Math 395 - Spring 2020 Homework 8

This homework is due on Monday, March 16.

All of these problems must be typed up.

- 1. Let R be an integral domain and assume R contains a subring F that is a field (R and F have the same 1). Prove that if R is finite dimensional as a vector space over F then R is a field.
- 2. Let x and y be independent indeterminates over the field \mathbb{C} of complex numbers, and let $R = \mathbb{C}[x,y]/(x^2-y,y^2-x)$.
 - (a) Explain why R is a finite dimensional vector space over \mathbb{C} , and find its dimension.
 - (b) Prove that R is isomorphic to $\mathbb{C}[x]/(x^4-x)$.
 - (c) Show that R is (ring) isomorphic to the direct product of four copies of \mathbb{C} .
- 3. Let R be the following quotient ring of the polynomial ring with rational coefficients:

$$R = \mathbb{Q}[x]/(x^6 - 1).$$

- (a) Find all ideals of R. (Be sure to justify that you found them all.)
- (b) Determine which of the ideals of (a) are maximal, and for each maximal ideal M describe the quotient ring R/M.
- (c) Exhibit an explicit (nonzero) zero divisor in R.
- (d) Does R contain any nonzero nilpotent elements? (Briefly justify.)
- 4. Let $R = \mathbb{R}[x]/(x^4 1)$, so R is a commutative ring with 1.
 - (a) Show that all ideals of R are principal.
 - (b) Find a generator for each maximal ideal of R.
 - (c) For each maximal ideal \mathfrak{m} , describe an isomorphism from R/\mathfrak{m} to either \mathbb{R} or \mathbb{C} .
- 5. Let R be the ring of all continuous real valued functions on the closed interval [0,1] (under the usual pointwise addition and multiplication of functions). Let

$$M = \{ f \in R \mid f(1/2) = 0 \}.$$

- (a) Prove that M is a prime ideal and identify the quotient ring (as a well-known ring).
- (b) Prove that M is not a principal ideal.

(c) Exhibit an infinite properly increasing chain of ideals of R:

$$I_1 \subset I_2 \subset I_3 \subset \cdots$$
 and let $I = \bigcup_{i=1}^{\infty} I_i$

(where you need not reprove that I is an ideal). Explain why I could not be finitely generated. (Hint: One way is to consider ideals of functions that vanish on certain sets.)

- 6. Let R be the ring of all *continuous* real valued functions on the closed interval [0,1]. For each $a \in [0,1]$, let $M_a = \{f \in R \mid f(a) = 0\}$.
 - (a) Find all units in R.
 - (b) Give an explicit example of a nonzero zero divisor in R.
 - (c) Prove that M_a is a maximal ideal in R.
 - (d) Prove that there is a countable subset $\{a_1, a_2, a_3, \ldots\}$ of [0, 1] such that $\bigcap_{i=1}^{\infty} M_{a_i} = 0$.