
Math 295 - Spring 2020
Solutions to Homework 8

1. (a) Let x ∈ IntA. We show that this implies that x 6∈ BdA. This is enough to show
that the intersection is empty, since in that case no point can ever be in both
IntA and BdA.

Since
IntA =

⋃
U⊂A
U open

U,

if x ∈ IntA, then there is U open in X such that x ∈ U ⊂ A. Then of course
x ∈ A, since x ∈ A. We show that x 6∈ (X − A), so that x cannot belong to the
intersection A ∩ (X − A) = BdA.

Suppose for a contradiction that x ∈ (X − A) as well. Then for all open sets V
such that x ∈ V , V ∩ (X − A) 6= ∅. This means that V 6⊂ A, since V has at
least one point outside of A. This contradicts the existence of the open set U we
exhibited above, which contained x and was fully inside A. So x 6∈ (X − A), so
x 6∈ BdA.

(b) We prove the equality by proving both inclusions. We begin with the easy in-
clusion: IntA ∪ BdA ⊂ A. Suppose that x ∈ IntA ∪ BdA. If x ∈ IntA, since
IntA ⊂ A ⊂ A for all sets A, we have that x ∈ A. If instead x ∈ BdA, then in
particular x ∈ A, since BdA is A ∩ (X − A).

Now we tackle the other inclusion, which is A ⊂ IntA ∪ BdA. Let x ∈ A.
If x ∈ (X − A) as well, then x ∈ BdA and we are done. Suppose therefore
that x 6∈ (X − A). This means that there is a neighborhood U of x such that
U ∩X−A = ∅. In other words, there is a neighborhood U of x such that U ⊂ A.
But this implies x ∈ IntA, and we are done.

(c) First suppose that A is such that BdA = ∅. This means that if x ∈ A, then
x 6∈ X − A. In particular, since X − A ⊂ X − A, certainly x 6∈ X − A. But this
is equivalent to saying x ∈ A, and so A ⊂ A, and A is closed.

We can also run the same argument for X − A: If x ∈ X − A, then x 6∈ A, so
x 6∈ A or x ∈ X−A. Therefore X − A ⊂ X−A, and X−A is closed, from which
it follows that A is open. Therefore if BdA = ∅, then A is open and closed.

Now suppose that A is open and closed. Since A is closed, A = A, and since A is
open, X − A is closed and so X − A = X − A. But certainly A ∩ (X − A) = ∅,
so in this case BdA = ∅.

(d) Suppose that U is open. Then X − U is closed, so X − U = X − U . We then
have that BdU = U ∩ (X − U), but this is simply U − U , by definition.

Conversely suppose that BdU = U ∩ X − U = U − U . Because U − U =
U ∩ (X − U), this means that x ∈ X − U if and only if x ∈ X − U . Therefore
X − U = X − U , X − U is closed, and U is open.



(e) Let U be open, and x ∈ U . Since U is an open set and U ⊂ U , by definition of
the interior of a set, x ∈ Int(U).

If U = (0, 1) ∪ (1, 2) ⊂ R, then U is open since it is the union of two open sets.
We have that U = [0, 2] (every open set containing 0, 1, or 2 must intersect U),
and Int([0, 2]) = (0, 2), since there is no open set contained in [0, 2] that contains
0 or 2. Therefore the inclusion can be strict.

2. (a) We have that IntA = ∅. To show this, we prove that there is no open set W ⊂ R2

such that W ⊂ A. Indeed, let W be open and x×0 ∈ W . Since a basis of open sets
for R is given by the open intervals, a basis of open sets for R2 is therefore given
by the Cartesian product of intervals. By the definition of a basis, there is thus
a pair of intervals x ∈ (a, b) and 0 ∈ (c, d) such that x× 0 ∈ (a, b)× (c, d) ⊂ W .
In particular, this means that W must contain points whose y-coordinate is not
zero, as the interval (c, d) contains nonzero elements. Therefore any open set
containing a point of A must be “thicker” than A, and thus cannot be contained
in A. This settles the computation of the interior of A.

To compute the boundary we will use our work from problem 1. First, we show
that A is closed: Indeed, R2−A = R× (0,∞)∪R× (−∞, 0), and both R× (0,∞)
and R× (−∞, 0) are open so their union is open. Therefore A = A.

Now we know from problem 1 part b) that A = IntA∪BdA. Here since IntA = ∅
and A = A, it follows that BdA = A.

(b) B = {x × y | x > 0 and y 6= 0} To compute the interior of B, we show that it
is open. Indeed, B = (0,∞)× (0,∞) ∪ (0,∞)× (−∞, 0). Both sets are open so
their union is open. An open set is equal to its interior so IntB = B.

Since B is open, by problem 1 part d) we have that BdB = B − B. Therefore
it suffices to compute B. We claim that B = [0,∞)× R. Since we already know
that B ⊂ B, we focus on the points in [0,∞)× R−B.

They are of two kinds: First, the points 0 × y, y 6= 0. These points belong to
B since every neighborhood W of 0 × y must contain a Cartesian product of
intervals: 0 × y ∈ (a, b) × (c, d) ⊂ W , and therefore must contain a point with
positive x-coordinate and nonzero y coordinate (and so intersect B).

Now we tackle the points x×0, x ≥ 0. Every neighborhood W of such a point must
again contain a Cartesian product of intervals like so x× 0 ∈ (a, b)× (c, d) ⊂ W ,
and since x ≥ 0, this must include a point with positive x-coordinate and nonzero
y coordinate. We have thus shown that B = [0,∞)× R.

Now we compute: BdB = B −B = {0× y | y ∈ R} ∪ {x× 0 | x ≥ 0}.

3. This statement is essentially true, and only false in a kind of silly way: Indeed, let x
be a limit point of A, and let V ⊂ Y be open such that f(x) ∈ V . To show that f(x)
is a limit point of f(A), we must show that V intersects f(A) in a point different from
f(x).



We have that f−1(V ) is open since f is continuous, and since f(x) ∈ V , x ∈ f−1(V ).
Because x is a limit point of A, there is y ∈ f−1(V ) such that y ∈ A. Now we
distinguish two cases: If it is possible to pick y ∈ A such that y ∈ f−1(V ) and
f(x) 6= f(y), then f(x) is a limit point of f(A): Indeed, in this case f(y) ∈ V ∩ f(A),
and since f(y) 6= f(x), V intersects f(A) in a point different from f(x).

However, what if that is not possible? Suppose indeed that there is a neighborhood
V of f(x) such that for all y ∈ f−1(V ) ∩ A, f(y) = f(x)? This is possible: It means
that for all a ∈ A, either f(a) = f(x), or f(a) 6∈ V . This happens for example for
any function that is constant on A (the one-point set {f(x)} does not have any limit
points!) and can also happen if A can be written as the disjoint union of two open sets,
and f is constant on one of those open sets. But that is the only way it can happen,
and since being constant is kind of silly, we rate this claim false but not too false.

A counterexample is f : R→ R given by

f(x) =

{
0 if x ≤ 0,

x if x ≥ 0,

and A = (−1, 0). Then f is continuous by the pasting lemma, x = 0 is a limit point of
A, but f(0) = 0 is not a limit point of f(A) = {0}.

4. For any x0 ∈ X (respectively y0 ∈ Y ), consider the map jx0 : Y → X × Y given by
jx0(y) = x0 × y (respectively the map jy0 : X → X × Y given by jy0(x) = x × y0).
This is continuous: If W ∈ X × Y is open, then either j−1x0 (W ) is empty (if there is
no y ∈ Y such that x0 × y ∈ W ) which is open, or we are in the following situation:
For all x0 × y ∈ W , there is Uy × Vy where Uy ⊂ X is open and Vy ⊂ Y is open,
with x0 × y ∈ Uy × Vy ⊂ W (since the Cartesian product of opens is a basis for the
product topology). In that case, j−1x0 (W ) =

⋃
x0×y∈W Vy, which is open in Y . (A similar

argument can be made about j−1y0 (W ), and jy0 is also continuous.)

Now we have that F (x0 × y) = F ◦ jx0 : Y → X × Y → Z is continuous, since it is a
composition of continuous functions. Similarly, F (x× y0) = F ◦ jy0 : X → X ×Y → Z
is also continuous, so F is continuous in both variables separately.

5. (a) Let y0 ∈ R, then F (x × y0) = xy0
x2+y20

(note that this is identically zero if y0 = 0).

This is a continuous function since it is either constant (if y0 = 0) or it is a
quotient of two continuous functions, the denominator of which is never zero
(the numerator and denominator are continuous since they are just products and
sums of continuous functions). Similarly, for x0 ∈ R, F (x0 × y) = x0y

x20+y
2 is also

continuous.

(b) This is g(x) = 1
2
.

(c) Show that F is not continuous. Let V = (−1
2
, 1
2
). This is open in R. We

show that the inverse image of V is not open in R2. First, since F (0 × 0) = 0,



0 × 0 ∈ F−1(V ). However, there is no basis element of the form (a, b) × (c, d)
such that 0 × 0 ∈ (a, b) × (c, d) ⊂ F−1(V ). Indeed, let δ = min(b, d). Then
δ
2
× δ

2
∈ (a, b)× (c, d), but F ( δ

2
× δ

2
) = 1

2
6∈ V , so δ

2
× δ

2
6∈ F−1(V ). Since F−1(V )

does not contain a basis element containing 0 × 0, F−1(V ) is not open and F is
not continuous.

Extra problem for graduate credit:

1. Suppose that f can be extended in two ways: In other words, there are g : A→ Y and
h : A → Y both continuous such that g|A = h|A = f , but there is x ∈ A such that
g(x) 6= h(x). We derive a contradiction.

Since g(x) 6= h(x) and Y is Hausdorff, there are open sets V1, V2 in Y such that
g(x) ∈ V1 and h(x) ∈ V2 with V1∩V2 = ∅. Then g−1(V1) is open since g is continuous,
and h−1(V2) is also open since h is continuous. Furthermore, x ∈ g−1(V1) ∩ h−1(V2),
so g−1(V1)∩ h−1(V2) is a neighborhood of x (an intersection of two open sets is open).
Since x ∈ A, there is y ∈ A such that y ∈ g−1(V1) ∩ h−1(V2). Therefore we have
f(y) = g(y) = h(y), but since y ∈ g−1(V1), f(y) = g(y) ∈ V1 and since y ∈ h−1(V2),
f(y) = h(y) ∈ V2, which makes it so f(y) ∈ V1 ∩ V2, a contradiction.


