Show that $J_c = \left\{ \text{Uc} \times \text{I} \times \text{-U} \text{ is either countable or } \text{X-U=X} \right\}$ means either finite $\left(\phi \text{ is finite} \right)$ or countably infinite there exists a bijection

Zt and the set

• $\phi \in J_c$ because $X - \phi = X$ $X \in J_c$ because $X - X = \phi$ countable

$$J_c = \{ U \subset X \mid X - U \text{ is either countable or } X - U = X \}$$

· let $U_{\alpha} \in J_{c}$ for $\alpha \in J$, J arbitrary indexing set Let $U = U U_{\alpha}$ $\alpha \in J$ de Morgan's law

$$X-U=X-UU_{\alpha}=\bigcap_{\alpha\in J}(X-U_{\alpha})$$

We have that $(X-U_d) \subset X-U_d$ Some $a\in J$ corollary 7.3

But X-U2 is countable and a subset of a countable set is countable. UE Jc

$$J_c = \{ U \subset X \mid X - U \text{ is either countable or } X - U = X \}$$

• Let $U_1, ... U_n \in \mathcal{J}_c$ Let $U = \bigcap_{i=1}^n U_i$ de Morgan's law $X-U = X - \bigcap_{i=1}^n U_i = \bigcup_{i=1}^n (X-U_i)$ countable

A finite union of countable sets is countable (Theorem 7.5) so X-U is countable and U is open.

Is $J_{\infty} = \{ U \mid X - U \text{ is infinite, empty or } X \}$ α topology? Answer is no. The union axiom fails Let $U_{\alpha} \in J_{\infty}$, $\alpha \in J$, $U = U \cup U_{\alpha}$

X=2 $U_1=\{even numbers \neq 0\} \in \mathcal{I}_{\infty}$ $\mathcal{I}_{-}U_1$ is infinite $U_2=\{odd numbers\}$

 $\mathcal{H}-(u_1uu_2)=\{0\}$ not ∞ , or \mathcal{H} so u_1uu_2 not open.