Math 295 - Spring 2020
Solutions to Homework 12

1. Fix € > 0, and consider the open ball By(z,€). Since this is a neighborhood of x and
x, — x, there is N such that if n > N, then z,, € By(z,¢). Therefore, if n > N,
d(x,,x) < €, and we are done.
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d3(11,2) = |11 — 2|3 = |93 = g

(b) We show the three axioms:

1.

Nonnegativity: Since p > 0, p=* > 0 for all @ > 0. This also shows that
dy(z,y) = 0 if and only if x = y, since p~* is never zero.

. Symmetry: Note that for all z,y € Z, x —y = —(y — ). Since —1 is not

divisible by p, the largest power of p that divides x — y is the same as the
largest power of p that divides y — z.

. Triangle inequality: Let z,y,z € Z, and for simplicity, let a = x — z and

b =z —y. Then we have that d,(z, z) = |a|, d,(2,y) = |b|p, and d,(z,y) =
|(z — 2) + (z — y)|, = |a + b|, so we must show that for all a,b € Z,

la + b’p < ’a‘p + |b’p-

Note that if any of these three numbers is 0, the claim follows immediately,
so we assume a, b, a + b # 0.

Suppose that |al, = p~®, so a = p®my, and |b|, = p~?, so b = p’my, where
p does not divide my or msy. Suppose without loss of generality that o < .
Then we have

a+b=p*my +p’my = p*(my +p’"my).

Since my + p®~@msy is an integer, « is less than or equal to the largest power
of p that divides a+b. (It will be exactly equal to the largest power of p that
divides a + b if f > «, in which case m; + p®~®ms is not divisible by p; if
$ = a then perhaps m; + p®~%my = m, + my is divisible by p, so perhaps «
is strictly less than the exact power of p that divides a + b.)

In any case, this means that |a|, = p~* > |a + b|,, from which it follows that
la + b, < |a|, + ||, since |b], > 0.

3. By Lemma 20.2, it suffices to show that for all x € R and each € > 0, there is § > 0
such that By, (z,d) C Bg,(z,€). Note that since d; is the discrete metric, which induces
the discrete topology, we have that {z} = By, (x, 5) is open for all € R. Therefore
for all z € R and € > 0, By, (z, 5) C B, (x, €).



4. If X is finite, then the finite complement topology is the discrete topology (since every
set has finite complement). On a finite set, the discrete topology is metrizable; it is
given in fact by any metric, or in particular by the discrete metric.

If X is infinite, then it is not metrizable. We know that every metric space is Hausdorff.
Therefore, any space that is not Hausdorff cannot be metrizable. If X is infinite, then it
is not Hausdorff in the finite complement topology. Indeed suppose for a contradiction
that © # y € X and x € U, y € V with U,V open and disjoint. Since X is infinite
and V has a finite complement, V' is infinite. However, at the same time V is a subset
of the complement of U, which is finite. Since every subset of a finite set is finite, we
have a contradiction.

5. Let X = U UV be a separation of X. Note this implies that U is the complement of
V in X and V is the complement of U in X. Then since U is open, V is closed; since
V' is open, U is closed. Therefore X = U UV is a separation of X into two closed sets.
Conversely, if X = AU B for A, B nonempty closed and disjoint, then A and B are
open since their complement is closed, and X = A U B is a separation of X.

6. Throughout, fixz € X —Aandy €Y — B.

First, we claim that for ¢y € Y — B, then
Ty=xzxYUXxy

is connected. Indeed z x Y is homeomorphic to Y, and therefore connected since Y
is connected, and X x ¢’ is homeomorphic to X, and therefore connected since X is
connected. In addition, z x ¥’ € x x Y N X x ¢/, so by Theorem 23.3, T, is connected.

Similarly, for 2’ € X — A, T, =2’ x Y U X X y is connected.

c= |J 1.

y'eY—-B

Now consider the set

We claim that C'is connected. By Theorem 23.3, it suffices to show that the intersec-
tion is nonempty, since each T,, is connected. The whole line x x Y belongs to this
intersection, so it is indeed nonempty. Similarly,

D = U T,

r’eX—A

is connected since X x y belongs to the intersection of the sets.

Now we claim that C'U D is connected, and C U D = (X xY) — (A x B), which
completes the proof.

First, C' and D are connected, so it suffices to show that their intersection is nonempty;
this follows since z x y € C' N D.



Finally, we prove the equality of sets. We begin by showing that (X xY)— (A x B) C
CUD. Let 2/ xy € (X xY)—(Ax B). Then either 2’ € X — A, ory € Y — B. If
e X —A thena' xy € D;and if y € Y — B, then 2/ x 3 € C.

We now prove the reverse inclusion. If 2/ x ¢ € C' U D, then either 2/ x v/ € C or
¥ xy e€D. Ifa' xy € C,theneither2’ =z € X —A,s02' xy € (X xY)—(AXB),
ory € Y — B, in which case 2’ x ¢y € (X xY) — (A x B) also. If 2’ x ¢’ € D, then
eithery =y €Y —B,ora’ € X — A, and again 2’ x ¢ € (X XY) — (A x B), and we
are done.

. Let A be a proper subset of X with empty boundary. We claim that X = AU (X — A)
is then a separation of X, which is a contradiction since X is connected.

Indeed, by assumption the two sets are disjoint. Furthermore, if x € X, then either
reACAorre X —-AC(X—-A),s0X=AU(X — A). We note that this implies

that A is the complement of (X — A).

Then we know that (X — A) is closed, which implies that A is open, and similarly
(X — A) is open because A is closed. Finally, since A is a proper subset, A # @
implies that A is nonempty, and A # X implies that X — A is not empty so (X — A)
is not empty either.



