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1. Suppose for a contradiction that they are homeomorphic, and let f : (0, 1]→ (0, 1) be
a homeomorphism. Let a ∈ (0, 1) be such that f(1) = a. Then because f is a bijection,
f−1(a) = 1 (no other point maps to a).

By restriction of the domain (Theorem 18.2(d)), the function f |(0,1) : (0, 1) → (0, 1)
is also continuous. We also have that the image set of f |(0,1) is contained in the set
(0, a)∪(a, 1), since now that 1 has been removed from the domain, nothing maps to the
value a. By restriction of the range (Theorem 18.2(e)), f |(0,1) : (0, 1) → (0, a) ∪ (a, 1)
is also continuous. In addition, it is surjective (in fact, it is bijective). But we know
that the image of a connected set under a continuous map is connected, and therefore
we get a contradiction since (0, a) ∪ (a, 1) is not connected.

Therefore (0, 1] and (0, 1) are not homeomorphic.

2. Let Y ⊂ X be a nonempty subspace, and suppose that it is covered by an arbitrary
collection A of sets open in X. Let A ∈ A be any nonempty element of this collection.
Since A is open and nonempty, its complement X −A is finite. Since Y −A ⊂ X −A,
Y − A is also finite, say Y − A = {y1, y2, . . . , yn}. For each i, let Ai ∈ A be such that
yi ∈ Ai. Then the finite subcollection {A,A1, . . . , An} covers Y , and Y is compact.

3. (a) If X is compact in the T ′ topology, then it is compact in the T topology. Indeed,
let A be a collection of sets that belong to T and that cover X. Then they also
belong to T ′, and since X is compact in this topology, there is a finite subcover.
Therefore X is compact in the T topology.

However, if X is compact in the T topology, X may or may not be compact in the
T ′ topology. We give two examples: First let X = R, T ′ be the usual topology
and T be the trivial topology. Since the trivial topology is contained in every
topology, T ′ ⊃ T . Then X is compact in the T topology (every space is compact
in the trivial topology) but it is not compact in the T ′ topology (we showed this
in class).

However, if X = R still but now T ′ is the finite complement topology, and again
T is the trivial topology. Since the trivial topology is contained in every topology,
once again T ′ ⊃ T . This time X is compact in both topologies, by problem 2 of
this homework.

(b) Let T and T ′ be two topologies on X such that X is compact and Hausdorff in
both topologies. Furthermore, suppose that T ′ ) T . We will derive a contradic-
tion. Note that this will complete the proof: by symmetry, this will show that
if we suppose that T ′ ( T , we also get a contradiction. If both strict inclusions
lead to contradictions, then it follows that it must be the case that T ′ = T or T
and T ′ are not comparable.

We thus proceed with our work. Let U ∈ T ′ − T . Then the set A = X − U is
closed in T ′ but not in T . Since X is compact in the T ′ topology, A is compact



in the T ′ topology. By part (a) of this problem, A is then also compact in the
T topology. Since X is Hausdorff in the T topology, A is therefore closed in X.
This is the contradiction.

4. Let Y1, . . . , Yn be compact, and suppose that they are all contained in a topological
space X. Let A be a collection of sets open in X, such that A covers

⋃n
i=1 Yi. Then

for each i, A covers Yi, and therefore there is a finite subcollection of elements of A
that cover Yi:

Yi ⊂
mi⋃
j=1

Ai,j.

Now consider the set

{A1,1, . . . , A1,m1 , A2,1, . . . , A2,m2 , . . . , An,mn}.

This is a finite collection of elements, since it is the union of finitely many finite
collections. Furthermore, it covers

⋃n
i=1 Yi, and therefore

⋃n
i=1 Yi is compact.

Extra problem for graduate credit:

1. As suggested, we first show that if A is closed in X with empty interior, and U is
any nonempty open of X, then there is a nonempty open set V such that V ⊂ U and
A ∩ V = ∅.

To do this, we first remark that it cannot be the case that U ⊂ A, since A has empty
interior and U is not empty. Therefore, there is x ∈ X such that x ∈ U − A. We now
note that since X is compact and A ∪ (X − U) is closed (this is a union of two closed
sets), A ∪ (X − U) is compact. Since X is Hausdorff and x 6∈ A ∪ (X − U), there are
open sets V,W in X such that V ∩W = ∅, x ∈ V and A ∪ (X − U) ⊂ W .

We claim that V as described above is the open set we sought. Indeed V is nonempty
and open. Suppose that a ∈ A, we show that a 6∈ V , which will prove the last claim.
Indeed, if a ∈ A, then a ∈ W which is an open set, and W ∩ V = ∅. Therefore there
is a neighborhood of a that does not intersect V , and a 6∈ V .

Finally, we show that V ⊂ U . Indeed, let x ∈ X − U , in the same manner as just
above, we can show that x 6∈ V , since x ∈ W which does not intersect V .

We now proceed to Step 2. Suppose by contradiction that
⋃∞

n=1An does not have
empty interior. Then there is U nonempty and open such that U ⊂

⋃∞
n=1 An, and

consider A1 which is closed with empty interior by hypothesis. Then by Step 1 there
is a nonempty open set V1 with V 1 ⊂ U ⊂

⋃∞
n=1An such that A1 ∩ V 1 = ∅.

Now let U = V1, which is nonempty and open, and consider A = A1 ∪ A2. A is the
union of two closed sets, and therefore it is closed. We must show that its interior
is empty. Let W be open in X such that W ⊂ A. Then W ∩ (X − A2) is an open
set, since X − A2 is open, and W ∩ (X − A2) ⊂ A1. Since A1 has empty interior by
hypothesis, W ∩ (X −A2) is empty, but this implies W ⊂ A2, which is a contradiction



since A2 also has empty interior. We note for the future that we have proved that a
finite union of closed sets with empty interior has empty interior.

Going back to our set up though, we have U = V1, which is nonempty and open, and
A = A1 ∪A2, which is closed with empty interior. Therefore there is V2 nonempty and
open with V 2 ⊂ V1 and A ∩ V 2 = ∅.

We continue like this: At every step we can find Vn nonempty and open such that

(
n⋃

i=1

An) ∩ V n = ∅,

and
∞⋃
n=1

An ⊃ V 1 ⊃ V 2 ⊃ V 3 ⊃ · · · ⊃ V n−1 ⊃ Vn,

because
⋃n

i=1An is closed with empty interior.

Continuing in this way, we have a nested sequence

V 1 ⊃ V 2 ⊃ V 3 ⊃ · · · ⊃ V n ⊃ · · ·

of nonempty closed sets in X. By Th eorem 26.9 there is a point in their intersection
since X is compact. In other words, there is x ∈ X such that x ∈ V n for each n. In
particular, this means that x 6∈ An for any n, so x 6∈

⋃∞
n=1 An. At the same time, since

each V n ⊂
⋃∞

n=1 An, certainly x ∈
⋂∞

n=1 V n ⊂
⋃∞

n=1An, which is a contradiction.


