Math 295 - Spring 2020
Solutions to Homework 15

1. By Lemma 26.4, because B is compact and disjoint from A, we know that for each
a € A, there are disjoint open sets U,, V, such that a € U, and B C V,. Consider the
collection of sets

2.

{U, | a € A}.

This is an open cover of A, and therefore there is a finite subcover

{Uay, Uy - .., Ua, }-

Let U = U, U, and V = (_, V,,. Both sets are open, since they are a finite
union and a finite intersection of open sets, respectively. Furthermore, B C V,, for all
i1=1,...,n,80 BCV,and A C U. Finally, U and V are disjoint. Indeed let =z € V.
Then z € V,, for alli=1,...,n,s0 x € Uy, for any i = 1,...,n, and therefore z ¢ U.

(a)

Every metric space is Hausdorff, so a compact set A in X is closed.

We now show that if A is compact, then A is bounded. We have that the collection
of open set

A ={Bya,1) | ac A}

covers A, and since A is compact, there is a finite subcover

{Ba(a1,1), By(as, 1), . .., Ba(an, 1)}.

Now let
M = max{d(a;,a;) |1 <i<j<n},

the largest distance between a pair of elements {a;,a;}. Then we claim that if
z,y € A, then d(z,y) < M + 2, so A is bounded. Indeed, there are i, 7 such that
x € By(ai, 1) and y € By(aj, 1), and so we have

dla,y) < d(x,a;) + d(aia;) + d(aj,y) < 1+ M+ 1= M +2.

Let R have the usual topology, with the metric

d(z,y) = min(ja — |, 1).

By Theorem 20.1, this induces the usual topology on R since d(x,y) = |z — y|
induces the usual topology on R (we proved this in Homework 9 problem 3(a)).
Then R is closed and bounded under the metric d, but we have shown in class
that R is not compact.



3. First we note that if any A € A is empty, then Y is empty and therefore connected.
(The empty set is vacuously connected, since it does not have a separation; it does not
contain two nonempty disjoint open subsets!) We thus from now on assume that all
A € A are nonempty. In that case, since the elements of A are ordered under strict
inclusion, they satisfy the finite intersection property, and by Theorem 26.9 since X is
compact, Y is nonempty.

We follow the suggestion of the hint: Suppose that Y is not connected and has a
separation Y = C'U D, where C and D are disjoint, nonempty, and open in Y. Since
C=Y—-Dand D=Y —C, C and D are also closed in Y. By Homework 5 problem
1(a), since Y is closed in X (it is an intersection of closed sets, hence closed), C' and
D are also closed in X. Because X is compact, this implies that C' and D are compact
in X. Now because C and D are disjoint, by problem 1 of this homework, there are
U,V open in X and disjoint such that C C U and D C V.

We now consider the collection
C={A-(UUV)|Ae A}

This collection is not ordered under strict inclusion as I claimed in class (sorry!) so
the argument has to be modified a little bit. We still wish to show that C contains
nonempty closed sets and that it satisfies the finite intersection property. Suppose first
for a contradiction that A — (U U V) is empty for some A € A. Since U and V are
disjoint and open, if A — (UUV) =@ then AC UUV,and ANU, ANV are two
disjoint sets open in A such that A = (ANU)U(ANV). Because A is connected, this
forces A C U or A C V. Without loss of generality, say A C U. But then, Y C U,
which is a contradiction since D is nonempty and therefore V' intersects Y nontrivially.
Therefore A — (U U V) is nonempty for all A € A.

Now A — (UUV) is closed for each A € A since A is closed in X, and X — (UUV) is
closed in X, and therefore A — (UUV) = AN (X — (UUYV)) is the intersection of two
closed sets. Finally, let

{A = (UUV),Aa—(UUV),...., A, — (UUV)}

be any finite subcollection of C, ordered without loss of generality so that A; 2 As D
- 2 A,. We have that

n

(A = (U uV)) (ﬂA) (UUV)=A4,—(UUV)# @

=1

since A,, € A. Therefore the collection C is, as claimed, a collection of nonempty closed
sets of X that satisfies the finite intersection property, and therefore

- wuv))
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is nonempty because X is compact.

We now have obtained a contradiction, because as in the finite intersection case we

have

(A-(UuV)) (ﬂA) (UUuV)=Y —(UUV).

AcA AcA

But since Y = C U D C U UV, this should be empty, which is the contradiction.

Extra problem for graduate credit:

1.

(a)

Let first # € A. Then for each n € Z,, there is a, € A such that a, € By(x, %),
since By(z, 1) is a neighborhood of z. Therefore we have that d(z, A) < £ for all
n € Z, but certainly d(xz, A) > 0 since the value d(z,a) is bounded below by 0
for all @ € A, and so it follows that d(x, A) = 0.

Conversely, suppose that d(z, A) = 0. This means that for all ¢ > 0, thereisa € A
with d(z,a) < e (if that were not the case, € would be a greater lower bound for
{d(z,a) | a € A}, and 0 could not be the greatest lower bound). Therefore for all
€ > 0 there is a € A with a € By(z,€). By the characterization of open sets in
a metric space, every neighborhood of = contains a ball By(x,¢) for some € > 0,
and therefore every neighborhood of x contains a point of A and z € A.

As stated on page 175 of Munkres, the function d(z,-): A — R sending a to d(z, a)
is continuous. By the Extreme value theorem, since A is compact, this function
attains a minimum value on A: There is ag € A such that d(z, ay) < d(x,a) for
all a € A. Furthermore, since ay € A, there is no other value r € R such that
r < d(z,a) for all a € A but r > d(x,ap) (i.e. d(z,ap) is the greatest number that
is a lower bound for the set {d(z,a) | a € A}). It follows that

d(z,ap) = inf{d(z,a) | a € A} = d(z, A).

We do the easy implication first: If  is in the union of the open balls By(a,€),
then there is a € A such that x € By(a,€). Therefore we have that d(z,a) < € for
this a, and therefore d(z, A) < € since d(x, A) < d(z,a) for all a € A. Therefore
r € U(Ae).

Let now x € U(A,¢), i.e. d(x,A) < e. By definition of the greatest lower bound,
for every r € R such that r > d(x, A), there is a € A such that d(z,a) < r (if there
was a value of r without that property, then this value of r would be the greatest
lower bound, since it would be a lower bound for the set {d(z,a) | a € A}, and
it would be greater than d(x, A)). Now fix r such that d(z, A) < r < € (since
d(x,A) < €, there certainly exists such a real number r), then by our reasoning
above there is a € A such that d(x,a) < r. This means that x € By(a,r) C
Bg(a,€), and therefore z is in the union of the open balls By(a,¢).



(d)

By the characterization of open sets in a metric space, for each x € U, there is
€z > 0 such that By(z,e,) C U. For each a € A C U, let r, = %. Now the
collection of sets

A ={Byla,r,) | a € A}

is an open cover of A. Since A is compact, there is a finite subcover, say

{Ba(a1,74,), Ba(az,7a,), - -, Balan,7a,)}

Let € = min} ,{r,, }. We claim that for all a € A, By(a,€) C U, and therefore U
contains an e-neighborhood of A, as claimed.

Let a € A and y be such that y € By(a,€). In particular, d(y,a) < e. There is
j such that a € Bqy(a;,7q,), so d(a,a;) < r4,. Using the Triangle Inequality, we
have

d(y,a;) < d(y,a) +d(a,a;) < e+rq; <21y,

since € = min;_,{ry, }. It follows that y € By(a;,2r,;). But recall that r,, was
chosen so that By(aj,2r,;) C U, soy € U. It follows that By(a,e) C U for all
a € A, and we are done.

Consider R x R with the metric d(z1 X y1, 22 X y2) = max(|zy — z1|, |y2 — 1]).
d induces the usual topology on R x R, by Homework 10, problem 1. We claim
that R x {0} is closed in R x R. Indeed, {0} is closed in R since R is Hausdorff,

R is closed, and a product of closed sets is closed in the product topology.
Consider the open set U = {z x y | |y| < =4}, then R x {0} C U, but there is
no e-neighborhood of R x {0} in U. Indeed, for any ¢ > 0, there is M € R such
that M++1 < €. Then for z > M, we have mg#ﬂ < M++1 < €. In that case, the
point x X M++1 belongs to the e-neighborhood of R x {0}, since

1 1 1
d(me,xxMQ—H)_max<|0\,‘M2+1D—M2+1<6,
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but x x does not belong to U since

-
M2 +1 241

Therefore there is no e-neighborhood of R x {0} in U.



