Math 255 - Spring 2022
Mobius inversion
20 points

Please read Section 6.2 of Elementary Number Theory, seventh edition, by David M. Burton,
which I have scanned and attached below.

Then answer this question:

1. The Mangoldt function A is defined by

logp if n = p*, where p is a prime and k > 1,
A(n) =

0 otherwise.

(a) Prove that

log(n) = Z A(d).

dn

(b) Use part (a) to prove that

An) =3 u (g) logd =~ u(d)logd.

dln dln

(You must prove both equalities in this statement.)
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23. For any positive integer 7, show the following: Suppose that n > 1 and put

@ Y41, 0D =Yg, (n/d)T(@).
(b) Mm.aﬁx\&vqﬁ&v = M&..: dt(d).

[Hint: Because the functions

Fmy=Y o) and Gm=)_ m:&

Fn) = " u(d)

©odin

To prepare the ground, we first calculate. F(n) for the power of a prime, say, n = p*.

am am The positive divisors of p* are just the k + 1 integers 1, p, p?, ..., p*, so that
are both multiplicative, it suffices to prove that F(p*) = G(p*) for any prime p.] F(p*) = M w(d) = (1) + w(p) + u(pH + - - + u(p*)
d|p*

=u)+u(p)=1+(-1)=0

Because u is known to be a multiplicative function, an appeal to Theorem 6.4 is
legitimate; this result guarantees that F also is multiplicative. Thus, if the canonical

factorization oﬁw nisn = .&:. ,u% . pkr,then m. (n)is the product of the values assigned
to F for the prime powers in this representation:

F(n)= F(p{")F(p¥)--- F(p¥) =0

We record this result as Theorem 6.6.

6.2 THE MOBIUS INVERSION FORMULA

We introduce another naturally defined function on the positive integers, the Mobius
u-function.

Definition 6.3. For a positive integer n, define u by the rules
1 ifn=1
wny=130 if p? | n for some prime p

-1 ifn = p1ps--- p,, where p; are distinct primes
Theorem 6.6. For each positive integer n > 1,

_ R=H~
&H
WEV T ifn>1

Put somewhat differently, Definition 6.3 states that 1(rz) = 0 if n is not a square-
free integer, whereas u(n) = (=1Y if n is square-free with r prime factors. For
example: p(30) = u(2-3-5) = (—1)® = —1. The first few values of u are

py=1 p@=-1 u@=-1 p@=0 p®=-1 wO)=1,...

If p is a prime number, it is clear that u(p) = —1; in addition, p( EO =0 .mon.» N 2.
As the reader may have guessed already, the Mdbius u-function is multiplicative.
This is the content of Theorem 6.5.

where d runs through the positive divisors of n.

For an illystration of this last theorem, consider n = 10. The positive divisors
of 10are 1, 2, 5, 10 and the desired sum is

D (d) = (D) + @) + u(5) + p(10)
di10

Theorem 6.5. The function p is a multiplicative function.

I

I+=D+EED+1=0

The full significance of the Mobius u-function should become apparent with
the next theorem.

Proof. We want to show that pu(mn) = p(m)u(n), whenever m and n are rela-
tively prime. If either p?|m or p*|n, p a prime, then p? | mn; hence, pu(mn) = 0 =
pu(m)u(n), and the formula holds trivially. We therefore may assume that both m and
n are square-free integers. Say, m = p1p2 -+ pr. 1 = 4142+ - 4s, With all the primes o .
pi and g; being distinct. Then Theorem 6.7 Mbobius inversion formula. Let F and f be two number-theoretic
functions related by the formula

pmn) = p(py - prqi -+ - gs) = (=1

= (=1 (=1) = plm)p(n) Fin)=3" f(d)
din
which completes the proof. Then
Let us see what happens if u(d) is evaluated for all the positive &imo.a d of fn) = M wWd)F Amv - M " A m v F(d)
an integer n and the results are added. In the case where n = 1, the answer 1s easy; din din
here,

Proof. The two sums mentioned in the conclusion of the theorem are seen to be the
same upon replacing the dummy index d by d’ = n/d; as d ranges over all positive
divisors of n, so does d’.

> ud)=pu1) =1

dll
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Carrying out the required computation, we get

S u@F (%) =2 () Y f©

dln din ctn/d)

=y | X w@dr©

din \c|(n/d)

1t is easily verified that d | n and ¢ | (n/d) if and only if ¢ | n and d | (n/c). Because of
this, the last expression in Eq. (1) becomes

YUY w@df@) =3 | > flemwd

din \cin/d) cin \din/c)

=Y f© Y u@

cin din/c)

€3]

In compliance with Theorem 6.6, the sum 5 d1(/e) u(d) must vanish mxmom: when
njc =1 (that is, when n = ¢), in which case it is equal to 1; the upshot is that the

right-hand side of Eq. (2) simplifies to
Silf@ Y w@) =3 f©-1
cln dl(n/c) c=n
= f@)

giving us the stated result.

Let us use n = 10 again to illustrate how the double sum in Eq. (2) is turned
around. In this instance, we find that

S Y wdf©) = WU W)+ @+ £5) + f10)]

4110 \c|(10/d)
+ QL)+ FS]+ uGUF ) + £(2)]
+ u(10) (1)
= fIr) + w2 + w5 + n(10)]
+ FOI) + w5 + fG) (D) + u(2)]
+ f(A0)u(D)

=y | X feuwd

¢]10 \d|(10/c)

To see how the Mébius inversion formula works in a particular case, we remind
the reader that the functions t and ¢ may both be described as “sum functions™:

t(n) = MU 1 and o(n) = MU&

din d|n
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Theorem 6.7 tells us that these formulas may be inverted to give
n n
1= ~)r(d d = An d
mM:tAn.vl ) an n “W?t &vQA )

which are valid for alln > 1. i
Theorem 6.4 ensures that if f is a multiplicative function, then so is F(n) =

3 41n J(d). Turning the situation around, one might ask whether the multiplicative

nature of F forces that of f. Surprisingly enough, this is exactly what happens.

Theorem 6.8. If F is a multiplicative function and
Finy=Y_ fd
dln
then f is also multiplicative.

Proof. Let m and n be relatively prime positive integers. We recall that any divisor
d of mn can be uniquely written as d = dd,, where di | m, dy | n, and ged(d;, dy) = 1.
Thus, using the inversion formula,

fommy= 3" w@F (=)

di{mn

mn
= wdd)F @mmv

i im
dyin

m n
S ndput)F A&V F A&v

@ im
AL

E 3
&MI. &h.l
%:Q S%E g S
= f(m)f(n)

which is the assertion of the theorem. Needless to say, the multiplicative character of
w and of F is crucial to the previous calculation.

For n > 1, we define the sum
M(n) =) u(k)
k=1

Then M(n) is the difference between the number of square-free positive integers
k < n with an even number of prime factors and those with an odd number of prime
factors. For example, M(9) = 2 — 4 = —2. In 1897, Franz Mertens (1840-1927)
published a paper with a 50-page table of values of M(n) forn = 1,2, ..., 10000.
On the basis of the tabular evidence, Mertens concluded that the inequality

IM(n)| < v/n n>1

is “very probable.” (In the previous example, |M(9)| =2 < V/9.) This conclusion
later became known as the Mertens conjecture. A computer search carried out in
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1963 verified the conjecture for all n up to 10 billien. But in 1984, Andrew Odlyzko
and Herman te Riele showed that the Mertens conjecture is false. Their proof, which
involved the use of a computer, was indirect and produced no specific value of n
for which [M(n)| = /n; all it demonstrated was that such a number n must exist
somewhere. Subsequently, it has been shown that there is a counterexample to the
Mertens conjecture for at least one n < (3.21)10%4,

PROBLEMS 6.2
1. (a) For each positive integer n, show that
p(myln + Dudn + uln +3) =0

(b) For any integer n > 3, show that S ey kY = 1.

2. The Mangold function A is defined by
logp ifn = p*, where pisaprimeand k > 1
Am) = 0 otherwise

Prove that A(n) = 3y, #(n/d)logd = — Y aia M(d)logd.

{Hint: First show that )_,, A(d) = logn and then apply the Mdbius inversion formula.]
3. Letn = R: vms ... p¥ be the prime factorization of the integer n > 1. If f is a multiplica-

tive function that is not identically zero, prove that

3 u@f@ = = fp)d = f(p2)--- (1= f(pr)

din

[Hint: By Theorem 6.4, the function F defined E\»N ) = 3_gyn M) f(d)is Bﬁ_m.@mom‘
tive; hence, F(n) is the product of the values F(p;')]

4. If the integer n > 1 has the prime factorization n = R: mww ... p*, use Problem 3 to
establish the following:
@ Yy @) = (1Y
(©) Ygyn (o (d) = (=1) pip2--- Pr-
©) Ygppudyd =1 —1/ppd —1/p2): ~(L=1/pr)

@ Y diatd) = (1= pi)1 = p2)--- (1= pr). ‘
. Let S(n) denote the number of square-free divisors of n. Establish that

Sty =y lu(d) =2

din

w

where w(n) is the number of distinct prime divisors of n.
[Hint: S is a multiplicative function.] .
6. Find formulas for Y din pid)/r(dyand 3, In u*(d)/o(d) in terms of the prime factor-
ization of n. .
. The Liouville A-function is defined by (1) = 1 and A(n) = (— Dtk -k if the prime

. . ki k :
factorization of n > lisn = py'py* -+ p¥ . For instance,

~

A(360) = 1(2* - - 5) = (-1 = (-1 =1

(a) Prove that A is a multiplicative function.
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(b Given a positive integer n, verify that
1 if n = m? for some integer m
Y @)= .
i 0 otherwise

8. For an integer n > 1, verify the formulas below:
@ Ty HDMA) = 270,
) Yo AMn/d)y2e D =1,

6.3 THE GREATEST INTEGER FUNCTION

The greatest integer or “bracket” function [ ] is especially suitable for treating di-
visibility problems. Although not strictly a number-theoretic function, its study has
a natural place in this chapter.

Definition 6.4. For an arbitrary real number x, we denote by [x] the largest integer
less than or equal to x; that is, [x] is the unique integer satisfying x — 1 < [x] < x.

By way of illustration, [ ] assumes the particular values
[-3/21=-2 [V2I=1 [1/3]1=0 [x]=3 [-n]=—4

The important observation to be made here is that the equality [x] = x holds if
and only if x is an integer. Definition 6.4 also makes plain that any real number x

can be written as
x=[x]+86

for a suitable choice of 8, with 0 < 6 < 1.
We now plan to investigate the question of how many times a particular prime
p appears in n!. For instance, if p = 3 and n = 9, then

91=1.2.3-4.5-6-7-8-9
=27.34.5.7

so that the exact power of 3 that divides 9! is 4. It is desirable to have a formula that
will give this count, without the necessity of always writing n! in canonical form.
This is accomplished by Theorem 6.9.

Theorem 6.9. If n is a positive integer and p a prime, then the exponent of the highest
power of p that divides n! is

e n

2|5

=1 LP
where the series is finite, because [n/p*] = 0 for p* > n.

Proof. Among the first n positive integers, those divisible by p are p, 2p, ..., tp,
where ¢ is the largest integer such that tp < n; in other words, ¢ is the largest integer




