Math 295 - Spring 2020 Solutions to Homework 10

- 1. (a) We verify the three axioms:
 - 1. Nonnegativity: The maximum of a set of nonnegative numbers is nonnegative. Furthermore, the maximum of a set of nonnegative numbers is zero if and only if every number in the set is zero.
 - 2. Symmetry: This follows from the fact that for each i, $|x_i y_i| = |y_i x_i|$.
 - 3. Triangle inequality: Let $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n), \mathbf{z} = (z_1, \dots, z_n) \in \mathbb{R}^n$, and let k be such that $\rho(\mathbf{x}, \mathbf{z}) = |x_k z_k|$ (the maximum value is attained since n is finite). Then we have

$$\rho(\mathbf{x}, \mathbf{z}) = |x_k - z_k| \le |x_k - y_k| + |y_k + z_k| \le \rho(\mathbf{x}, \mathbf{y}) + \rho(\mathbf{y}, \mathbf{z}),$$

where here we have used the triangle inequality for the usual absolute value, and the fact that for each i, $|x_i - y_i| \le \rho(\mathbf{x}, \mathbf{y})$.

(b) The topology induced by ρ has as a basis the collection

$$\mathcal{B} = \{ B_{\rho}(\mathbf{x}, r) \mid \mathbf{x} \in \mathbb{R}^n, r > 0 \},$$

and the usual topology on \mathbb{R}^n has as a basis the collection

$$\mathcal{B}' = \{(a_1, b_1) \times \cdots \times (a_n, b_n) \mid a_i < b_i \in \mathbb{R}\}.$$

We use Lemma 13.3 to show that these two bases generate the same topology.

Let $\mathbf{x} \in \mathbb{R}^n$ and $B = B_{\rho}(\mathbf{y}, r) \in \mathcal{B}$ be such that $\mathbf{x} \in B$. Then there is $\delta > 0$ such that $B_{\rho}(\mathbf{x}, \delta) \subset B_{\rho}(\mathbf{y}, r)$. Let $B' = (x_1 - \delta, x_1 + \delta) \times \cdots \times (x_n - \delta, x_n + \delta)$. Then $\mathbf{x} \in B' \subset B_{\rho}(\mathbf{x}, \delta) \subset B$.

Now let $\mathbf{x} \in \mathbb{R}^n$ and $B' = (a_1, b_1) \times \cdots \times (a_n, b_n) \in \mathcal{B}'$ be such that $\mathbf{x} \in B'$. Let $r = \min_{i=1}^n (x_i - a_i, b_i - x_i) > 0$, and let $B = B_{\rho}(\mathbf{x}, r)$. Then if $\mathbf{y} \in B$, for each i we have $|x_i - y_i| \le \rho(\mathbf{x}, \mathbf{y}) < r$, so $y_i \in (a_i, b_i)$ and $\mathbf{y} \in B'$. Therefore $\mathbf{x} \in B \subset B'$.

2. Let (X, d) be a metric space, and let $x \neq y \in X$. Then d(x, y) > 0 by the properties of a metric. We claim that $B_d(x, \frac{d(x,y)}{2})$ and $B_d(y, \frac{d(x,y)}{2})$ are disjoint, and as they are open sets containing x and y respectively, proving this will complete the proof.

Let $z \in B_d(x, \frac{d(x,y)}{2})$. By the triangle inequality,

$$d(z,y) \ge d(x,y) - d(x,z) \ge d(x,y) - \frac{d(x,y)}{2} = \frac{d(x,y)}{2},$$

therefore, $z \notin B_d(y, \frac{d(x,y)}{2})$, and the two balls are disjoint.

3. (a) All three properties follow from the fact that they hold for all $x_1, x_2, x_3 \in X$, and therefore for all $a_1, a_2, a_3 \in A$.

(b) The subspace topology on A is exactly

$$\mathcal{T} = \{ U \cap A \mid U \text{ is open in } X \}.$$

We use Lemma 13.2 to show that the balls $B_{d|_{A\times A}}(a,r)$ for $a\in A$ and r>0 form a basis for this topology.

First, we note that

$$B_{d|_{A\times A}}(a,r) = B_d(a,r) \cap A,$$

and therefore each $B_{d|_{A\times A}}(a,r)\in\mathcal{T}.$

Now it remains to show that for every $a \in A$ and $V \in \mathcal{T}$, there are $b \in A$ and r > 0 such that $a \in B_{d|_{A \times A}}(b,r) \subset V$. Since $V \in \mathcal{T}$, there is U open in X such that $V = U \cap A$. Now by the characterization of opens in a metric space, there is $\delta > 0$ such that $B_d(a,\delta) \subset U$. Now we have that $B_{d|_{A \times A}}(a,\delta) = B_d(a,\delta) \cap A$, so $a \in B_{d|_{A \times A}}(a,\delta) \subset V$. This is exactly what we need to apply Lemma 13.2, and so the balls in the restricted metric are indeed a basis for the subspace topology on A.