
Math 295 - Spring 2020
Solutions to Homework 2

1. (a) Let A0 be any subset of [0, 1]. We wish to show that if A0 has an upper bound in
[0, 1], then it has a least upper bound in [0, 1].

First, since [0, 1] ⊂ R, we have that A0 ⊂ R also, and since A0 has an upper bound
in [0, 1], A0 has an upper bound in R, so by the least upper bound property of
R, we can say that there is c ∈ R such that x ≤ c for all x ∈ A0 (c is an upper
bound for A0) and if x ≤ b for all x ∈ A0 for any other b ∈ R, then c ≤ b (so c is
the smallest upper bound).

Our goal is now to show that in fact c ∈ [0, 1]. This will show that c is a least
upper bound for A0 in [0, 1], since being smaller than any upper bound in R
implies that it is smaller than any upper bound in [0, 1] as well.

Now we assumed that A0 has an upper bound in [0, 1], so there is a ∈ [0, 1] such
that x ≤ a for all x ∈ A0. Again, since [0, 1] ⊂ R, a is an upper bound for A0 in
R as well, so c ≤ a.

Since a ∈ [0, 1], we have c ≤ a ≤ 1. In addition, since 0 ≤ x ≤ c for all x ∈ A0,
we have that 0 ≤ c ≤ 1, so c is a least upper bound in [0, 1] and we are done.

(b) This problem is very similar to part (a); to highlight this we leave the text un-
changed except where we must to make the proof work.

Let A0 be any subset of [0, 1). We wish to show that if A0 has an upper bound
in [0, 1), then it has a least upper bound in [0, 1).

First, since [0, 1) ⊂ R, we have that A0 ⊂ R also, and since A0 has an upper bound
in [0, 1), A0 has an upper bound in R, so by the least upper bound property of
R, we can say that there is c ∈ R such that x ≤ c for all x ∈ A0 (c is an upper
bound for A0) and if x ≤ b for all x ∈ A0 for any other b ∈ R, then c ≤ b (so c is
the smallest upper bound).

Our goal is now to show that in fact c ∈ [0, 1). This will show that c is a least
upper bound for A0 in [0, 1), since being smaller than any upper bound in R
implies that it is smaller than any upper bound in [0, 1) as well.

Now we assumed that A0 has an upper bound in [0, 1), so there is a ∈ [0, 1) such
that x ≤ a for all x ∈ A0. Again, since [0, 1) ⊂ R, a is an upper bound for A0 in
R as well, so c ≤ a.

Since a ∈ [0, 1), we have c ≤ a < 1. In addition, since 0 ≤ x ≤ c for all x ∈ A0,
we have that 0 ≤ c ≤ 1, so c is a least upper bound in [0, 1) and we are done.

Note that not all subsets of R satisfy the least upper bound property!! Take
for example the set A = {q ∈ Q : q ≤ 2}. This set does not have the least upper
bound property. One can construct a subset A0 ⊂ A that is bounded above but that
does not have a least upper bound in A, for example the set A0 = {q ∈ Q : q2 < 2}.
A0 is bounded above by 2 ∈ A, but there is no least upper bound because for every
c ∈ A such that c ≥ x for all x ∈ A0, there is some other b ∈ A such that b ≥ x for all



x ∈ A0 but b ≤ c. The reason this fails is that the “true” least upper bound of A0 is√
2, which exists in R, but does not exist in A.

2. (a) Suppose that x + y = x for two real numbers x and y. By axiom (4), there is a
unique z ∈ R such that x+ z = 0. Adding z to both sides of our equation we get
(x+ y) + z = x+ z, and applying axioms (1) and (2) to the left hand side, we get
(x + z) + y = x + z. Replacing x + z with 0, we get 0 + y = 0 and by axioms (2)
and (3) we thus get y = 0.

(b) Recall that −1 is the number such that 1 + (−1) = 0, and −x is the number such
that x + (−x) = 0. To show that (−1) · x = −x, we therefore must show that
x + (−1) · x = 0.

To prove this we will need the fact that for any x ∈ R, 0 · x = 0. Because
that is not an axiom, before we can use this fact we prove it. In part (a) of
this question, we showed that if x + y = x, then y = 0. Here we note that x is
arbitrary in the statement of (a), so we can choose it to be the x we care about.
So to show that 0 · x = 0, we will show that x + 0 · x = x. But indeed, by (5)
x + 0 · x = (1 + 0) · x = 1 · x = x. (Here we also used (3) to say that 1 + 0 = 1
and 1 · x = x.)

Now it easily follows that x + (−1) · x = 0: by (5) x + (−1) · x = (1 + (−1)) · x =
0 · x = 0.

3. (a) First assume that x > y. Let z = −x + (−y). By (6), x − x − y > y − x − y,
and using (1), (2) and (4) this simplifies to −y > −x, which is what we sought.
Assume now that −x < −y. Let z = x + y. By (6), −x + x + y < −y + x + y,
and again using (1), (2) and (4), this simplifies to y < x.

(b) Suppose that x > y and z < 0. We first show that if z < 0, then −z > 0:
Indeed, to the inequality z < 0 we add −z to each side and by (6) we get 0 < −z.
Then by (6) again, we have that (−z)x > (−z)y. But by problem 2, part (b),
−z = (−1) ·z, and so by associativity we have (−1)(zx) > (−1)(zy), and applying
problem 2, part (b) again, we get −zx > −zy. But by part (a) of this problem
and (1), this implies xz < yz.

4. Only if both A and B are not empty: If, for example, A is empty and B is infinite, then
A × B is empty and therefore finite, but B is infinite. (This is enough to completely
answer the question correctly.)

But for fun, let’s assume further that A and B are nonempty, and show that A×B is
finite implies that A and B are finite. (I also accepted this for full credit.)

We show that A is finite; the proof that B is finite is identical. Since B is nonempty,
let b ∈ B. Consider then the set A× {b} ⊂ A× B. Since it is a subset of a finite set,
it is finite, and therefore in bijection with {1, 2, . . . , n} for some positive integer n. At
the same time, A × {b} is in bijection with A, via the map sending a pair (a, b) to a.
This is injective since a1 = a2 implies that (a1, b) = (a2, b), and it is surjective since



(a, b) maps to a for all a ∈ A. Since a composition of bijections is a bijection, A is also
in bijection with {1, 2, . . . , n}, so A is finite.


