
Math 295 - Spring 2020
Solutions to Homework 4

1. Let T be the topology that A inherits as a subspace of Y , and T ′ be the topology it
inherits as a subspace of X.

We first show that T ′ ⊂ T : Let U ∈ T ′, then there is W open in X such that
U = A∩W . Since A ⊂ Y , we have that A∩Y = A, so U = (A∩Y )∩W = A∩(Y ∩W )
(one can show that intersection is associative). But Y ∩W = V , an open set of Y in
the subspace topology, so U = A ∩ V , for V an open set of Y , so U ∈ T .

Now we show that T ⊂ T ′: Let U ∈ T , then there is V open in Y such that U = A∩V .
Since V is open in the subspace topology of Y , there is W open in X such that
V = Y ∩W . Therefore we have U = A ∩ (Y ∩W ) = (A ∩ Y ) ∩W . But as before
A ∩ Y = A, so U = A ∩W , for W an open set of X, so U ∈ T ′.

2. (a) This is (−1,−1
2
) ∪ (1

2
, 1). Since it is the union of two open intervals, it is open in

R. It is also open in Y since A = Y ∩ A.

(b) This is [−1,−1
2
) ∪ (1

2
, 1]. It is not an open set in R, since any open set of R that

contains 1 must also contain an open interval containing 1, basis the basis for the
topology on R is given by open intervals, and by definition of a basis a set is open
if and only if it contains a basis element containing each element that it contains.
However, it is open in Y since it equal to Y ∩ U , for U = (−3

2
,−1

2
) ∪ (1

2
, 3
2
), and

U is open in R.

(c) This is (−1,−1
2
] ∪ [1

2
, 1). It is not an open set in R, since any open set of R that

contains 1
2

must also contain an open interval containing 1
2
. It is also not open in

Y for the same reason.

(d) This is [−1,−1
2
] ∪ [1

2
, 1]. It is not an open set in R, since any open set of R that

contains 1
2

must also contain an open interval containing 1
2
. It is also not open in

Y for the same reason.

(e) This one was a typo! As written, E = A, so it is open in Y and in R. The original
question asked about

E = {x | 0 < |x| < 1 and 1/x 6∈ Z+}.

That one is open in R and Y , because for every element of E, there is a small
interval around it that is also in E: If x is such that 1

n+1
< |x| < 1

n
, then either

the interval ( 1
n+1

, 1
n
) or (− 1

n
,− 1

n+1
) is contained in E and contains x.

3. We show that π1 is an open map; the proof for π2 is identical but with X and Y
reversed.

Let W ⊂ X × Y be open. Then for some indexing set J , there are open sets Uα ⊂ X
and open sets Vα ⊂ Y , for α ∈ J , such that

W =
⋃
α∈J

(Uα × Vα).



We wish to show that π1(W ) is open. To this end, we first show that

π1(W ) =
⋃
α∈J

Uα.

Once we have shown this, we will be done, because the arbitrary union of open sets in
X is open, so π1(W ) is open in X.

To show the equality of sets, we first show that π1(W ) ⊂ ∪α∈JUα: Let x ∈ π1(W ),
then by definition, there is (x, y) ∈ W such that π1(x, y) = x. Since W is given as a
union, this means that there is α ∈ J such that (x, y) ∈ Uα × Vα. Therefore we have
that x ∈ Uα, and so x ∈ ∪α∈JUα.

We now show that ∪α∈JUα ⊂ π1(W ): Let x ∈ ∪α∈JUα, then x ∈ Uα for some α ∈ J .
Let y ∈ Vα. Then (x, y) ∈ Uα×Vα, so (x, y) ∈ W , and also π1(x, y) = x, so x ∈ π1(W ).

4. For this problem, we will write x × y for an element of R × R, since we will need
intervals as well as elements of a Cartesian product.

Let T be the dictionary order topology on R× R and let T ′ be the product topology
on Rd × R. We have that a basis for T is given by

B = {(x1 × y1, x2 × y2) | x1 × y1 < x2 × y2} ,

by definition of the order topology (because there are no greatest or least elements).
A basis for T ′ is given by

B′ = {{r} × (a, b) | a < b}

by Theorem 15.1, since the sets {r} for r ∈ R are a basis for the discrete topology on
R and the sets (a, b) are a basis for the standard topology on R.

Then using Lemma 13.3, we have that T ⊂ T ′ if and only if for every x× y ∈ R and
every B ∈ B with x ∈ B, there is B′ ∈ B′ such that x ∈ B′ ⊂ B. So let x × y ∈ R
belong to a basis element B ∈ B, say B = (x1 × y1, x2 × y2). There are four cases to
consider:

• If x1 < x < x2, let a, b ∈ R be such that a < y < b, then the basis element
B′ = {x}×(a, b) is such that x×y ∈ B′, and also B′ ⊂ B, since for all x×w ∈ B′,
we have x1 < x < x2, so x1 × y1 < x× w < x2 × y2.
• If x1 = x < x2, then y1 < y and let b ∈ R be such that y1 < y < b. Then the basis

element B′ = {x} × (y1, b) is such that x× y ∈ B′, and also B′ ⊂ B, since for all
x× w ∈ B′, we have x1 = x < x2 and y1 < w, so x1 × y1 < x× w < x2 × y2.
• If x1 < x = x2, then y < y2 and let a ∈ R be such that a < y < y2. Then the

basis element B′ = {x} × (a, y2) is such that x× y ∈ B′, and also B′ ⊂ B, since
for all x×w ∈ B′, we have x1 < x = x2 and w < y2, so x1× y1 < x×w < x2× y2.



• Finally, if x1 = x = x2, then y1 < y < y2, and the basis element B′ = {x}×(y1, y2)
is in fact equal to B, so x× y ∈ B′ ⊂ B.

Using Lemma 13.3 again, we now show that T ′ ⊂ T by showing that for every x×y ∈ R
and every B′ ∈ B′ with x ∈ B′, there is B ∈ B such that x ∈ B ⊂ B′. Thankfully this
is simpler: Let x × y ∈ R belong to a basis element B′ ∈ B′, say B′ = {x} × (a, b).
Then in fact if B = (x× a, x× b), then B = B′, so x ∈ B ⊂ B′, and we are done!

Extra problems for graduate credit:

1. For this we use Lemma 13.2: Let

C = {(a, b)× (c, d) | a < b and c < d, and a, b, c, d are rational numbers}

be the collection of sets we are interested in. Then C is a basis for the standard
topology on R2 if for every open set W ⊂ R2 and each x × y ∈ W , there is C ∈ C
such that x × y ⊂ C ⊂ W . So let W be open in R2, so that by the definition of
the standard topology on R2 and Theorem 15.1, there is an indexing set J and real
numbers aα, bα, cα, dα for each α ∈ J such that

W =
⋃
α∈J

(aα, bα)× (cα, dα).

Now let x × y ∈ W , from which it follows that there is α ∈ J such that aα < x < bα
and cα < y < dα. Now no matter what aα, bα, cα, dα, x and y are, there are rational
numbers a, b, c and d such that aα < a < x, x < b < bα, cα < c < y and y < d < dα.
Therefore the set C = (a, b)× (c, d) ∈ C is such that

x× y ∈ C ⊂ (aα, bα)× (cα, dα) ⊂ W

and C is a basis for the standard topology on R2.

2. By Theorem 15.1, a basis for the topology on R` × R is given by

B = {[a, b)× (c, d) | a < b, c < d}.

Therefore by Lemma 16.1,

BL = {([a, b)× (c, d)) ∩ L | a < b, c < d}

is a basis for the subspace topology on L. What do these basis elements look like?
Well, a set like [a, b) × (c, d)) in R2 looks like the interior of a rectangle with just the
left side included in the set (the other sides are not in the set). Now imagining a line
that is not vertical intersecting this rectangle, we see that the line will intersect the
rectangle either in an “open interval” (i.e. pairs x × y ∈ L with a0 < x < b0) or in a
“half-open interval” which is closed on the left (i.e. pairs x× y ∈ L with a0 ≤ x < b0).



(The second case is if L goes through the left side of the rectangle.) If L is vertical,
then L intersects a basis element in an open interval x× y ∈ L such that c < y < d.

Therefore if L is vertical, then the topology on L is just the same as the usual topology
on R, if we imagine L to be just a vertical copy of R in R2. If L is not vertical, in fact
the half-open intervals form a basis for the topology on L. (The proof is similar to the
proof that the topology on R` is finer than the topology on R, see Lemma 13.4.) In
this case, the topology on L is the same as the topology on R`, if we imagine L to be a
copy of R sitting in a crooked way inside of R2. (Soon we will say that if L is vertical,
then L is homeomorphic to R and otherwise L is homeomorphic to R`.)

The situation for R` × R` is similar, except that a basis for the subspace topology on
L is

B′
L = {([a, b)× [c, d)) ∩ L | a < b, c < d}.

This time the sets [a, b)× [c, d) are the interior of a rectangle with the left and bottom
sides included. Now if L is vertical, horizontal, or increasing, then L intersects such
a rectangle in a half-open interval, and this basis generates a topology just like the
topology on R`. If L is decreasing, then L intersects such a rectangle either in an open
interval, a half-open interval, or a closed interval. This basis generates the discrete
topology on L. Indeed, if L is increasing, for any r ∈ R, and a, b such that a < r < b,
both the sets

{x× y ∈ L | r ≤ x < b}

and
{x× y ∈ L | a ≤ x ≤ r}

are open, and their intersection is a single point with x-coordinate equal to r. Therefore
all single points are open in L and L has the discrete topology.


