
Math 295 - Spring 2020
Solutions to Homework 5

1. (a) Since A is closed in Y , there is V open in Y such that A = Y − V . But since
Y has the subspace topology, there is U open in X such that V = U ∩ Y . Since
Y is closed in X, there is W open in X such that Y = X −W . Putting all this
together, we have

A = (X −W )− (U ∩ Y ) = X − (W ∪ U).

Since W ∪ U is a union of two open sets in X, it is open in X, so A is closed in
X.

(b) Since A is closed in X, there is U open in X such that A = X − U , and since B
is closed in Y , there is V open in Y such that B = Y − V . Then

A×B = X × Y − (U × Y ∪X × V ).

Since U ×Y and X ×V are open in X ×Y by definition of the product topology,
and the union of two open sets is open, we have that A×B is closed in X × Y .

2. Let x ∈ ∪α∈JĀα. Then there is α ∈ J such that x ∈ Āα, which means that every
neighborhood of x intersects Aα. In turn, since Aα ⊂ ∪α∈JAα, this means that every
neighborhood of x intersects ∪α∈JAα, so x ∈ ∪α∈JAα.

An example where the inclusion is strict is given by J = Z+ and An = { 1
n
} ⊂ R, where

R is given the standard topology. Then Ān = { 1
n
} since R is Hausdorff and one-point

sets are closed. It follows that
∞⋃
n=1

Ān =
∞⋃
n=1

An.

However,
⋃∞
n=1An 6=

⋃∞
n=1An, since 0 ∈

⋃∞
n=1An −

⋃∞
n=1An: Indeed, any open set

U ⊂ R containing 0 must contain a basis element (an interval) about 0, so 0 ∈ (a, b) ⊂
U for some a, b ∈ R. Then we know that there is n ∈ Z+ such that 1

n
∈ (a, b), so U

intersects
⋃∞
n=1An.

3. (a) Let X and Y be Hausdorff spaces, and let (x1, y1) 6= (x2, y2) ∈ X × Y . Without
loss of generality, x1 6= x2. Then since X is Hausdorff, there are U1 3 x1 and
U2 3 x2, where U1, U2 are open in X, such that U1 ∩ U2 = ∅. Then the sets
W1 = U1 × Y and W2 = U2 × Y are open in X × Y , they are disjoint (since
no point can have first coordinate in U1 and U2 at once) and (x1, y1) ∈ W1 and
(x2, y2) ∈ W2. So X × Y is Hausdorff.

(b) Let X be a Hausdorff space and Y be a subspace of X. Let y1 6= y2 ∈ Y . Since
Y ⊂ X, it follows that y1 6= y2 ∈ X as well, and since X is Hausdorff, there are
U1 3 x1 and U2 3 x2, where U1, U2 are open in X, such that U1 ∩ U2 = ∅. But
then V1 = U1 ∩ Y and V2 = U2 ∩ Y are open in Y and disjoint, and y1 ∈ V1,
y2 ∈ V2, so Y is Hausdorff.



4. (a) Suppose that i is continuous. Then for all V ∈ T , we have that i−1(V ) = V is
open in X ′ since i is continuous, so V ∈ T ′, and T ⊂ T ′.
Suppose now that T ⊂ T ′. Then for V ∈ T , i−1(V ) = V ∈ T ′, so the inverse
image of an open set is open and i is continuous.

(b) We assume the result of part (a), so all that remains to show is that i−1 is
continuous if and only if T ′ ⊂ T . But actually i−1 = i, so this is part (a) but
with i : X → X ′ and the result follows.

5. Before we begin, we will need a lemma: Let g : R → R be a linear function; in other
words it is given by g(x) = mx + b for m, b ∈ R. Then g is a homeomorphism. (Here
R has the standard topology.)

First we show that g is bijective. Indeed, g−1(x) = x−b
m

; one shows quickly that g−1 is
a well-defined function and g ◦ g−1 = g−1 ◦ g = 1.

To show that g is continuous, it is enough to show that if r1 < r2 ∈ R, g−1((r1, r2)) is
open, since the open intervals form a basis for the open sets of R. Since g−1(x) = x−b

m
,

g−1((r1, r2)) is the values that the expression x−b
m

takes if r1 < x < r2:

r1 < x < r2 ⇐⇒ r1 − b < x− b < r2 − b ⇐⇒
r1 − b
m

<
x− b
m

<
r2 − b
m

.

So

g−1((r1, r2)) =

(
r1 − b
m

,
r2 − b
m

)
,

which is open.

Now we can easily show the result we seek: First we prove that since (0, 1), (a, b), [0, 1]
and [a, b] are all subspaces of R, it is enough to show that f(x) = x−a

b−a is a bijection
from (a, b) to (0, 1) and from [a, b] to [0, 1]. Indeed, granting this, it only remains to
show that f and f−1 are continuous. Let g : R → R be given by g(x) = x−a

b−a . By our
lemma above, g is bijective and both g and g−1 are continuous. Applying Theorem
18.2(d) to restrict the domain of g to (a, b) and to [a, b], we obtain that f is continuous
on (a, b) and on [a, b], and restricting the domain of g−1 to (0, 1) and to [0, 1] we obtain
that f−1 is continuous on (0, 1) and on [0, 1]. So the continuity conditions will follow
once we have bijectivity.

Note that here it is not enough to show that f−1 exists; the question here is whether
the image of the set [a, b] by f is [0, 1], and the image of (a, b) is (0, 1). In other words,
upon restricting the domain, a function only remains bijective if its image is suitably
restricted, so it is exactly the image of the new domain.

But we have that

a ≤ x ≤ b ⇐⇒ 0 ≤ x− a ≤ b− a ⇐⇒ 0 ≤ x− a
b− a

≤ 1,

and the same holds with the inequalities replaced by strict inequalities, so the result
follows.



Extra problems for graduate credit:

1. Let X be a topological space and suppose that {x} is closed for all x ∈ X. (This
is equivalent to the T1-axiom, since finite unions of closed sets are closed.) Let x1 6=
x2 ∈ X. Since {x1} is closed, x2 6∈ {x1}, so there is a neighborhood U of x2 such that
U ∩ {x1} = ∅. Therefore x1 6∈ U , and x2 has a neighborhood that doesn’t contain x1.
The same argument can be applied with the roles of x1 and x2 reversed, so x1 also has
a neighborhood that doesn’t contain x2.

Now suppose that for each pair of points of X, each has a neighborhood not containing
the other. Let x ∈ X, and suppose that y ∈ {x}. If y 6= x, then y has a neighborhood
U that does not contain x, and for that neighborhood it is the case that U ∩ {x} = ∅,
yielding a contradiction (y cannot be in the closure of {x}). Therefore y ∈ {x} implies
that y = x and {x} is closed, and therefore also every finite point set.

2. We can talk about this in person :)


