Math 295 - Spring 2020
Solutions to Homework 11

1. Suppose first that X is connected in the 77 topology. Then X is connected in the 7~
topology as well. Indeed, suppose for a contradiction that there are U,V € T that
form a separation of X in the 7 topology. Then since 7 C 7', U,V € T as well, and
they form a separation of X in the 7" topology.

However, if X is connected in the T topology, then X may or may not be connected
in the 77 topology. For example, let X = R, T be the trivial topology and T’ be
the usual topology. Then X is connected in both topologies. (We will show that R is
connected in the usual topology next week, and every space with the trivial topology
is connected, as we showed in class.)

But if X = R, 7 is the trivial topology and 7" is the discrete topology, then X is
connected in the 7 topology but not in the 7' topology. (See problem 3. of this
homework set for a proof that the discrete topology is disconnected if X has more
than one element.)

2. For each n, let
i=1

Then we claim that each B, is connected, that (] B,, is nonempty, and |J A, = |J By.
This is enough to show that | J A, is connected. Indeed, granting the two claims on
the B,s, we can apply Theorem 23.3 to get that | J B, is connected.

We show that each B, is connected by induction. First, we have that B; = A, so
By is connected by assumption. Suppose now that B,_; is connected. Then B, =
B,_1 U A,, where both B, _; and A, are connected and B, 1 N A, # & because
B, 1NA, DA, 1NA,#d. Therefore B, is connected by Theorem 23.3.

Next we show that () B,, is nonempty: We have that A; C B, for each n, and A; # @
since A} N Ay # &. Therefore Ay C () B,, and () B, is nonempty.

Finally, we have that | J A, = J B,.: If a € |J A, then a € A, for some n, and therefore
a € B, C|JB,. Conversely, if b € | J B, then b € B,, for some n, and therefore b € A;
for some 1 <i < n,sobe|JA,.

3. Let X have the discrete topology. Let A be a connected subspace of X. If p # q € A,
then {p} = AN {p} is open in A, and A — {p} is nonempty and open in A since
A—{p} = AN(X—{p}), and of course X —{p} is open in the discrete topology. Then {p}
and A — {p} form a separation of A, since {p} and A — {p} are disjoint and their union
is A. Therefore, any subspace of X with at least two distinct points has a separation.
However, any subspace of X with only one point inherits the trivial topology as its
subspace topology, and is therefore connected. As a result, the connected subspaces
of X are exactly the one-point sets. (The status of & as a connected subspace is



uncertain. Some people say yes, vacuously, in which case here I guess it should be
added to the list of connected subspaces of X.)

The converse is not true. Consider Q C R. Then Q is totally disconnected, as we
showed in class on March 23. (Basically, if p < ¢ € Y C Q, then let a be an irrational
number with p < a < ¢, then Y N (—o0,a) and Y N (a, 00) form a separation of Y, so
the only connected sets are the one-point sets.) However, the one-point sets are not
open in Q, so Q does not have the discrete topology. Indeed, let V' be open in Q and
p € V. We show that there is ¢ # p € V so if V is open V cannot be a one-point
set. Since V is open in Q, there is U open in R such that V = QN U. Since U is
open in R, whose topology has a basis given by the open intervals, and p € U, there is
therefore (a,b) C R such that p € (a,b) C U. Therefore, of course, QN (a,b) C V, and
so to complete the proof it suffices to show that if p € (a,b), there is another rational
number ¢ # p with ¢ € (a,b). For this, we use the fact that any interval in the real
numbers contains a rational number. Therefore the interval (a,p) contains a rational
number ¢, which is necessarily different from p, and ¢ € (a,b).

Extra problem for graduate credit:

1. By symmetry, it is enough to show that Y U A is connected, the proof for Y U B is
identical. Suppose for a contradiction that C' and D are a separation of Y UA. Since Y
is connected and Y C YU A, then either Y C C or Y C D. Without loss of generality,
suppose that Y C C'. Then we claim that D and B U C form a separation of X. This
will be a contradiction to the assumption that X is connected, and therefore will show
that Y U A must be connected.

First, D and B U C are nonempty, since C' and D are a separation of a space (and
therefore nonempty). Furthermore, they are disjoint. That is because C' and D are
disjoint, and D and B are disjoint (indeed, D C YUA, and Y, A and B are all pairwise
disjoint).

We also have that X = D U (B U (), since any = € X either belongs to Y, in which
case it belongs to C, or it belongs to X — Y, in which case it must belong either to A
(and therefore to C' or D) or to B.

It therefore only remains to show that D and B U C are open in X. First, we have
that D is open in Y U A, so there is U C X such that D = U N (Y U A). However,
since DNY =@ (since Y C C'), D =UNA, and D is open in X because both U and
A are open in X.

We now wish to show that B U C' is open. First, we have that C' is open in Y U A,
so there is U C X open such that C' = U N (Y U A). Notice then that U — C C B
(everything extra that is in U but not in C' has to be in B). Furthermore, B is open
in X — Y, so there is V' C X open such that B = (X — Y) N V. Here notice that
V — B C Y (everything extra that is in V' but not in B has to be in Y'). We claim
thus that U UV = BUC. Since C C U and B C V, it follows that BUC Cc UU V.
Conversely, let u € U. Then either u € C, so u € B U C, or otherwise u € B since



U —C C B, in which case again u € BUC. If v € V, then eitherv € B,orv e Y C C,
so either way v € BUC'. Since both U and V are open in X, U UV is open in X and
we are done.



