30 45 (4,112) 2x5 + x3 + 2

31.1 31 46 (3,81) 2x5 + 2x4 + x3 + x2 + 2
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Label Isog Isom Point Counts First Curve f(x)

32.1 32 47 (5,145) 2x5 + x+ 2

33.1 33 48 (13,169) 2x6 + x5 + 1

33.2 33 49 (13,169) 2x6 + x+ 1

34.1 34 50 (21,105) x6 + x5 + x4 + 1

34.2 34 51 (21,105) 2x6 + x2 + 1

35.1 35 52 (35,105) x6 + 2x4 + 1

36.1 36 53 (5,105) 2x6 + 2x4 + 1

36.2 36 54 (5,105) 2x6 + 2x4 + 2x3 + x+ 1

37.1 37 55 (36,144) x6 + x4 + x2 + 1

38.1 38 56 (9,225) 2x6 + x4 + x2 + 1

39.1 39 57 (15,225) x6 + 2x4 + x2 + 1

39.2 39 58 (15,225) x6 + x5 + x3 + x+ 1

40.1 40 59 (3,57) 2x6 + 2x5 + x4 + x3 + x2 + 1

41.1 41 60 (9,81) 2x6 + x5 + x4 + 2x2 + 1

42.1 42 61 (25,225) 2x6 + 2x4 + 2x2 + 1

43.1 43 62 (23,161) x6 + x5 + x4 + x+ 1

44.1 44 63 (11,121) 2x6 + 2x5 + x3 + x+ 1

45.1 45 64 (34,68) x6 + x5 + 2x4 + x3 + x+ 1

46.1 46 65 (7,161) 2x6 + x5 + 2x4 + x3 + x+ 1

47.1 47 66 (19,57) x6 + 2x5 + x4 + 2x3 + x+ 1

48.1 48 67 (3,105) 2x6 + x4 + 2

49.1 49 68 (4,144) 2x6 + 2x4 + 2x2 + 2

50.1 50 69 (2,68) 2x6 + x5 + x4 + x3 + x+ 2
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Appendix B

Complete Results:

Genus 2 Curves Defined over F2

In this appendix we list every model of hyperelliptic curves of genus 2 defined over

F2, organized by isogeny class. Label denotes the isogeny class number and the curve

number within that isogeny class. For example, the second curve in the fourth isogeny

class would have the label 4.2.
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Label Curve

1.1 y2 + y = x5

1.2 y2 + y = x5 + x4 + x2

1.3 y2 + y = x5 + x4 + x

1.4 y2 + x3y = x5 + x4 + x

1.5 y2 + y = x5 + x2 + x

1.6 y2 + x3y = x5 + x2 + x

1.7 y2 + y = x5 + 1

1.8 y2 + (x3 + x2 + x+ 1)y = x5 + 1

1.9 y2 + y = x5 + x4 + x2 + 1

1.10 y2 + (x3 + x2 + x+ 1)y = x5 + x4 + x2 + 1

1.11 y2 + y = x5 + x4 + x+ 1

1.12 y2 + x3y = x5 + x4 + x3 + x+ 1

1.13 y2 + (x3 + x2 + x+ 1)y = x5 + x4 + x3 + x+ 1

1.14 y2 + y = x5 + x2 + x+ 1

1.15 y2 + x3y = x5 + x3 + x2 + x+ 1

1.16 y2 + (x3 + x2 + x+ 1)y = x5 + x3 + x2 + x+ 1

1.17 y2 + (x3 + x2 + x+ 1)y = x6 + x5

1.18 y2 + y = x6 + x5 + x3

1.19 y2 + (x3 + x2 + x+ 1)y = x6 + x4 + x3

1.20 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x4 + x2

1.21 y2 + (x3 + x2 + x+ 1)y = x6 + x3 + x2
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Label Curve

1.22 y2 + y = x6 + x5 + x4 + x3 + x2

1.23 y2 + x3y = x6 + x

1.24 y2 + (x3 + x2 + x+ 1)y = x6 + x

1.25 y2 + x3y = x6 + x5 + x4 + x

1.26 y2 + y = x6 + x5 + x4 + x3 + x

1.27 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x4 + x3 + x

1.28 y2 + x3y = x6 + x5 + x2 + x

1.29 y2 + x3y = x6 + x4 + x2 + x

1.30 y2 + (x3 + x2 + x+ 1)y = x6 + x4 + x2 + x

1.31 y2 + y = x6 + x5 + x3 + x2 + x

1.32 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x3 + x2 + x

1.33 y2 + y = x6 + x5 + x3 + 1

1.34 y2 + y = x6 + x5 + x4 + x3 + x2 + 1

1.35 y2 + x3y = x6 + x3 + x+ 1

1.36 y2 + y = x6 + x5 + x4 + x3 + x+ 1

1.37 y2 + x3y = x6 + x5 + x4 + x3 + x+ 1

1.38 y2 + y = x6 + x5 + x3 + x2 + x+ 1

1.39 y2 + x3y = x6 + x5 + x3 + x2 + x+ 1

1.40 y2 + x3y = x6 + x4 + x3 + x2 + x+ 1

2.1 y2 + (x2 + 1)y = x5

2.2 y2 + (x+ 1)y = x5 + x4 + x3
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Label Curve

2.3 y2 + (x+ 1)y = x5 + x2

2.4 y2 + (x2 + 1)y = x5 + x2

2.5 y2 + (x3 + x2)y = x5 + x4 + x

2.6 y2 + (x2 + 1)y = x5 + x3 + x

2.7 y2 + (x3 + x)y = x5 + x3 + x

2.8 y2 + (x+ 1)y = x5 + x4 + x3 + x

2.9 y2 + (x2)y = x5 + x4 + x3 + x

2.10 y2 + (x3 + x)y = x5 + x4 + x3 + x

2.11 y2 + (x+ 1)y = x5 + x2 + x

2.12 y2 + xy = x5 + x4 + x2 + x

2.13 y2 + (x2)y = x5 + x4 + x2 + x

2.14 y2 + xy = x5 + x3 + x2 + x

2.15 y2 + (x2 + 1)y = x5 + x3 + x2 + x

2.16 y2 + (x3 + x2)y = x5 + x3 + x2 + x

2.17 y2 + (x3 + x)y = x5 + 1

2.18 y2 + (x3 + x)y = x5 + x4 + 1

2.19 y2 + xy = x5 + x4 + x2 + 1

2.20 y2 + xy = x5 + x3 + x2 + 1

2.21 y2 + (x3 + x2)y = x5 + x+ 1

2.22 y2 + (x2)y = x5 + x4 + x+ 1

2.23 y2 + (x2)y = x5 + x4 + x3 + x2 + x+ 1
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Label Curve

2.24 y2 + (x3 + x2)y = x5 + x4 + x3 + x2 + x+ 1

2.25 y2 + (x+ 1)y = x6 + x5

2.26 y2 + (x2 + 1)y = x6 + x3

2.27 y2 + (x2 + 1)y = x6 + x3 + x2

2.28 y2 + (x+ 1)y = x6 + x5 + x4 + x3 + x2

2.29 y2 + (x2 + 1)y = x6 + x

2.30 y2 + (x+ 1)y = x6 + x5 + x

2.31 y2 + (x2)y = x6 + x4 + x3 + x

2.32 y2 + (x2 + 1)y = x6 + x2 + x

2.33 y2 + xy = x6 + x5 + x2 + x

2.34 y2 + (x2)y = x6 + x4 + x2 + x

2.35 y2 + xy = x6 + x5 + x4 + x3 + x2 + x

2.36 y2 + (x+ 1)y = x6 + x5 + x4 + x3 + x2 + x

2.37 y2 + xy = x6 + x5 + x2 + 1

2.38 y2 + xy = x6 + x5 + x4 + x3 + x2 + 1

2.39 y2 + (x2)y = x6 + x4 + x+ 1

2.40 y2 + (x2)y = x6 + x4 + x3 + x2 + x+ 1

3.1 y2 + (x3 + x2 + 1)y = x5

3.2 y2 + (x3 + x+ 1)y = x5 + x4 + x2

3.3 y2 + (x3 + x2 + 1)y = x5 + x3 + x2

3.4 y2 + (x3 + x+ 1)y = x5 + x3 + x2
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Label Curve

3.5 y2 + (x3 + x2 + 1)y = x5 + x4 + x

3.6 y2 + (x3 + x+ 1)y = x5 + x2 + x

3.7 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 + x2 + x

3.8 y2 + (x3 + x+ 1)y = x5 + x4 + x3 + x2 + x

3.9 y2 + (x3 + x+ 1)y = x5 + 1

3.10 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 + 1

3.11 y2 + (x3 + x+ 1)y = x5 + x4 + x3 + 1

3.12 y2 + (x3 + x2 + 1)y = x5 + x4 + x2 + 1

3.13 y2 + (x3 + x+ 1)y = x5 + x4 + x+ 1

3.14 y2 + (x3 + x2 + 1)y = x5 + x3 + x+ 1

3.15 y2 + (x3 + x+ 1)y = x5 + x3 + x+ 1

3.16 y2 + (x3 + x2 + 1)y = x5 + x2 + x+ 1

3.17 y2 + (x3 + x+ 1)y = x6 + x5

3.18 y2 + (x3 + x2 + 1)y = x6 + x4

3.19 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x3

3.20 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x3

3.21 y2 + (x3 + x+ 1)y = x6 + x2

3.22 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x2

3.23 y2 + (x3 + x2 + 1)y = x6 + x4 + x3 + x2

3.24 y2 + (x3 + x+ 1)y = x6 + x4 + x3 + x2

3.25 y2 + (x3 + x2 + 1)y = x6 + x
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Label Curve

3.26 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x

3.27 y2 + (x3 + x2 + 1)y = x6 + x5 + x3 + x

3.28 y2 + (x3 + x+ 1)y = x6 + x5 + x3 + x

3.29 y2 + (x3 + x2 + 1)y = x6 + x5 + x2 + x

3.30 y2 + (x3 + x+ 1)y = x6 + x4 + x2 + x

3.31 y2 + (x3 + x2 + 1)y = x6 + x3 + x2 + x

3.32 y2 + (x3 + x+ 1)y = x6 + x3 + x2 + x

4.1 y2 + (x3 + x+ 1)y = x5

4.2 y2 + (x3 + x2 + 1)y = x5 + x4 + x3

4.3 y2 + (x3 + x+ 1)y = x5 + x4 + x3

4.4 y2 + (x3 + x2 + 1)y = x5 + x4 + x2

4.5 y2 + (x3 + x+ 1)y = x5 + x4 + x

4.6 y2 + (x3 + x2 + 1)y = x5 + x3 + x

4.7 y2 + (x3 + x+ 1)y = x5 + x3 + x

4.8 y2 + (x3 + x2 + 1)y = x5 + x2 + x

4.9 y2 + (x3 + x2 + 1)y = x5 + 1

4.10 y2 + (x3 + x+ 1)y = x5 + x4 + x2 + 1

4.11 y2 + (x3 + x2 + 1)y = x5 + x3 + x2 + 1

4.12 y2 + (x3 + x+ 1)y = x5 + x3 + x2 + 1

4.13 y2 + (x3 + x2 + 1)y = x5 + x4 + x+ 1

4.14 y2 + (x3 + x+ 1)y = x5 + x2 + x+ 1
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Label Curve

4.15 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 + x2 + x+ 1

4.16 y2 + (x3 + x+ 1)y = x5 + x4 + x3 + x2 + x+ 1

4.17 y2 + (x3 + x2 + 1)y = x6 + x5

4.18 y2 + (x3 + x+ 1)y = x6 + x4

4.19 y2 + (x3 + x2 + 1)y = x6 + x3

4.20 y2 + (x3 + x+ 1)y = x6 + x3

4.21 y2 + (x3 + x2 + 1)y = x6 + x2

4.22 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x2

4.23 y2 + (x3 + x2 + 1)y = x6 + x5 + x3 + x2

4.24 y2 + (x3 + x+ 1)y = x6 + x5 + x3 + x2

4.25 y2 + (x3 + x+ 1)y = x6 + x

4.26 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x

4.27 y2 + (x3 + x2 + 1)y = x6 + x4 + x3 + x

4.28 y2 + (x3 + x+ 1)y = x6 + x4 + x3 + x

4.29 y2 + (x3 + x+ 1)y = x6 + x5 + x2 + x

4.30 y2 + (x3 + x2 + 1)y = x6 + x4 + x2 + x

4.31 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x3 + x2 + x

4.32 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x3 + x2 + x

5.1 y2 + (x3 + x2 + x+ 1)y = x5

5.2 y2 + y = x5 + x3

5.3 y2 + (x3 + x2 + x+ 1)y = x5 + x4 + x2
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Label Curve

5.4 y2 + y = x5 + x4 + x3 + x2

5.5 y2 + y = x5 + x4 + x3 + x

5.6 y2 + x3y = x5 + x4 + x3 + x

5.7 y2 + (x3 + x2 + x+ 1)y = x5 + x4 + x3 + x

5.8 y2 + y = x5 + x3 + x2 + x

5.9 y2 + x3y = x5 + x3 + x2 + x

5.10 y2 + (x3 + x2 + x+ 1)y = x5 + x3 + x2 + x

5.11 y2 + x3y = x5 + x4 + x+ 1

5.12 y2 + x3y = x5 + x2 + x+ 1

5.13 y2 + y = x6 + x5

5.14 y2 + y = x6 + x5 + x4 + x2

5.15 y2 + y = x6 + x5 + x4 + x

5.16 y2 + y = x6 + x5 + x2 + x

6.1 y2 + y = x5 + x4

6.2 y2 + (x3 + x2 + x+ 1)y = x5 + x4

6.3 y2 + y = x5 + x2

6.4 y2 + (x3 + x2 + x+ 1)y = x5 + x2

6.5 y2 + y = x5 + x

6.6 y2 + x3y = x5 + x

6.7 y2 + (x3 + x2 + x+ 1)y = x5 + x3 + x

6.8 y2 + y = x5 + x4 + x2 + x
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Label Curve

6.9 y2 + x3y = x5 + x4 + x2 + x

6.10 y2 + (x3 + x2 + x+ 1)y = x5 + x4 + x3 + x2 + x

6.11 y2 + x3y = x5 + x3 + x+ 1

6.12 y2 + x3y = x5 + x4 + x3 + x2 + x+ 1

6.13 y2 + y = x6 + x5 + x4 + x3

6.14 y2 + y = x6 + x5 + x3 + x2

6.15 y2 + y = x6 + x5 + x3 + x

6.16 y2 + y = x6 + x5 + x4 + x3 + x2 + x

7.1 y2 + (x+ 1)y = x5 + x4

7.2 y2 + (x2 + 1)y = x5 + x4

7.3 y2 + (x2 + 1)y = x5 + x4 + x2

7.4 y2 + (x+ 1)y = x5 + x3 + x2

7.5 y2 + xy = x5 + x

7.6 y2 + (x2)y = x5 + x

7.7 y2 + (x+ 1)y = x5 + x4 + x

7.8 y2 + xy = x5 + x4 + x3 + x

7.9 y2 + (x2 + 1)y = x5 + x4 + x3 + x

7.10 y2 + (x3 + x2)y = x5 + x4 + x3 + x

7.11 y2 + (x3 + x2)y = x5 + x2 + x

7.12 y2 + (x+ 1)y = x5 + x3 + x2 + x

7.13 y2 + (x2)y = x5 + x3 + x2 + x
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Label Curve

7.14 y2 + (x3 + x)y = x5 + x3 + x2 + x

7.15 y2 + (x2 + 1)y = x5 + x4 + x3 + x2 + x

7.16 y2 + (x3 + x)y = x5 + x4 + x3 + x2 + x

7.17 y2 + xy = x5 + 1

7.18 y2 + xy = x5 + x4 + x3 + 1

7.19 y2 + (x3 + x)y = x5 + x2 + 1

7.20 y2 + (x3 + x)y = x5 + x4 + x2 + 1

7.21 y2 + (x2)y = x5 + x3 + x+ 1

7.22 y2 + (x3 + x2)y = x5 + x3 + x+ 1

7.23 y2 + (x2)y = x5 + x2 + x+ 1

7.24 y2 + (x3 + x2)y = x5 + x4 + x2 + x+ 1

7.25 y2 + (x+ 1)y = x6 + x5 + x3

7.26 y2 + (x2 + 1)y = x6 + x4 + x3

7.27 y2 + (x+ 1)y = x6 + x5 + x4 + x2

7.28 y2 + (x2 + 1)y = x6 + x4 + x3 + x2

7.29 y2 + (x2)y = x6 + x

7.30 y2 + (x2 + 1)y = x6 + x4 + x

7.31 y2 + xy = x6 + x5 + x4 + x

7.32 y2 + xy = x6 + x5 + x3 + x

7.33 y2 + (x+ 1)y = x6 + x5 + x3 + x

7.34 y2 + (x2 + 1)y = x6 + x4 + x2 + x
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Label Curve

7.35 y2 + (x+ 1)y = x6 + x5 + x4 + x2 + x

7.36 y2 + (x2)y = x6 + x3 + x2 + x

7.37 y2 + xy = x6 + x5 + x4 + 1

7.38 y2 + xy = x6 + x5 + x3 + 1

7.39 y2 + (x2)y = x6 + x3 + x+ 1

7.40 y2 + (x2)y = x6 + x2 + x+ 1

8.1 y2 + (x2 + x+ 1)y = x5 + x4

8.2 y2 + (x3 + 1)y = x5 + x4

8.3 y2 + (x2 + x+ 1)y = x5 + x3

8.4 y2 + (x3 + 1)y = x5 + x4 + x3

8.5 y2 + (x2 + x+ 1)y = x5 + x2

8.6 y2 + (x3 + 1)y = x5 + x2

8.7 y2 + (x3 + 1)y = x5 + x3 + x2

8.8 y2 + (x2 + x+ 1)y = x5 + x4 + x3 + x2

8.9 y2 + (x2 + x+ 1)y = x5 + x

8.10 y2 + (x3 + x2 + x)y = x5 + x

8.11 y2 + (x3 + 1)y = x5 + x4 + x

8.12 y2 + (x2 + x+ 1)y = x5 + x4 + x3 + x

8.13 y2 + (x3 + x2 + x)y = x5 + x4 + x3 + x

8.14 y2 + (x3 + 1)y = x5 + x4 + x3 + x

8.15 y2 + (x3 + 1)y = x5 + x2 + x
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Label Curve

8.16 y2 + (x2 + x+ 1)y = x5 + x4 + x2 + x

8.17 y2 + (x3 + x2 + x)y = x5 + x4 + x2 + x

8.18 y2 + (x2 + x+ 1)y = x5 + x3 + x2 + x

8.19 y2 + (x3 + x2 + x)y = x5 + x3 + x2 + x

8.20 y2 + (x3 + 1)y = x5 + x3 + x2 + x

8.21 y2 + (x3 + x2 + x)y = x5 + 1

8.22 y2 + (x3 + x2 + x)y = x5 + x4 + x3 + 1

8.23 y2 + (x3 + x2 + x)y = x5 + x4 + x2 + 1

8.24 y2 + (x3 + x2 + x)y = x5 + x3 + x2 + 1

8.25 y2 + (x2 + x+ 1)y = x6 + x4

8.26 y2 + (x2 + x+ 1)y = x6 + x3

8.27 y2 + (x2 + x+ 1)y = x6 + x2

8.28 y2 + (x2 + x+ 1)y = x6 + x4 + x3 + x2

8.29 y2 + (x2 + x+ 1)y = x6 + x

8.30 y2 + (x2 + x+ 1)y = x6 + x4 + x3 + x

8.31 y2 + (x2 + x+ 1)y = x6 + x4 + x2 + x

8.32 y2 + (x2 + x+ 1)y = x6 + x3 + x2 + x

9.1 y2 + (x3 + x2 + 1)y = x5 + x4

9.2 y2 + (x3 + x+ 1)y = x5 + x4

9.3 y2 + (x3 + x+ 1)y = x5 + x3

9.4 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 + x2
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Label Curve

9.5 y2 + (x3 + x2 + 1)y = x5 + x

9.6 y2 + (x3 + x+ 1)y = x5 + x

9.7 y2 + (x3 + x+ 1)y = x5 + x4 + x3 + x

9.8 y2 + (x3 + x2 + 1)y = x5 + x3 + x2 + x

10.1 y2 + y = x5 + x4 + x3

10.2 y2 + y = x5 + x3 + x2

10.3 y2 + y = x5 + x3 + x

10.4 y2 + x3y = x5 + x3 + x

10.5 y2 + y = x5 + x4 + x3 + x2 + x

10.6 y2 + x3y = x5 + x4 + x3 + x2 + x

10.7 y2 + (x3 + x2 + x+ 1)y = x5 + x4 + 1

10.8 y2 + y = x5 + x4 + x3 + 1

10.9 y2 + (x3 + x2 + x+ 1)y = x5 + x2 + 1

10.10 y2 + y = x5 + x3 + x2 + 1

10.11 y2 + x3y = x5 + x+ 1

10.12 y2 + y = x5 + x3 + x+ 1

10.13 y2 + (x3 + x2 + x+ 1)y = x5 + x3 + x+ 1

10.14 y2 + x3y = x5 + x4 + x2 + x+ 1

10.15 y2 + y = x5 + x4 + x3 + x2 + x+ 1

10.16 y2 + (x3 + x2 + x+ 1)y = x5 + x4 + x3 + x2 + x+ 1

10.17 y2 + y = x6 + x5 + x4
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Label Curve

10.18 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x4

10.19 y2 + (x3 + x2 + x+ 1)y = x6 + x3

10.20 y2 + y = x6 + x5 + x2

10.21 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x2

10.22 y2 + (x3 + x2 + x+ 1)y = x6 + x4 + x3 + x2

10.23 y2 + y = x6 + x5 + x

10.24 y2 + (x3 + x2 + x+ 1)y = x6 + x4 + x

10.25 y2 + x3y = x6 + x5 + x3 + x

10.26 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x3 + x

10.27 y2 + x3y = x6 + x4 + x3 + x

10.28 y2 + (x3 + x2 + x+ 1)y = x6 + x2 + x

10.29 y2 + y = x6 + x5 + x4 + x2 + x

10.30 y2 + x3y = x6 + x3 + x2 + x

10.31 y2 + x3y = x6 + x5 + x4 + x3 + x2 + x

10.32 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x4 + x3 + x2 + x

10.33 y2 + y = x6 + x5 + x4 + 1

10.34 y2 + y = x6 + x5 + x2 + 1

10.35 y2 + y = x6 + x5 + x+ 1

10.36 y2 + x3y = x6 + x5 + x+ 1

10.37 y2 + x3y = x6 + x4 + x+ 1

10.38 y2 + x3y = x6 + x2 + x+ 1
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Label Curve

10.39 y2 + y = x6 + x5 + x4 + x2 + x+ 1

10.40 y2 + x3y = x6 + x5 + x4 + x2 + x+ 1

11.1 y2 + (x2 + x+ 1)y = x5 + x4 + x3

11.2 y2 + (x2 + x+ 1)y = x5 + x4 + x2

11.3 y2 + (x2 + x+ 1)y = x5 + x4 + x

11.4 y2 + (x3 + x2 + x)y = x5 + x2 + x

11.5 y2 + (x2 + x+ 1)y = x5 + x4 + x3 + x2 + x

11.6 y2 + (x3 + x2 + x)y = x5 + x4 + x3 + x2 + x

11.7 y2 + (x2 + x+ 1)y = x5 + 1

11.8 y2 + (x3 + x2 + x)y = x5 + x4 + 1

11.9 y2 + (x3 + x2 + x)y = x5 + x3 + 1

11.10 y2 + (x3 + 1)y = x5 + x4 + x2 + 1

11.11 y2 + (x2 + x+ 1)y = x5 + x3 + x2 + 1

11.12 y2 + (x3 + 1)y = x5 + x4 + x3 + x2 + 1

11.13 y2 + (x3 + 1)y = x5 + x+ 1

11.14 y2 + (x2 + x+ 1)y = x5 + x3 + x+ 1

11.15 y2 + (x3 + 1)y = x5 + x3 + x+ 1

11.16 y2 + (x2 + x+ 1)y = x5 + x2 + x+ 1

11.17 y2 + (x2 + x+ 1)y = x6

11.18 y2 + (x3 + 1)y = x6

11.19 y2 + (x3 + 1)y = x6 + x3
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Label Curve

11.20 y2 + (x3 + 1)y = x6 + x5 + x4 + x2

11.21 y2 + (x2 + x+ 1)y = x6 + x3 + x2

11.22 y2 + (x3 + 1)y = x6 + x5 + x4 + x3 + x2

11.23 y2 + (x3 + x2 + x)y = x6 + x

11.24 y2 + (x3 + 1)y = x6 + x5 + x

11.25 y2 + (x3 + x2 + x)y = x6 + x5 + x4 + x

11.26 y2 + (x2 + x+ 1)y = x6 + x3 + x

11.27 y2 + (x3 + x2 + x)y = x6 + x5 + x3 + x

11.28 y2 + (x3 + 1)y = x6 + x5 + x3 + x

11.29 y2 + (x3 + x2 + x)y = x6 + x4 + x3 + x

11.30 y2 + (x2 + x+ 1)y = x6 + x2 + x

11.31 y2 + (x3 + 1)y = x6 + x4 + x2 + x

11.32 y2 + (x3 + 1)y = x6 + x4 + x3 + x2 + x

11.33 y2 + (x2 + x+ 1)y = x6 + x4 + x3 + 1

11.34 y2 + (x3 + x2 + x)y = x6 + x5 + x2 + 1

11.35 y2 + (x2 + x+ 1)y = x6 + x4 + x2 + 1

11.36 y2 + (x3 + x2 + x)y = x6 + x4 + x2 + 1

11.37 y2 + (x3 + x2 + x)y = x6 + x3 + x2 + 1

11.38 y2 + (x3 + x2 + x)y = x6 + x5 + x4 + x3 + x2 + 1

11.39 y2 + (x2 + x+ 1)y = x6 + x4 + x+ 1

11.40 y2 + (x2 + x+ 1)y = x6 + x4 + x3 + x2 + x+ 1
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Label Curve

12.1 y2 + xy = x5 + x4 + x

12.2 y2 + xy = x5 + x3 + x

12.3 y2 + (x2)y = x5 + x3 + x

12.4 y2 + (x2)y = x5 + x2 + x

12.5 y2 + (x+ 1)y = x5 + 1

12.6 y2 + xy = x5 + x4 + 1

12.7 y2 + (x2 + 1)y = x5 + x4 + 1

12.8 y2 + xy = x5 + x3 + 1

12.9 y2 + (x2 + 1)y = x5 + x4 + x2 + 1

12.10 y2 + (x+ 1)y = x5 + x4 + x3 + x2 + 1

12.11 y2 + (x+ 1)y = x5 + x+ 1

12.12 y2 + (x2)y = x5 + x+ 1

12.13 y2 + (x2 + 1)y = x5 + x4 + x3 + x+ 1

12.14 y2 + (x2)y = x5 + x3 + x2 + x+ 1

12.15 y2 + (x+ 1)y = x5 + x4 + x3 + x2 + x+ 1

12.16 y2 + (x2 + 1)y = x5 + x4 + x3 + x2 + x+ 1

12.17 y2 + (x3 + x2)y = x6 + x

12.18 y2 + xy = x6 + x5 + x

12.19 y2 + (x3 + x2)y = x6 + x5 + x

12.20 y2 + (x2)y = x6 + x3 + x

12.21 y2 + xy = x6 + x5 + x4 + x3 + x
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Label Curve

12.22 y2 + (x2)y = x6 + x2 + x

12.23 y2 + (x3 + x)y = x6 + x2 + x

12.24 y2 + (x3 + x)y = x6 + x4 + x2 + x

12.25 y2 + (x3 + x)y = x6 + x5 + x3 + x2 + x

12.26 y2 + (x3 + x2)y = x6 + x4 + x3 + x2 + x

12.27 y2 + (x3 + x2)y = x6 + x5 + x4 + x3 + x2 + x

12.28 y2 + (x3 + x)y = x6 + x5 + x4 + x3 + x2 + x

12.29 y2 + xy = x6 + x5 + 1

12.30 y2 + (x2 + 1)y = x6 + x4 + x3 + 1

12.31 y2 + xy = x6 + x5 + x4 + x3 + 1

12.32 y2 + (x+ 1)y = x6 + x5 + x4 + x3 + 1

12.33 y2 + (x+ 1)y = x6 + x5 + x2 + 1

12.34 y2 + (x3 + x)y = x6 + x5 + x2 + 1

12.35 y2 + (x3 + x)y = x6 + x5 + x4 + x2 + 1

12.36 y2 + (x3 + x)y = x6 + x3 + x2 + 1

12.37 y2 + (x2 + 1)y = x6 + x4 + x3 + x2 + 1

12.38 y2 + (x3 + x)y = x6 + x4 + x3 + x2 + 1

12.39 y2 + (x2)y = x6 + x+ 1

12.40 y2 + (x2 + 1)y = x6 + x4 + x+ 1

12.41 y2 + (x3 + x2)y = x6 + x4 + x+ 1

12.42 y2 + (x3 + x2)y = x6 + x5 + x4 + x+ 1
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Label Curve

12.43 y2 + (x+ 1)y = x6 + x5 + x4 + x3 + x+ 1

12.44 y2 + (x+ 1)y = x6 + x5 + x2 + x+ 1

12.45 y2 + (x2 + 1)y = x6 + x4 + x2 + x+ 1

12.46 y2 + (x2)y = x6 + x3 + x2 + x+ 1

12.47 y2 + (x3 + x2)y = x6 + x3 + x2 + x+ 1

12.48 y2 + (x3 + x2)y = x6 + x5 + x3 + x2 + x+ 1

13.1 y2 + (x2)y = x5 + x4 + x

13.2 y2 + xy = x5 + x2 + x

13.3 y2 + xy = x5 + x4 + x3 + x2 + x

13.4 y2 + (x2)y = x5 + x4 + x3 + x2 + x

13.5 y2 + (x2 + 1)y = x5 + 1

13.6 y2 + (x+ 1)y = x5 + x3 + 1

13.7 y2 + xy = x5 + x2 + 1

13.8 y2 + (x2 + 1)y = x5 + x2 + 1

13.9 y2 + (x+ 1)y = x5 + x4 + x2 + 1

13.10 y2 + xy = x5 + x4 + x3 + x2 + 1

13.11 y2 + (x+ 1)y = x5 + x3 + x+ 1

13.12 y2 + (x2 + 1)y = x5 + x3 + x+ 1

13.13 y2 + (x2)y = x5 + x4 + x3 + x+ 1

13.14 y2 + (x+ 1)y = x5 + x4 + x2 + x+ 1

13.15 y2 + (x2)y = x5 + x4 + x2 + x+ 1
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Label Curve

13.16 y2 + (x2 + 1)y = x5 + x3 + x2 + x+ 1

13.17 y2 + (x3 + x)y = x6 + x

13.18 y2 + (x2)y = x6 + x4 + x

13.19 y2 + (x3 + x)y = x6 + x4 + x

13.20 y2 + (x3 + x2)y = x6 + x3 + x

13.21 y2 + (x3 + x2)y = x6 + x5 + x3 + x

13.22 y2 + (x3 + x)y = x6 + x5 + x3 + x

13.23 y2 + (x3 + x)y = x6 + x5 + x4 + x3 + x

13.24 y2 + (x3 + x2)y = x6 + x4 + x2 + x

13.25 y2 + xy = x6 + x5 + x4 + x2 + x

13.26 y2 + (x3 + x2)y = x6 + x5 + x4 + x2 + x

13.27 y2 + xy = x6 + x5 + x3 + x2 + x

13.28 y2 + (x2)y = x6 + x4 + x3 + x2 + x

13.29 y2 + (x3 + x)y = x6 + x5 + 1

13.30 y2 + (x+ 1)y = x6 + x5 + x4 + 1

13.31 y2 + (x3 + x)y = x6 + x5 + x4 + 1

13.32 y2 + (x2 + 1)y = x6 + x3 + 1

13.33 y2 + (x3 + x)y = x6 + x3 + 1

13.34 y2 + (x3 + x)y = x6 + x4 + x3 + 1

13.35 y2 + xy = x6 + x5 + x4 + x2 + 1

13.36 y2 + (x2 + 1)y = x6 + x3 + x2 + 1
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Label Curve

13.37 y2 + xy = x6 + x5 + x3 + x2 + 1

13.38 y2 + (x+ 1)y = x6 + x5 + x3 + x2 + 1

13.39 y2 + (x2 + 1)y = x6 + x+ 1

13.40 y2 + (x+ 1)y = x6 + x5 + x4 + x+ 1

13.41 y2 + (x2)y = x6 + x4 + x3 + x+ 1

13.42 y2 + (x3 + x2)y = x6 + x4 + x3 + x+ 1

13.43 y2 + (x3 + x2)y = x6 + x5 + x4 + x3 + x+ 1

13.44 y2 + (x2 + 1)y = x6 + x2 + x+ 1

13.45 y2 + (x3 + x2)y = x6 + x2 + x+ 1

13.46 y2 + (x3 + x2)y = x6 + x5 + x2 + x+ 1

13.47 y2 + (x2)y = x6 + x4 + x2 + x+ 1

13.48 y2 + (x+ 1)y = x6 + x5 + x3 + x2 + x+ 1

14.1 y2 + (x2 + x)y = x5 + x4 + x

14.2 y2 + (x2 + x)y = x5 + x4 + x3 + x

14.3 y2 + (x2 + x)y = x5 + x2 + x

14.4 y2 + (x2 + x)y = x5 + x3 + x2 + x

14.5 y2 + (x2 + x)y = x5 + 1

14.6 y2 + (x2 + x)y = x5 + x3 + 1

14.7 y2 + (x2 + x)y = x5 + x4 + x2 + 1

14.8 y2 + (x2 + x)y = x5 + x4 + x3 + x2 + 1

14.9 y2 + (x2 + x)y = x6 + x
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Label Curve

14.10 y2 + (x2 + x)y = x6 + x3 + x

14.11 y2 + (x2 + x)y = x6 + x4 + x2 + x

14.12 y2 + (x2 + x)y = x6 + x4 + x3 + x2 + x

14.13 y2 + (x2 + x)y = x6 + x4 + 1

14.14 y2 + (x2 + x)y = x6 + x4 + x3 + 1

14.15 y2 + (x2 + x)y = x6 + x2 + 1

14.16 y2 + (x2 + x)y = x6 + x3 + x2 + 1

15.1 y2 + y = x5 + x4 + 1

15.2 y2 + y = x5 + x2 + 1

15.3 y2 + y = x5 + x+ 1

15.4 y2 + y = x5 + x4 + x2 + x+ 1

15.5 y2 + x3y = x6 + x5 + x

15.6 y2 + x3y = x6 + x4 + x

15.7 y2 + x3y = x6 + x2 + x

15.8 y2 + x3y = x6 + x5 + x4 + x2 + x

15.9 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x4 + 1

15.10 y2 + (x3 + x2 + x+ 1)y = x6 + x3 + 1

15.11 y2 + y = x6 + x5 + x4 + x3 + 1

15.12 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x2 + 1

15.13 y2 + y = x6 + x5 + x3 + x2 + 1

15.14 y2 + (x3 + x2 + x+ 1)y = x6 + x4 + x3 + x2 + 1
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Label Curve

15.15 y2 + (x3 + x2 + x+ 1)y = x6 + x4 + x+ 1

15.16 y2 + y = x6 + x5 + x3 + x+ 1

15.17 y2 + x3y = x6 + x5 + x3 + x+ 1

15.18 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x3 + x+ 1

15.19 y2 + x3y = x6 + x4 + x3 + x+ 1

15.20 y2 + (x3 + x2 + x+ 1)y = x6 + x2 + x+ 1

15.21 y2 + x3y = x6 + x3 + x2 + x+ 1

15.22 y2 + y = x6 + x5 + x4 + x3 + x2 + x+ 1

15.23 y2 + x3y = x6 + x5 + x4 + x3 + x2 + x+ 1

15.24 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x4 + x3 + x2 + x+ 1

16.1 y2 + (x2 + x+ 1)y = x5 + x4 + 1

16.2 y2 + (x2 + x+ 1)y = x5 + x3 + 1

16.3 y2 + (x2 + x+ 1)y = x5 + x2 + 1

16.4 y2 + (x2 + x+ 1)y = x5 + x4 + x3 + x2 + 1

16.5 y2 + (x2 + x+ 1)y = x5 + x+ 1

16.6 y2 + (x2 + x+ 1)y = x5 + x4 + x3 + x+ 1

16.7 y2 + (x2 + x+ 1)y = x5 + x4 + x2 + x+ 1

16.8 y2 + (x2 + x+ 1)y = x5 + x3 + x2 + x+ 1

16.9 y2 + (x3 + x2 + x)y = x6 + x5 + x

16.10 y2 + (x3 + x2 + x)y = x6 + x4 + x

16.11 y2 + (x3 + x2 + x)y = x6 + x3 + x
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Label Curve

16.12 y2 + (x3 + x2 + x)y = x6 + x5 + x4 + x3 + x

16.13 y2 + (x3 + x2 + x)y = x6 + x2 + x

16.14 y2 + (x3 + x2 + x)y = x6 + x5 + x4 + x2 + x

16.15 y2 + (x3 + x2 + x)y = x6 + x5 + x3 + x2 + x

16.16 y2 + (x3 + x2 + x)y = x6 + x4 + x3 + x2 + x

16.17 y2 + (x3 + x2 + x)y = x6 + x5 + 1

16.18 y2 + (x2 + x+ 1)y = x6 + x4 + 1

16.19 y2 + (x3 + x2 + x)y = x6 + x4 + 1

16.20 y2 + (x3 + 1)y = x6 + x4 + 1

16.21 y2 + (x3 + 1)y = x6 + x5 + x4 + 1

16.22 y2 + (x2 + x+ 1)y = x6 + x3 + 1

16.23 y2 + (x3 + x2 + x)y = x6 + x3 + 1

16.24 y2 + (x3 + 1)y = x6 + x4 + x3 + 1

16.25 y2 + (x3 + x2 + x)y = x6 + x5 + x4 + x3 + 1

16.26 y2 + (x3 + 1)y = x6 + x5 + x4 + x3 + 1

16.27 y2 + (x2 + x+ 1)y = x6 + x2 + 1

16.28 y2 + (x3 + x2 + x)y = x6 + x2 + 1

16.29 y2 + (x3 + 1)y = x6 + x2 + 1

16.30 y2 + (x3 + 1)y = x6 + x5 + x2 + 1

16.31 y2 + (x3 + x2 + x)y = x6 + x5 + x4 + x2 + 1

16.32 y2 + (x3 + 1)y = x6 + x3 + x2 + 1
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Label Curve

16.33 y2 + (x3 + x2 + x)y = x6 + x5 + x3 + x2 + 1

16.34 y2 + (x3 + 1)y = x6 + x5 + x3 + x2 + 1

16.35 y2 + (x2 + x+ 1)y = x6 + x4 + x3 + x2 + 1

16.36 y2 + (x3 + x2 + x)y = x6 + x4 + x3 + x2 + 1

16.37 y2 + (x2 + x+ 1)y = x6 + x+ 1

16.38 y2 + (x3 + 1)y = x6 + x4 + x+ 1

16.39 y2 + (x3 + 1)y = x6 + x5 + x4 + x+ 1

16.40 y2 + (x2 + x+ 1)y = x6 + x4 + x3 + x+ 1

16.41 y2 + (x3 + 1)y = x6 + x4 + x3 + x+ 1

16.42 y2 + (x3 + 1)y = x6 + x5 + x4 + x3 + x+ 1

16.43 y2 + (x3 + 1)y = x6 + x2 + x+ 1

16.44 y2 + (x3 + 1)y = x6 + x5 + x2 + x+ 1

16.45 y2 + (x2 + x+ 1)y = x6 + x4 + x2 + x+ 1

16.46 y2 + (x2 + x+ 1)y = x6 + x3 + x2 + x+ 1

16.47 y2 + (x3 + 1)y = x6 + x3 + x2 + x+ 1

16.48 y2 + (x3 + 1)y = x6 + x5 + x3 + x2 + x+ 1

17.1 y2 + (x3 + x2 + 1)y = x5 + x4 + 1

17.2 y2 + (x3 + x+ 1)y = x5 + x4 + 1

17.3 y2 + (x3 + x+ 1)y = x5 + x3 + 1

17.4 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 + x2 + 1

17.5 y2 + (x3 + x2 + 1)y = x5 + x+ 1
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Label Curve

17.6 y2 + (x3 + x+ 1)y = x5 + x+ 1

17.7 y2 + (x3 + x+ 1)y = x5 + x4 + x3 + x+ 1

17.8 y2 + (x3 + x2 + 1)y = x5 + x3 + x2 + x+ 1

17.9 y2 + (x3 + x2 + 1)y = x6 + x5 + x4

17.10 y2 + (x3 + x+ 1)y = x6 + x5 + x4

17.11 y2 + (x3 + x+ 1)y = x6 + x5 + x3

17.12 y2 + (x3 + x2 + 1)y = x6 + x4 + x3

17.13 y2 + (x3 + x2 + 1)y = x6 + x4 + x2

17.14 y2 + (x3 + x+ 1)y = x6 + x4 + x2

17.15 y2 + (x3 + x+ 1)y = x6 + x3 + x2

17.16 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x3 + x2

17.17 y2 + (x3 + x2 + 1)y = x6 + x5 + x

17.18 y2 + (x3 + x+ 1)y = x6 + x5 + x

17.19 y2 + (x3 + x2 + 1)y = x6 + x3 + x

17.20 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x3 + x

17.21 y2 + (x3 + x2 + 1)y = x6 + x2 + x

17.22 y2 + (x3 + x+ 1)y = x6 + x2 + x

17.23 y2 + (x3 + x2 + 1)y = x6 + x5 + x3 + x2 + x

17.24 y2 + (x3 + x+ 1)y = x6 + x4 + x3 + x2 + x

17.25 y2 + (x3 + x2 + 1)y = x6 + 1

17.26 y2 + (x3 + x+ 1)y = x6 + 1
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Label Curve

17.27 y2 + (x3 + x2 + 1)y = x6 + x5 + x3 + 1

17.28 y2 + (x3 + x+ 1)y = x6 + x4 + x3 + 1

17.29 y2 + (x3 + x2 + 1)y = x6 + x5 + x2 + 1

17.30 y2 + (x3 + x+ 1)y = x6 + x5 + x2 + 1

17.31 y2 + (x3 + x2 + 1)y = x6 + x3 + x2 + 1

17.32 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x3 + x2 + 1

17.33 y2 + (x3 + x2 + 1)y = x6 + x4 + x+ 1

17.34 y2 + (x3 + x+ 1)y = x6 + x4 + x+ 1

17.35 y2 + (x3 + x+ 1)y = x6 + x3 + x+ 1

17.36 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x3 + x+ 1

17.37 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x2 + x+ 1

17.38 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x2 + x+ 1

17.39 y2 + (x3 + x+ 1)y = x6 + x5 + x3 + x2 + x+ 1

17.40 y2 + (x3 + x2 + 1)y = x6 + x4 + x3 + x2 + x+ 1

18.1 y2 + y = x5 + x3 + 1

18.2 y2 + y = x5 + x4 + x3 + x2 + 1

18.3 y2 + y = x5 + x4 + x3 + x+ 1

18.4 y2 + y = x5 + x3 + x2 + x+ 1

18.5 y2 + x3y = x6 + x3 + x

18.6 y2 + x3y = x6 + x5 + x4 + x3 + x

18.7 y2 + x3y = x6 + x5 + x3 + x2 + x
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Label Curve

18.8 y2 + x3y = x6 + x4 + x3 + x2 + x

18.9 y2 + y = x6 + x5 + 1

18.10 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + 1

18.11 y2 + (x3 + x2 + x+ 1)y = x6 + x4 + x3 + 1

18.12 y2 + y = x6 + x5 + x4 + x2 + 1

18.13 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x4 + x2 + 1

18.14 y2 + (x3 + x2 + x+ 1)y = x6 + x3 + x2 + 1

18.15 y2 + x3y = x6 + x+ 1

18.16 y2 + (x3 + x2 + x+ 1)y = x6 + x+ 1

18.17 y2 + y = x6 + x5 + x4 + x+ 1

18.18 y2 + x3y = x6 + x5 + x4 + x+ 1

18.19 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x4 + x3 + x+ 1

18.20 y2 + y = x6 + x5 + x2 + x+ 1

18.21 y2 + x3y = x6 + x5 + x2 + x+ 1

18.22 y2 + x3y = x6 + x4 + x2 + x+ 1

18.23 y2 + (x3 + x2 + x+ 1)y = x6 + x4 + x2 + x+ 1

18.24 y2 + (x3 + x2 + x+ 1)y = x6 + x5 + x3 + x2 + x+ 1

19.1 y2 + (x3 + x2 + 1)y = x5 + x3 + 1

19.2 y2 + (x3 + x2 + 1)y = x5 + x2 + 1

19.3 y2 + (x3 + x+ 1)y = x5 + x2 + 1

19.4 y2 + (x3 + x+ 1)y = x5 + x4 + x3 + x2 + 1
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Label Curve

19.5 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 + x+ 1

19.6 y2 + (x3 + x2 + 1)y = x5 + x4 + x2 + x+ 1

19.7 y2 + (x3 + x+ 1)y = x5 + x4 + x2 + x+ 1

19.8 y2 + (x3 + x+ 1)y = x5 + x3 + x2 + x+ 1

19.9 y2 + (x3 + x2 + 1)y = x6

19.10 y2 + (x3 + x+ 1)y = x6

19.11 y2 + (x3 + x2 + 1)y = x6 + x5 + x3

19.12 y2 + (x3 + x+ 1)y = x6 + x4 + x3

19.13 y2 + (x3 + x2 + 1)y = x6 + x5 + x2

19.14 y2 + (x3 + x+ 1)y = x6 + x5 + x2

19.15 y2 + (x3 + x2 + 1)y = x6 + x3 + x2

19.16 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x3 + x2

19.17 y2 + (x3 + x2 + 1)y = x6 + x4 + x

19.18 y2 + (x3 + x+ 1)y = x6 + x4 + x

19.19 y2 + (x3 + x+ 1)y = x6 + x3 + x

19.20 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x3 + x

19.21 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x2 + x

19.22 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x2 + x

19.23 y2 + (x3 + x+ 1)y = x6 + x5 + x3 + x2 + x

19.24 y2 + (x3 + x2 + 1)y = x6 + x4 + x3 + x2 + x

19.25 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + 1
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Label Curve

19.26 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + 1

19.27 y2 + (x3 + x+ 1)y = x6 + x5 + x3 + 1

19.28 y2 + (x3 + x2 + 1)y = x6 + x4 + x3 + 1

19.29 y2 + (x3 + x2 + 1)y = x6 + x4 + x2 + 1

19.30 y2 + (x3 + x+ 1)y = x6 + x4 + x2 + 1

19.31 y2 + (x3 + x+ 1)y = x6 + x3 + x2 + 1

19.32 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x3 + x2 + 1

19.33 y2 + (x3 + x2 + 1)y = x6 + x5 + x+ 1

19.34 y2 + (x3 + x+ 1)y = x6 + x5 + x+ 1

19.35 y2 + (x3 + x2 + 1)y = x6 + x3 + x+ 1

19.36 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x3 + x+ 1

19.37 y2 + (x3 + x2 + 1)y = x6 + x2 + x+ 1

19.38 y2 + (x3 + x+ 1)y = x6 + x2 + x+ 1

19.39 y2 + (x3 + x2 + 1)y = x6 + x5 + x3 + x2 + x+ 1

19.40 y2 + (x3 + x+ 1)y = x6 + x4 + x3 + x2 + x+ 1

20.1 y2 + (x3 + x2 + 1)y = x6 + x5 + 1

20.2 y2 + (x3 + x+ 1)y = x6 + x4 + 1

20.3 y2 + (x3 + x2 + 1)y = x6 + x3 + 1

20.4 y2 + (x3 + x+ 1)y = x6 + x3 + 1

20.5 y2 + (x3 + x2 + 1)y = x6 + x2 + 1

20.6 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x2 + 1
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Label Curve

20.7 y2 + (x3 + x2 + 1)y = x6 + x5 + x3 + x2 + 1

20.8 y2 + (x3 + x+ 1)y = x6 + x5 + x3 + x2 + 1

20.9 y2 + (x3 + x+ 1)y = x6 + x+ 1

20.10 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x+ 1

20.11 y2 + (x3 + x2 + 1)y = x6 + x4 + x3 + x+ 1

20.12 y2 + (x3 + x+ 1)y = x6 + x4 + x3 + x+ 1

20.13 y2 + (x3 + x+ 1)y = x6 + x5 + x2 + x+ 1

20.14 y2 + (x3 + x2 + 1)y = x6 + x4 + x2 + x+ 1

20.15 y2 + (x3 + x2 + 1)y = x6 + x5 + x4 + x3 + x2 + x+ 1

20.16 y2 + (x3 + x+ 1)y = x6 + x5 + x4 + x3 + x2 + x+ 1
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