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The Yang-Mills functional over a Riemann surface is studied from the point of view of
Morse theory. The main resultisthat thisisa ‘perfect’ functional provided due account
is taken ofits gauge symmetry. This enables topological conclusions to be drawn about
the critical sets and leads eventually to information about the moduli space ofalgebraic
bundles over the Riemann surface. This in turn depends on the interplay between the
holomorphic and unitary structures, which is analysed in detail.
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Introduction

This paper is a greatly expanded account of the preliminary material that appeared in Atiyah
& Bott (1980). Part of the reason for the long delay between that paper and this present version
was that new view-points emerged that added further interest to the topic and enabled
us to provide proofs for what had earlier been conjectures. The length of this paper is due to our
desire to present the several different aspects of the problem. We feel that this isjustified because
the main interest lies not so much in the actual applications as in the methods employed and
the interaction between different approaches.

Because of its long gestation period and its consequent size, we feel that we owe the reader a
substantial and leisurely introduction that puts the paper into historical perspective. In fact, on
a personal level, one of the attractions of this subject to us is that it brings together algebraic
vector bundles and Morse theory, topics to which we separately made contributions a quarter
ofa century ago (Atiyah 1955,1957; Bott 1958, Bott &Samelson 1958). Even better, the catalyst
that produced this interaction came from a quite unexpected quarter, namely that of theoretical
physics in the form of the Yang-Mills equations.

At this stage we should perhaps explain that our main idea is to apply Morse theory methods to
the Yang-Muills functional over a compact Riemann surface  (or algebraic curve) and deduce
results about the cohomology of the moduli spaces of stable algebraic vector bundles over M.
To explain the background we shall now digress to give brief historical accounts of both Morse
theory and algebraic bundle theory.

Morse theory is concerned with the relation between the homology of a manifold M and the
critical points ofa real-valued function/ on M. When s finite-dimensional these ideas go back
at least to Poincare but they have been applied in more refined form in recent times to derive
deep results concerning the geometry of manifolds. Morse’s great contribution was to deal with
the infinite-dimensional case arising from variational problems for functions ofone variable. The
most noteworthy geometrical application was to the *Energy’ function on the loop space, which
yielded significant results concerning closed godesics. In Bott (1958), Bott & Samelson (1958),
Morse theory was applied to nice spaces arising from Lie groups, such as (some) homogeneous
spaces G/Hand the loop space QG, where explicit knowledge of natural functions could be
exploited to derive information about the cohomology of the spaces concerned.

As a very simple example consider, on the complex projective n-space R (C), the function/
defined by

/(zQ....zn) = [2072W 2

where we use standard homogeneous coordinates. Clearly/has a unique maximum at the point
(1,0,0, ...,0) and a minimum along the hyperplane z0—0. Morse theory then allows one to
conclude that the cohomology of Pn(C) differs from that of Pn-\{C) by a single free generator in
dimension 2 n.This is an easy consequence of the fact that the complement of = Ois a copy
Cn. Ofcourse in this example, and in many other explicit cases, one does not need the function/
to produce the decomposition into such pieces (or strata). In fact for complex homogeneous
spaces one can always produce such a stratification from orbits of suitable groups. The same
applies to QG.Thus in these cases derived from groups, Morse theory, which uses real functior
can be replaced by complex analytic methods. A much more sophisticated, though computa-
tionally simple method of computing Betti numbers is to use the Weil conjectures as established


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 17, 2018

YANG-MILLS EQUATIONS OVER RIEMANN SURFACES 525

by Deligne, which involves counting the number of points over finite fields. This works for
algebraic manifolds and for Pn{Fq) one finds

N(n,g) — (Pn+1-1)/(?-1) =1
Note that the equality

N(n, Q)= N{n-1,0)+qgn

corresponds to the stratification of Pdiscussed above, which indicates the comt
in all three methods of computing Betti numbers. This number-theory approach is frequently
very effective but it does not give as much information as the more direct geometrical methods.
In particular the fundamental group and torsion cannot be computed by number theory. In
fact the Morse theory proofin Bott & Samelson (1958) that ~ was torsion-free was a significant
triumph of the method, particularly since Gitself  have torsion.

We turn next to the topic of algebraic vector bundles over an algebraic curve. Over the
complex numbers these are equivalent to holomotphic vector bundles over the associated compact
Riemann surface. For vector bundles with fibre of dimension one, i.e. line-bundles, the classical
divisor theory of Abel-Jacobi expresses the fact that the isomorphism classes of line-bundles form
an abelian group isomorphic to Zx Jwhere J is
correspond to the Chern class ofthe line-bundle (or the degree ofthe divisor). Weil (1938) began
the generalization of divisor theory to that of matrix divisors, which correspond to the modern
notion ofvector bundle. The classification problem for bundles ofrank lismuch harder than
for line-bundles partly because there is no group structure. Grothendieck (1957)showed that for
genus 0 the classification is trivial, in the sense that every bundle is a sum oflline-bundles. Atiyah
(1957) extended the classification to genus 1and (Atiyah 1955) treated the case ofrank 2 bundles
for genus 2. In general in order to get a good moduli space one has to restrict to the class of
bundles as introduced by Mumford; otherwise one gets non-Hausdorff phenomena. A major
breakthrough came with the discovery by Narasimhan & Seshadri (1965) that bundles are stable
ifand only ifthey arise from irreducible (projective) unitary representations of the fundamental
group. This connection between holomorphic and unitary structures was already apparent in
Weil’s paper, and in the classical case of line-bundles it is essentially equivalent to the identifi-
cation between holomorphic and harmonic 1-forms, which in turn was the starting point for
Hodge’s general theory of harmonic forms.

The unitary view-point enabled Newstead to examine the topological properties of the moduli
space for rank 2, obtaining in particular formulae for the Betti numbers. A direct generalization
of this method to higher rank appeared intractible. A quite different approach, initiated by
Harder (1970) for rank 2 and successfully generalized by Harder & Narasimhan (1975) for
higher rank, was number-theoretical based on the Weil conjectures and counting points over
finite fields. This method, pursued further by Desale & Ramanan (1975) led to an explicit
inductive formula for the Betti numbers ofthe moduli space for arbitrary rank At this point we
should comment that when the Ghern class ld prime to the mo
and non-singular, and this is the case for which Betti numbers are computed. If («, 1then
the moduli space needs to be compactified and the geometry is more complicated.

The success ofthe Harder method depends on the fact that the moduli space N(n, k) for a curve

over a finite field Fgas another description, showing that it is the function field analogue of1
classical moduli space for elliptic curves (i.e. the upper halfplane divided by the modular group).
In modern terminology I is a double coset space of an adele group and counting po

N(nK) can be reduced to computing adelic measures.
42-2
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We come now to the third and most recent ingredient in the story, namely the Yang—Mills
equations. These have become prominent in elementary particle physics and they have been
studied both in Minkowski space, where they are of hyperbolic type, and in Euclidean 4-space
where they are of elliptic type. In this latter case they have deep connections with three-
dimensional algebraic geometry for which the interested reader may consult Atiyah (1979)¢The
Yang—Mills equations can be formulated on any Riemannian manifold  and they depend on
a fixed compact Lie group G. In dimension 2, i.e. when As is a surface, the equations are practi-
cally trivial and all solutions can easily be described. Despite this apparent triviality our first
surprising observation was that, for a 2-sphere, the Yang-Mills equations for G essentially
reproduced the Morse theory picture of QG.The Yang-Mi
Energy and the explicit solutions correspond to the explicit geodesic structure of  The space QG
is replaced by the space of (*-connections modulo (based) equivalence. Unlike the four-dimen-
sional case studied in Atiyah (1979) where the Yang-Mills functional for 2) appears only to
have minima, in two dimensions there are critical points of arbitrarily high Morse index.

With this encouraging start it seemed natural to take the next step and investigate the Yang-
Mills equations over a Riemann surface of arbitrary genus. The Narasimhan-Seshadri unitary
approach fits naturally into this picture since the bundles arising from representations of
are easily seen to give the critical points, and the irreducible representations give the Yang-Mills
minimum,

It seemed reasonable to hope that, as for the genus O case, we would have a perfect Morse
function, i.e. that the critical point structure would correspond precisely to the homology.
Comparison with the results of Newstead showed that this was not true in the naive sense, but it
eventually became apparent that if we used the full symmetry of the situation we should again
have a perfect Morse theory. Technically this meant that we needed to use all bundle auto-
morphisms notjust basedautomorphisms. The lesson learnt from this example is of wider validity
and in 81 we begin with a general discussion of equivariant Morse theory, illustrated with some
very simple examples. For an interesting application of these ideas see Kirwan (1982).

In the application of Morse theory to QGby Bott & Same
related to the cohomology of the whole space, since the cohomology of the various critical
manifolds was all known. In the Yang-Mills case the situation is different, in that the critical
manifolds are complicated and we would like to reverse the procedure, using information about
the whole space to deduce results on the critical manifolds. This procedure works for two reasons.
In the first place the cohomology of the whole space can be easily computed by relating it in fact
to @) (or equivalently to the Yang-Mills situation for genus 0). Secondly the critical
manifolds other than the minimum can all be expressed in terms ofthe minima for  (m) with m <n,
so that we can apply an inductive argument.

At this stage we reach the position that, provided the basic analysis works as expected, we have
a perfect Morse theory and can inductively deduce information about the space of Yang-Mills
minima, which by the Narasimhan-Seshadri theorem can be identified with the moduli space
of stable bundles (in the coprime case (t k)—1). What has to |
Yang-Mills paths of steepest descent always converge in a suitably strong sense to a critical
point. We understand that Uhlenbeck (1982) has preliminary results in this direction that may
do what is required. However, we have found an alternative presentation that is more direct
and by-passes this question.

This alternative is a purely complex-analytic approach developed in §7 and it begins with the
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observation that the space  of unitary connections on a given C®vector bundle over a Riemann
surface can also be viewed as the space * of all holomorphic structures on  One can then define a
stratification of in which the one open stratum corresponds to semi-stable bundles and the
other strata are described in terms of the canonical flags or filtrations introduced by Harder &
Narasimhan (1975). Looked at equivariantly, relative to the group Aut  ofautomorphisms of
Eythis turns out to be a ‘perfect’ stratification and enables us to deduce information about the
equivariant conomology of the semi-stable stratum, and hence in the coprime case about the
cohomology of the moduli space of stable bundles.

This complex approach is analogous to the use of complex cell decompositions to compute
the cohomology of Pn{C) and other homogeneous spaces. However, the stratification of is not
given by orbits ofa group, except in the case ofgenus 0. Although technically independent ofthe
Morse theory approach based on the Yang-Mills functional our complex approach was motivated
by Morse theory and, as explained in 88, itis essentially equivalent toit. By this we mean that, if
the basic analytic facts ofthe Morse theory about convergence oftrajectories are assumed, then our
complex strata must coincide with the Morse strata, i.e. the stable manifolds of the critical sets.

The fact that stability in Mumford’s sense and stability in Morse theory coincide in this
situation is not accidental. As has been pointed out to us very recently by D. Mumford and
S. Sternberg, this phenomenon occurs quite generally in the context studied in Mumford
(1965) of reductive groups acting on Kahler manifolds. The novelty in our situation is that we
have an infinite-dimensional example of this type, although the resulting moduli spaces are
finite-dimensional. The key observation in all cases is that one should introduce the ‘moment
map’ familiar in symplectic geometry. This point of view will be explained at the end of §9.

The detailed results that our methods yield on the cohomology of the moduli space A),
in the coprime case, are described in 89. First ofall we obtain inductive formulae to calculate the
Poincare polynomials Ptllhese formulae are essentially the same as those obtained by
the Harder-Narasimhan method and we shall comment on the comparison shortly. In addition,
however, we prove that I has notorsion in its cohon
the moduli space NO¢R for stable bundles withfixed determinanty and we show that k)

simply connected. Finally our methods give a natural and explicit set of multiplicative generators
for the cohomology ring (theorem 9.11).

Although the number-theory approach of Harder-Narasimhan appears totally different from
our geometric method there are close analogies, which are very intriguing. We discuss these
analogies in detail in §11.

We now review rapidly the contents of the sections not explicitly mentioned above. In 82 we
study the topology of the gauge group which from the Morse theory view-point determines the
homotopy of the space on which the Yang-Mills function is naturally defined. Sections 3 and 4
develop basic general facts about the Yang—Mills equations while 85 deals with the special case
of Riemann surfaces. In 86 we pursue the Yang—Mills solutions globally and show how they
correspond essentially to (projective) unitary representations of the fundamental group. Up to
this point we treat the general case ofa compact Lie group butin 87 and 8 we concentrate on
the unitary group U(n) in order to make the connection with the theory of holomorphic vector
bundles. However, we return to the general case in 810, showing rather briefly how the whole
theory extends to any Ghe only notable difference is that we do not now get results

torsion, in fact the presence of torsion in danost certainly implies torsi
moduli spaces.
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Sections 12 and 13 are both in the nature oftechnical appendixes. Thus in 812 we review some
elementary, though not widely known, facts about convexity and Lie groups. These play an
important role in the partial ordering ofthe strata in our stratification of . Animportant notion
that emerges in our analysis is that of a convex invariant function (>on the Lie algebra of a
compact group. As we show in 88 we get essentially the same theory if, in the definition of the
Yang-Mills functional, we replace the norm-square | |[2 by <9 Finally §13 summarizes facts
about equivariant cohomology and in particular we formulate a result (proposition 13.4) that
is used in 81to give a criterion (proposition 1.9) for a stratification to be ‘equivariantly perfect’.
This criterion is closely related to an argument due to Frankel (i959)>which asserts that Morse
functions arising from circle actions on Kahler manifolds are perfect.

It remains for us to make some comments about infinite-dimensional manifolds. The function-
space manifolds that we shall meet such as the space ofunitary connections or the space of maps
of Mio U(n) can be given various topologies, depending on the class of functions we take. As
long as our functions are at least continuous the homotopy type of the function spaces will be
essentially the same. Technically it is usually convenient to work with Banach manifolds (so as
to have the implicit function theorem) and one introduces Sobolev norms for this purpose. We
explain in 814 how this is done, much of it being fairly standard. In the main body of the paper
we have ignored these technicalities and worked rather heuristically with smooth functions in
order to concentrate on the geometrical ideas. Section 14 redresses the balance and provides the
justification. Essentially this is a matter of establishing local regularity properties. For the global
properties we need an additional argument and for this we fall back on algebro-geometric
methods to which we devote §15.

From this summary of the various sections it will be clear that not all sections are strictly
necessary for the proofofour main results on the conomology of moduli spaces of vector bundles.
The proofs are essentially contained in 881, 2, 7, 9, 13, 14 and 15.

We should perhaps point out that the theory of stable bundles over Riemann surfaces is only
of real interest for genus g"2. However, most of our discussion goes throug
the genus and is interesting even for g =0,1, from the Morse theor
a few minor differences in the rational and elliptic case and we comment on these in the appro-
priate places.

Finally we should warn the reader that the level ofexposition and sophistication is not uniform
throughout the paper. Thus the first few sections are written at a more leisurely pace and make
fewer demands on the reader. The technical requirements increase substantially in the later
sections.

1. Equivariant Morse theory

We start with a brief review of the Morse theory of a non-degenerate smooth function/on a
compact CMOmanifold M.
Recall, first of all, that a critical point of/is a point at which d vanishes, and that at such
a point the & Hpfs a well defined quadratic form on TpM, the tangent s
In local coordinates {*I} centred at/>, the matrix oiHpf relative to the base 0/ 0**atp is then given
by
h j =iey/a**0*|

and p is called a non-degenerate critical point of/, if det # 0.
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At such a point the number of negative eigenvalues in a diagonalization of is called the
index of s a critical point of/) and is denoted by A

Now with any function/ all of whose critical points are non-degenerate we associate the
Morse counting-series

M, (f) - d/,, =0,
\Y

where the sum ranges over the necessarily finite number of critical points of/.

The Morse theory in its most elementary manifestation sets topological bounds for Mt(f).

Precisely, suppose that )
Pt(M; K)= £ *dim H*(M; K)

is the Poincare series for Mlative to a coefficient field  Then if/ is any non-de
function on M, its Morse series satisfies the following Morse inequalities: there exists a polynomial
R{t) with non-negative coefficients, such that

Mt(f)-P t(M,K) = (i +)R(t).

Thus in particular, the coefficients of Mt(f) dominate those of Pt(M). On the other hand
setting t ——1 we see that M_x(f) always yields the Euler number P_XM) of
We shall call a function/, a K-perfect Morse-function on if

Mt(f) = R)

and call/perfect if this equality holds for all fields

Hence a perfect Morse function can exist only on a torsion-free manifold. In general it is of
course difficult to decide whether a given/is perfect. However, there are two criteria for estab-
lishing ‘perfection’.

First of all, if the set (Ap(/)} ofall indices o ff contains no consecutive , thensis perfect. This is
the lacunary principle of Morse. For instance, ifit can be shown that/has only even indices at
its critical points, then this principle immediately yields the perfection of/, and this is the method
that can be used to show that the Energy function on the space of loops of a Lie group is perfect
(Lott & Samelson 1958).

Failing such a fortuitous disposition of the indices {Ap(/)}, one has the ‘completion principle’
also used by Morse and already foreshadowed by Birkhoff’s minimax principle.

Suppose then that (8 a non-degenerate critical pointp of/ at level ¢, and of index £
‘Morse lemma' then asserts that in a suitable coordinate system .., centred atp, the function
/has near fdte form
/= c- X\-x\- ... - xX\+xl+ 1+ ... +*£,
where k—Ap(/). The set
wp = {ti*1+ ... B < ektl — ... =
is then a disc near p,whose boundary dvis a

M-e = {meMjf(m) <

We now call p fif this sphere dvp
e > 0. With this understood one has the following:
Completion principle. Ifsis non-degenerate and all its critical points are , then

perfect Morsefunction.
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Both these principles are easy consequences of the main structure theorem ofthe non-degener-
ate Morse theory. This theorem asserts that the sets —{ ) < change their homo-
topy type only at critical values off and then only by the attaching ofa cell ofdimension Ap(/).
Thus we have:

Ma ~ Mbif there are no critical values between a and b, while Mb~ U there is a single critical
pointp ofindex Ain Mb—Ma.

From the standard exact sequences relating the cohomology ofA4 and Maunder these circum-
stances one may then easily deduce the Morse inequalities as well as the completion principle,
which we have just described.

So much then for a quick review of the Morse theory in its most elementary form. For our
purposes we must now extend the concept of non-degeneracy off in the following manner.

If -Yc -Asis a connected submanifold of N will be call
forf ifand only if

(1.2) df=0 along
(1.2 HN is non-degenerate on the normal bundle v(N) of N.

Note that because of (1.1) the Hessian HNbf/is a well def
that (1.2) is the natural extension of the non-degeneracy hypothesis for critical points.

In the following a function on MuV be called non-degenerate if its ¢

non-degenerate critical manifolds. A prime example, which in a sense explains the virtue of this
extension of the non-degeneracy concept, is the following.

Suppose EMis a fibring andf a non-degenerate function on  inour new sense. Then it
is easy to see that 7r*/onE is again non-degenerate in our new sense. On the other hand rr*fwill
never have isolated critical sets unless Bia covering.

We next formulate the proper way to ‘count’ a non-degenerate critical manifold The
recipe is as follows. We first endow y(iV) with a Riemannian metric. Then of course our Hessian
HN defines a canonical self-adjoint endomorphism

An:¢N)-+v(N)
by the formula
(4 v>V) = HN{x,y), x,yeV(N).

The non-degeneracy of HNhow implies that the eigenvalues o f~ are all non-ze
that Angtomposes into an orthogonal direct sum
V(N)= y+({V) ©
spanned by the positive and negative eigenvalues of  respectively. We call thefibre dimension
ofv-{N) the index of N -as a critical manifold o f/- and say that we are in the orient:

this ‘negative’ bundle v~(N) is orientable. With this understood, and having chosen a
coefficient field, AT, we ‘count’ a non-degenerate critical manifold N o ff with the polynomial
MffN)=S~dim "V W)

where now Hldenotes the compactly supported cohomology. In particular, by the Th
isomorphism, this polynomial reduces to
t"PfN)
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in the orientable case, whereas in the non-orientable case P/A) has to be computed relative to
a twisted system of coefficients. This procedure turns out to be the proper one for ‘counting’ in
the sense that if/is non-degenerate and Mt(f) is defined by

ms) = %I\/I (/,a0

the summation extending over the critical manifolds of/, the Morse inequalities , pro-

vided of course that the same coefficients are used on both sides of the equation. One may

therefore speak of K-perfectMorse functions also in this extended sense. They are non-degen
functions/, with AT = P{M).

We have already remarked that the main advantage ofthis extended notion ofnon-degeneracy
Is its functorial nature under pull-back. Precisely, this amounts to the following.

Proposition 1.3. LetE ----> Neasmoothfibring. Thenfis non-degenerateonM if
is non-degenerate on E. Further the index of N as a non-degenerate critical manifold of M equals the index
of n™Nas a critical manifold of E.

The proofis self-evident, as w~"N is clearly a manifold if isone, and its normal bundle in E
is  n~1v(N).

It remains to formulate the completion process in this extended context. The pertinent
diagram is the following one:

I1* K(V)} — >/?75K W , arW ) -J >
(1-4) 2

where we have used the following notation.
We assume that/(JV) = c, and write vj{N) for the set in the exponential image in M,
where/? elis will be an *-disc-bundle over if 0 is small enough. We write for
the projection of this disc-bundle, so that z-1 corresponds to the Thom isomorphism and H for
homology with coefficients in K.The ft denotes reduced homology. With this
say that NiK-completable if the dashed arrow tL1.4)
It is easy to check that this condition reduces to the previous one for a non-degenerate critical
point of/, and again a standard argument implies the following:
Completion principle. If all the critical manifolds K-completable thenf is a K-perfect
Morsefunction on M.

ZEro.

Remarks. Note that, as opposed to a critical point, a critical manifold can essentially be ‘self-
completing’ in the following sense. By commutativity and the exactness of the horizontal
sequence in (1.4), it is clear that a class aeH”™ _"N(N)certainly goes
arrow if *-1a is in the image of Hence we call these classes iV-completed. This
phenomenon, of course, occurs only if the bundle is non-trivial over )V, and in a compact
finite-dimensional setting it will not occur forallae  (N). However, in the infinite-dimensional
or equivariant case, which we shall encounter in a moment, this will happen, and then one isin
the fortuitous circumstance that we refer to as ‘self-completing .

We are now finally ready to discuss the question that is central for our considerations.

Suppose thatfis a smoothfunction on M that is invariant under the smooth action ofa Lie group G on
M. When is such afunction to be considered a perfect G-invariantfunction?
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If 6 acts freely on M, it is clear enough that such an should be considered perfect —as a
6-invariant function - ifthe induced functionon  Gis perfect. On the other hand ifthe action
of G is not free, this procedure is certainly not correct, and one has to bring the different
stability groups ofthe critical sets into play in some fashion or another. The manner ofdoing this

that we advocate is the following one.
Consider any smooth principal 6-bundle BEeer a base-r

mixing diagram
Et-i— E xM —— aM
B B B
E/G<— ExXOM-j> M/G

of the 6-actions on M and E .Here of course the middle action is diagon:
( esgm) is identified with (e,F'm).

Now because the action on Bifree this diagonal action is also free. !
6-invariantf on M clearly lifts to a 6-invariant fo M, anc
function f Eon E x aM.Now the space
and is of course the bundle associated to E with fibre In short then every G-invariantfunctions

naturally defines afunctionf E on any smoothfibre bundle with M as fibre and structure group 6.
Furthermore we have the following.

Proposition 1.5. 1 fsis anon-degeneratefunction on M, then

IS non-degenerate onE x gM. & ifN isan
have as corresponding critical manifold the space E x QN. Finally, the indices f andEx GN relfE
are equal.

The proofis again self-evident in view ofthe functoriality ofour concept. Indeed it is clear that
n~1(ExON) =

and now proposition 1.3 implies the rest.

Now there are very many different 6-bundles but they are all induced from a universal G-bundle
that is unique up to homotopy. Such a universal 6-bundle is characterized by having its total
space E contractible. It is then reasonable to say that our functionf is perfect in the domain of

6-invariant functions, or G-equivariantlyperfectfthe induced function  is perfect
6-bundle E .In this universal case we shall simply write Ma for the space x aM, BG for
and f Ofor fE.

To summarize then, this construction converts/into  which is a function on the space
constructed functorially out ofthegroup 6 andits actionon M. In homotopy theory this is of course

a well known procedure and in fact Me called the homotopy qui
following properties.
Proposition 1.6. | f Gasfreely on M {i.e. defines afibration) then the natural map
MO-"M /G

is @ homotopy equivalence. On the other hand M Qis always afibring over BG with M as  , and its homotopy
type depends only on the homotopy type of6 and its action on M.

There isjust one difficulty with this construction, and that is that in general and BG will
not be realizable as finite-dimensional manifolds. Hence MG s not usually a finite-dimensional
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manifold. However, this is not a serious problem and can be overcome in several ways. When G
is a compact Lie group, which is the only case of essential interest, can be realized as an
infinite-dimensional manifold or as a suitable limit of finite-dimensional ones. In the former
situation all sub-manifolds occurring will have finite codimension and cause no problems.
Alternatively, and this is the point of view that we shall adopt, we can stick to our original
manifold Mued function/but introduce equivariant cohomology as the appropriate functor. By
definition for every G-space X$ equivariant cohomology is by
HO(X) -

In the category of G-spaces it has the usual properties of cohomology. In 813 for the convenience
ofthe reader we recall some ofthe basic facts about  and prove some particular results that we
shall be needing.

To illustrate these ideas let us consider an example in which M is the 2-sphere

S2— {(x,y,z2)\x2+y2+z2- 1}
in  R3ad let/ (#, ¥) —z, be the heightfunction on S2 Also let G =  be the group of rotations
about the z-axis in R3.Then/is clearly G-invariant, and also intuitively looks about as perfe
one could hope for. To construct an approximation to let be complex (/+1)-space and
consider the action of Slon C+lgiven by

(z0,...,z) (eiyo ..., e"Z)).

Restricted to the unit sphere 52+1 this action is free and gives rise to the Hops fibring
£ 21+1

s1
Pi(C),
with base space the complex projective /-space. Now
TN8A+) —o for 2/+1.
Hence this sequence of finite-dimensional fibrings approximates the universal one, which for
S1may be taken to be the fibring of the unit sphere in a Hilbert space H over the space
P(H)ofrays in H.

Let us now consider the spaces
Mx—S2H1 x £i S2

They are the finite-dimensional approximations to i, and are naturally 2-sphere bundles
over /j(C). We have schematically indicated this below:

p.(c)

Figure 1.
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Note that for the fixed point p(or
Big nfl).
Thus thecritical manifolds corresponding top and g,are the
since
Pt{PI{C)) = i +
and the index offon SAO0 at pad 2 at gwe obtain the f

Mt(fJ = (I +t (I +t2+...+12)

for the Morse series of the functionf induced byf on 52+L
When /->00, this polynomial therefore becomes theformal power series

M (/si) = (i+<2/(i-<2.

Now cohomologically, the fibring Maver P{C) is trivial (2-sphere

by the Runneth formula
Pt(M) = (i+t (i+t2+..+<2)

and so we see by inspection that our fvas indeed perfect, in fact not «

approximation Mv
Let us next modify/*so that it has a maximum atp and at < and a minimum along the equator,
but still keeping it G ="-invariant. Then, p and gboth contribute

21-M2+ ... +*2)
to M ss). On the other hand the critical set in Mxcorresponding to the equator on is given by
S1xsSiSA+H1~S*+1
Hence it contributes 1+ tn+1Thus
M ff)- (2/9(1+<2 + ...+ 7A) + (1 H21H).

These functions are therefore not perfect for any particular I. On the other hand, letting /-* 00,

we obtain
MOW = 1+22+2 + ...

= (i+<2/(i-<2),

so that this new/"is again perfect according to our definition, i.e. on MSI.

This example illustrates two phenomena. First ofall that a perfect/* on Ma need not come
from a perfect/ on M. It also shows that in some sense the larger the orbit of a critical set
on M, the maller" its contribution isin MQ. The precise formulation ofthis principle is as follows.

First of all recall the identity

E/H~EXx0G/H,

when Bia principal G-bundle and H a closed subgroup of From this it follows immediately
thatifAc M isthe (7-orbit G/H, then

ExgN~ExO0G/H~E/H.

But a universal G-bundle E is obviously also a universal H-bundle. Hence in the universal case
E/H has the homotopy type of Bthe classifying space ofH.

Hence by proposition 1.5 we have the following
Counting principle. The non-degenerate critical orbit G/H, of index A(A) forson M, contributes
(1.7) pWPt(BH)
to Mt(fa), the * countingseries’ o ffQon MO.
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Note also that if//is connected then the PtBin (1.7) can be tak
is not then a local coefficient system might still be needed.

More precisely, the correspondence (1.7) can still be refined in one very important respect.
Namely if Nithe orbit of Gtrough C
to Nat gand, using an //-invariant metric, also on the negative normal space It follows that
v~(N) is associated with the principal bundle G/H —  via this representation, and corres-

pondingly that H associated with the universal //-bundle EH over by that same
representation.

Thus we arrive at the following refinement of (1.7).
Equivariant correspondence principle. Under the correspondence Ng BH of (1.7), the

negative bundle °ffoalong BH becomes the bundle associated with the universal H-bundle via the “negative
representation’:
(1.8) XN: H-+AutVg(N).

Remark. We have here used the same notation  for the index of N, and the negative repre-
sentation for obvious reasons; and in the future the context will make it clear which is meant.
The importance of (1.8) is that standard methods allow one to compute the characteristic

classes in Bilor bundles associated with representations, and one may therefore use (1.8)

to compute to what extent the critical set BHfor is ‘self-com
2-sphere example, for the critical point gahich is the maximum of/, v
that Xp & the standard representation of Slon R2 The Euler class e(XN) of v~(BH) is therefore

a generator of H2(BSX and hence generates H*(BS] It follows th
bye{XN) induces an injection of H*(BS1) into H*(BSI)for any coefficient system. Dually, this implies

precisely that H*(vj (BH))maps onto H*(vJ, dv~) in the diagram (1.4), i.e. itimplies that

self-completing, as a critical set 0o ffG Now as the minimum is always self-completing (the condition
of (1.4) becomes vacuous), it follows that we have in this instance established the ‘perfection’
o Tf Gy purely local considerations as opposed to our earlier global proofofthe same fact. This state
of affairs turns out to be the one we shall encounter for the Yang-Mills functional. For future
reference we therefore formalize this principle in the following.

Corollary. 1fin (1.8) theEuler class of XN induces an injection of H* (BH) into itselff
system K then, as a critical set off a,BH is self-completing relative to K.

There now remains only one more appropriate extension of these concepts. In the domain of
G-invariant functions, the formula (1.7) corresponds to a non-degenerate critical For a
non-degenerate critical manifold Wthe contribution to the equivariant Morse series Mt(f0) is

tW Pt(Na)

and again local coefficients are to be understood in the non-orientable case. The equivariant
Poincare series is of course defined as

Pf(N&=
= dim
and we shall also denote it sometimes by GPtRhe normal bundle
Euler class and as before we have, for the orientable case and any field K,

Proposition 1.9. | f the equivariant Euler class of the normal bundle to N is not a zero-divisor in
Hq(N, K), then N isequivariantly self-completingfor K.


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 17, 2018

636 M. F. ATIYAH AND R. BOTT

If all critical manifolds satisfy the hypothesis of (1.9) then/will be equivariantly perfect over
K,so that the equivariant Morse and Poincare series coincide.

In 813 we establish a useful sufficient criterion for (1.9) to hold. This criterion (see pro-
position 13.4) involves simply the isotropy group structure ofthe action of Gand is easy to verify.
It provides the key to the perfect nature of the Yang-Mills functional, which we shall be ex-
plaining in subsequent sections.

So far we have concentrated exclusively on the homological aspects of Morse theory. There is
however more detailed geometrical information about the structure of our manifold M that is
provided by a function/ . If we introduce a Riemannian metric on  we can define the vector

field grad/ dual to the differential d fThe ‘gradient flow’ of/is th
steepest descent, i.e. the trajectories of —grad/. If/ has only non-degenerate critical points p
then every trajectory converges to some fnd the set of all points ol
a givenp form a cell M+(p). This cell is called the stable manifold ofp since/ restricted to  has
an absolute minimum at p.Similarly, replacing/by — we get another cell M-
unstable manifold ofp. The dimension of M~(p) (or the codimension of is equal to the
Morse index of pihus/defines a cell decomposition
(1.10) M=\JM+(p)

P

and the Morse inequalities follow at once by using these cells to compute the homology of M.
More generally if there are non-degenerate critical manifolds  we have stable manifolds
M+(N) that are cell-bundles over Nad we get a stratification

(1.11) As= () M

which we shall call the Morse stratification.
One easy consequence of this stratification, which goes beyond homology, is the following:

Proposition 1.12. Let NO be the manifold giving the absolute minimum o ff and assume that, for all
ather critical manifolds, the Morse index is A 3. Then, if M is connected,  is also connected and we have an

isomorphism offundamental groups
(Y0 ~

For the equivariant case if/is (7-invariant, where isacompact Lie group, we can always pick
a (7-invariant metric. Then the gradient flow is (7-invariant so that the stratification (1.11) is
(7-invariant. The equivariant analogue of (1.12) holds but is in fact equivalent to it because the
fibration M-+Mqg->BG gives an exact sequence
->nfM) ->n-fiMf) -> ->
and there is a similar one with NOreplacing M.

The critical manifolds Nbour function/have a natural partial ordering. We 1
pre-ordering < by
Nx-< A”othe boundary of M HNX intersects

By following the trajectories ofgrad/it is then easy to show that

Yj < N2=>there is a trajectory of gradf starting on
and passing within e of

Here & any positive constant. In particular taking to be lessthanf(N 2 -4 Ay it follows that
X1<N2"f(N D<J(Ay.
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Hence the transitive relation < generated by -<is a partial ordering and has the property that

(1.13) closure of M+l (J MHN').

N'>N
Sometimes one may be given an explicit finite stratification of M

(1.14) M =\IMa,

where each Alais a locally closed submanifold of As, and the index set of Ais partially ordered so
that

(1.15) Mg: (J
»> A

holds for all A (we assume the partial ordering is strict, i.e. A< and Aimplies A=
One can then use the stratification to get Morse-type information about the homology of M.
We start with the open strata, given by minimal A and inductively add other strata. At each
stage we can write down the exact cohomology sequence for a pair (//, U—V) where is a
closed submanifold of U. More formally this can be described as follows. Define a subset | of
indices to be

open  ifAe/and /t < A =>fiel

closed ifAe/and " A =>jiel.

It is easy to check that/ is closed if and only ifits complement is open. Moreover the subspace
of M defined by

U Mx
Ael

is open or (or closed) if I is open (or closed): this follows from (1.15). If is open and Ae/'is

minimal then J= ILAs open, and our inductive step is from M1to From (1
that Ala—M j—Aff is a closed submanifold of Mj. Assuming for simplicity that the normal
bundles to all strata in M are orientable we have the exact sequence

(1.16) ->/[«-*(Ala) ->[[«(AL,)
where we have used the Thom isomorphism
H*~k{Mx) * HQM], M)

with k = kA—codim Ala.

If, for a given field Kicoefficients, (1.16) breaks up into short exact sequences for all
all Ait follows that

P(M) = SAF.W ).

In such a case we shall say that the stratification isperfectover Ifthis holds for —2Zp, for all
primes pwe shall simply call it perfect. Thus a perfect Morse function defines a perfect stratifi-
cation.

If the stratification is G-invariant and the corresponding equivariant cohomology sequences
break up we shall call the stratification equivariantly or G-perfect. Proposition 1.9 has an obvious
analogue in this context with the normal bundle in question being the normal to a stratum.

Examples of manifolds with naturally arising stratifications are the flag manifolds G/T, where
T ¢ Gis a maximal torus. Using the complexification Gcof G one also has a complex description,
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namely as G°/B where Bia Borel subgroup. The left action of B on Gc/B tt
many orbits. These are the Bruhat cells and they give a (complex) stratification of the flag
manifold. The loop space QG has also such a stratification (Pressley 1980) and we shall meet

other examples in dealing with the space of ("-connections on a Riemann surface. The last two
examples are both infinite-dimensional, but the strata will ha codimension. The indexing

sets will be countably infinite but will have the following finiteness property.

For everyfinite subset | there are afinite number ofminimal elements o f the complement | ~"~O

so that our inductive procedure still applies. Although the induction never terminates, only
finitely many steps will be needed to compute HEM) for any given q provided the stratification
satisfies the following further finiteness condition.

For each integer q there are onlyfinitely many indices A for which codim Mx < q. (1-18)

Thus when (1.17) and (1.18) are satisfied we may proceed to compute the cohomology of
as in the finite-dimensional case.

Sometimes we may be given a stratification of M and a functionf and we might like to know
if the stratification is the Morse stratification (by stable manifolds) arising fromy* (for some
metric on M).Thus for the flag manifold one has natural functions arising from conside
G /Tas an orbit in the Lie algebra of G and restricting a linear function. It is not hard to axio-
matic the Morse stratification, and one can then test any given stratification to see whether the
axioms are satisfied. We shall prove the following.

Proposition 1.19. Letf:M -+ R have only non-degenerate critical manifolds Nx and let M —U aM*,
be a stratification by disjoint locally closed submanifolds Mx, such that,for somepartial ordering on the set of

A thefollowing properties hold:
1) A<M=>/(A) </W>»
) Mxa M
(3) gradj fatany xeM istangential to the Mxcontaining x.
4 Nx= MX.
(6) index Nx—codim AfA

Then Mx is the stable manifold Sx of Nx so that we have the Morse stratification.

Proof. We have only to show that the trajectory of —gradjs through any point x of Mx

converges to N&s t->0blow (3) guarantees that x(t) remains in Mx fi
implies that *(00) eN/or some /t » A Now if X suffici
t->  either converges to Ner “‘falls below Nx (this basic fact is needed to esta
and properties ofthe Sand is formally a consequence of (1.13)). Since #(00) fc
property (1) shows that x(oo) cannot be below Nx and so #(00) Thus locally near  we have

Mx ¢ SXBy (6) we see that dim Mx dim” and so (near Mx is an open
see that Mx and Srust coincide near NxNow |
Then for large tx() is close to and in 5+
#(t) liesin  for large t. On the other hand ¥aMix for all finii
this implies si =Aand completes the proof.

This proposition can be applied for example to the flag manifolds to show that the Bruhat
cells coincide with the Morse cells of an appropriate function. For a detailed discussion of this
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and related questions refer to Atiyah (1982). Proposition 1.19 also applies on the infinite-
dimensional manifold @tshow that the Birkhoff cells (see Pressley 1980) are the Morse
of the Energy function (see Bott & Samelson (1958) f°r a discussion of this case).

In the Yang-Mills situation, which we shall be treating in this paper, we shall exhibit a
stratification satisfying properties (1)-(5) of (1.19). If the Morse strata exist, i.e. if one can
prove good properties about the trajectories x(t) as £->00, then (1.19) will identify the Morse
strata with our strata. However, there are analytical difficulties involved here because the
manifold M is infinite-dimensional and the critical sets A have singularities. We shall therefore
by-pass these difficulties by simply using our stratification directly to compute cohomology.
The connection with Morse theory is then left at a slightly conjectural level, but this is of no
consequence for the topological applications.

2. The topology of the gauge group

Throughout this section all maps, bundles, sections and other objects will be taken as smooth,
i.e. of class GO From the point of view of homotopy theory this gives essentially the same result
as the continuous maps and we shall on occasion blur the distinction when we are dealing with
homotopy computations.

If @a principal 6-bundle over X, Ad P shall denote the bundle associated to with fibre G,
the action of G on itself however being the adjoint one. Thus

AdP =P xaG

is nota principal bundle any more, but rather a bundle of groups over X, whose sections can be
identified with maps/: P->G satisfying

(1) f(pg) =g~1(p)g"

The space ofsuch sections TAdP forms a group under pointwise multiplication and this is by
definition, the *gauge group’ &(P) of P:
(2.2) &P)= rAdP.

This group acts naturally as a group of G-equivariant maps of , which cover the identity
map of X. It can in fact be identified with the group of such automorphisms:

(2.3) &(P)~ Aut(P).
To see this let/: P-> @present a section of Ad P. Then define
UP-+P
by 1*(1>) =I>¢/(/>)

The relation (2.1) then shows that/* is equivariant and covers the identity. Conversely given a
map/*: P->Pcovering the identity,/* defines a unique map/:P-*G such that

(P)=-H(P)>
and now G-equivariance forces the relation (2.1) on/. This establishes (2.3).

The purpose of this section is to describe the topology of the classifying space (P) of the
gauge group when M, the base space of 8 a compact Riemann surf
group.

43 Vol. 308. A
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Proposition 2.4. Let BG be the classifying spacefor G. Then in homotopy theory

B&(P)-- Map
Here the subscript Pehotes the component ofa map of M into BG which induc
ProofLet
G-+EG-+BG
by a universal bundle for G,and consider the space Map of (7-equ
P to E.

The group S(P) now acts naturally on this space by composition, to yield the principal
fibring
9 {P)--—»MaP{?(P, BvapP (M.
If BGisparacompact and locally contractible, which is easily arranged, twill be a locally trivial

principal fibring, as follows easily from the homotopy properties of fibrings. The total space
MapO(P, E)is contractible so that this is a universal bundle for @(P), and

B9 {P) = Map p
as was asserted.
Using (2.4) we now compute JRr the cases we have in mind.
Case I. The unitary group u()
The group £7(1) is the circle Slofcomplex numbers ofnorm 1. These a
sphere S(H) ofa Hilbert space Heer C, and the quotient space

P(H)=S(H)/S1

is the projective space of rays in H. When dim/f — oo, S{H) becomes contractible, and hence

(2.5) S1 >
is a universal *-bundle. From the corresponding exact homotopy sequence it now follows that
nk{P{H)} —0 for #
while wXP(/H)} = Z.
Thus P{H)i which is the BG in this case, is an Eilenberg-Maclane space K(Z; 2). Now it is a
theorem of Rene Thom that, if ¥isuch a space, andany finite comple
is again a product ofsuch spaces. Precisely,
T heorem {Thorn). Let ng{Y) —0 ™ nandlet m(Y) —n. Then
(2.6) Map (X, F) = nQ K {
For a Riemann surface M of genus dtis yields the corollary:

Map (As; BS]) = Zx S1x ... X S1x

correspon@iing to the fact that

NM;Z) ~ZO ...©Z (2 factors),
H°(M; Z) zH 2(X;Z) ~ Z.
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In particular then, we see that in this case B&has  torsion an
. Pt(B&)= S dim
. i>0
is given by
(2.7) Pt(B&)= (1
When Pis a £/(1)-bundle over S4 on the other hand, the above recipe only yields
(2.8) B& = P{H).

Remark. The gauge group S(P) aswe have defined it here really corresponds to the Hocal gauge
group’ as this term is used in physics. The global gauge group corresponds to the ‘constant

sections’ of Ad Rhich are given by the centre Z0f
adjoint action of Qoitselfand hence induces a canonical sections of Ad  given by =z

We next consider the more general
Casell. G—U(n), n> 1.

Now it is no longer true that Bian Eilenberg—Maclane space. However, ove
Q, BG is simply a product of Eilenberg-Maclane spaces:

BU(n)~ R X
Q
Indeed each Ghern class ok HP BZ) induces a map.
CI\
BU{n)—K {Z;2

and, since 8 is the polynomial ring in the product of these maps induces a
Q-equivalence of these spaces. Hence over Qevmay apply Thom’s the

compute the Poincare series of a component of Map BG). Further as these behave multi-
plicatively under products, it is enough to take each K(Z; 2k) at a time. Now

P{K(Z;2K)} = 1/(1-t")>

while
Pt{K(Z;2k-1)) = I-M2*-1
Hence
PMap (M, JNZ; 2k)= (1+ - (@- for

Together with (2.7) for the case k= 1this yields
(2.9) Pt{Ma.pp(M; BU(n))} —H (i+t2» )20 \ H (1-*kg?2Ml U=1
for any component, i.e. any Paer M.

Actually more is true.

Proposition 2.10. The space Map P(M, BU(n)) under , isfree oftorsion.

Proof. To see this we have to come to grips with the fibrings that lie behind Thom’s theorem.
First recall that a compact Riemann surface As, can be obtained from a wedge of  circles by
attaching a 2-cell. This implies that there is a cofibration

(2.12) ” WS1->M->S2

which, by the exactness of the mapping functor, gives rise to the fibring

(2.12) Map*(82, B>Map*fAf; BU(n))
Map

43-2
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Here the * denotes base-point-preserving maps, which, by the same principle, are linked to the
unrestricted maps via the fibring

(2.13) Map*(M; B------ > Map(Af,

BU(n).

We wish to show that both these fibrations are homologically trivial, and that all spaces involved
are torsion-free.

Now recall that BU(n) and its loopspace By—-U{n) al
are all torsion-free. Hence after (2.12) is rewritten with the standard identifications, one obtains

B-- >Map*(As,
(2.14)
uU(n) x. X U(nj2 factors)

with both fibre and base torsion-free. Hence any non-trivial homology-twisting, i.e. a non-zero
differential in the spectral sequence, or a non-trivial coefficient system, would be detectable
over Qad produce a Poincare polynomial for the middle term that would be smaller than the
product of the Poincare polynomials of the factors. On the other hand by Thom’s theorem,
applied to pointed maps, it must be the product. This completes the proof.

The same argument now applies to (2.13) and we are done.

To recapitulate, we have established

Theorem 2.15. tPbe a U(n)-bundle over the compact Riemann surface. M Then s the
gauge group B, ERitorsion-free and has Poincare series
otB<g-n (i +12K-
k=l I<‘[Jj=1 J '

In the course of our proof we have also shown that, in the fibration (2.14), the fundamental
group ofthe base, namely
P=nfUin)") ~Z>»L

acts trivially on the cohomology ofthe fibre Qf Thisimplies
on lifting to a finite covering corresponding to a subgroup  offinite index in P. Moreover from
(2.13) and (2.14) we see that

TTB*) ~ ~i[Uu(n)2) =

But w'BE) 7#0(") is the group of components of S. Hence a subgroup  of offinite index
corresponds to a subgroup  of &offinite index and so we have

Proposition 2.16. In the situation of theorem (2.15 anV subgroup finite :
B y is torsion-free and has the same Poincare series as B&.

We shall now describe a way of producing explicit generators for the integral cohomology of
B&.This will eventually enable us to describe corresponding generators for the cohomology of
the moduli space of stable bundles. It also provides an independent proof of the cohomological
triviality of the fibrations (2.12) and (2.13) without appealing to Thom’s theorem.

We begin by considering the natural evaluation map

s:Map (M, BAF->
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Pulling back the universal vector bundle over BUwe then geta ve
Since M has no torsion the Runneth formula gives, for integer cohomology,
(2.17) Hak M BOH*-1 (B

Taking the Chern class or(V) and decomposing it, we get from this Runneth decomposition,

elements
are H 2{B@)>

bieH"B#), 1,...
freH 2~2(B&)i

relative to a basis  of H X M) These will give rational generators, but to get integral gene
we need to replace the/. by elements drconstructed as follows. We introduce  theory instead of
cohomology and analogous to (2.17) we have a Runneth formula

(2.18) &M )? B © K¥B0)®

Now we have K\M)%Z®Z

with two canonical generators, the first given by the trivial line-bundle and the second by the

reduced line-bundle of Chern class 1 (i.e. H —1, where H is the

line-bundle). Starting with the class of i K°(B& X and projecti

ponent then gives an element WeKB”").An alternative description of IT s 1
W=1{V)

where/: B&M-> B &the projection,/ isthe directimage map in theory ar

with \0— VB &point. Since/(1) —1 —g follows tha

(2.19) W=/(F) =/(T) +(g-1)

Finally, taking the Chern classes of Wevget an infinite sequence of eleme

r=12,....

We shall now prove

Proposition 2.20. The elements ar) bd, er constructed above are multiplicative generators of the integral

cohomology ring of BFeelements ari bi,fr are multiplicative generators of the rational cohomology ring.
Remark. The aare the Chern classes of \0s that by (
replacing the eby the Chern classes dr of/(F). These will occur more naturally in algebraic
geometry.
The three types of element will in fact provide generators for the three factors in the fibration
decomposition (2.13) and (2.14). Clearly the agive the Chern
its cohomology. The classes kfor fixedj) are easily seen to give the generators fot

logy ofthe/h factor U(ri) in U(n)2a It remains to show that the elements give generators for
the cohomology of QU{n). Now we have a natural stabilization map

i:QU(n) -+QU,
where U —limm‘o L§) is the stable unitary group. The periodicity theorem gives a hom
equivalence QU~ Zx BU
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so that H(DU)is a polynomial ring on all the universal Chern classes .... Pulling thes
back by i we get classes in Bh)). These coincide with the classes introduced :

of the relation between ~s-theory and the periodicity theorem. To prove (2.20) it remains
therefore to show that r* is surjective in cohomology, or in steps that the inclusions

j:DU(n)->DU(n 3

have this property for all Mnihis can easily be deduced from the explicit descriptic
given by Bott (1958). This completes the proof for the integral cohomology. Over the rationals
the proofis similar but easier.

As mentioned earlier our proof of (2.20) produced cohomology classes in the total spaces of
the fibrations (2.13) and (2.14), which generated the cohomology of the fibres in each case. This
gives an independent proof of their triviality.

Over the rationals we can use the Chern character to compare (2.17) and (2.18). This enables
us to express the infinite sequence of em terms of elements/. T
then leads to an infinite sequence of integrality relations involving polynomials (with rational
coefficients) in the/.

Finally we shall derive a result that concerns the role of the constant £7(1)-subgroup of
representing the central automorphisms of Fhis will play
study the cohomology of the moduli spaces. We shall prove the following.

Proposition 2.21. Assume that the Chern class k ofP and the rank n are coprime. Then the inclusion of
the constant central (7(1) in& induces a surjection

HX B 8, Z)->HXBU1 ).

Using the cohomological triviality of the fibrations (2.12) and (2.13) it will be enough to
check the surjectivity when M is the 2-sphere S2In this ¢

H2AB&>Z)- H1M, 7)

so we are reduced to checking surjectivity of

(2.22) &(&,2)

or equivalently that

(2.23) NET(D))-W 29

gives a direct summand of rrfjS). Now Ji~ and, since

lated from the fibration (2.13), which gives the short exact sequence

(2-24) 0-—>n3(U(n))-—> n")))->0,

Thus mx(") is free abelian on two generators. Note that the projection eis given by evaluation
at a base point of M =S2

A more convenient description of (2.24) is given in terms of *-theory. Let be the vector
bundle defined by Pad write &

f:S'~*&(E)
we form the bundle Ef over Asx S2by using/as clutching data and consider the element

[-E]HAIeK(M xSZMx point).
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The assignment (/) [E}] - [EXgives an isomorphism
XE> K(M xSpoint).

and (2.24) corresponds to the exact sequence obtained by restricting to a point in As.All calcu-
lations can then be made in [ SQvhich is gent
two factors. Using this description of 71 {§&e shall now prove the following
pairs R with 0 < k<n.

Lemma 2.25. ldoe the direct sumofk copies ofH andn -k trivialf
the corresponding constant automorphisms of E. Then the induced map
IS an isomorphism n{U{k),U{n -k ))"*m

Proof 'Lz\.fg:S1-*¥me from the standard generators of mx(U{k)) and nx
respectively. Then in 62 we have

(£"D)>

[zy-[zy = i<g>(£-i),
and these generate the kernel of

62 ->
Since by tensoring with line-bundles we can always reduce modulo nwe deduce immediately
what we want, namely

Corollary 2.26. I f (n,k)—1 the homomorphism

comingfrom the constant central fis a direct summand.

This completes the proof of proposition 2.21. Our use of ./(-theory in this proof becomes very
natural if we consider briefly the situation for manifolds Asof arbitrary dimension. Let &(E)
denote the automorphism group for a vector bundle over M and let 62(is) denote its identity

component. Then we have a homomorphism (7(1) &O(E) given by the constant scalars and
hence a homomorphism

(2.27) m{U(i
Now ifwe are in the stable range n > \dimAsthen we can show, using the ¢
proofof (2.21), that

Moreover, the image ofthe generator of AL(£/(1)) ~ under (2.27) isjust the class [is] in K{M).

Hence (2.27) defines a direct summand if and only if [is] is a primitive element of the abelian

group K(M). When dim As —2, K{M) * Z© Z and [is] is represented by the pair of integers

(n, k). Thus the coprime condition (n, k)= 1 generalizes naturally to tl
K(M).
3. The Yang-M ills functional
In this section Gahotes a fixed compact connected Lie group, and a fixed principal (U
bundle over the compact manifold M.
The identity element ed Gen defines a canonical section s60

section to pull back to Asthe tangent bundle along the fibres (Tp.AdP), of Ad
The resulting bundle on As, is denoted by ad (P), this being an abbreviation for

ad (P) =sT\TF
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Alternatively, ad (P)may be thought of as the bundle associated with P via the adjoint action
of  Qoits tangent space TeG at e.This space is in turn identified with the L
invariant vector fields on G.Thus we also have
ad (P) =P x0g,
and both these descriptions make it clear that the space of sections
Tad (P)

has a natural Lie algebra structure induced by the structure on each fibre. Hence this space
plays the role of the Lie algebra of the gauge group. Correspondingly we sometimes write

g(P) for Pad (P).
Actually it is useful to extend this Lie algebra to the following graded Lie algebra:
@ (P))
consisting of the forms on Mith values in ad (P). Precisely then,

(@ (P))

is a smooth section of AqT *M ® ad (P) and the bracket operation in g together with the usual
exterior multiplication, combines to define a pairing

Qp® Qg-+Qp+g
which we write [0p,88. This operation clearly satisfies the formula
[Op.<§ — (- Dp%Hl>9 UM
and the corresponding Jacobi identity
IV »«,<|] =HV,<|, <1 £IV, €],

Now a compact group Qavays admits apositive definite inner product (,) on
which is invariant under the adjoint action. Hence a choice of such an inner product (,) on g
induces a Riemannian metric on ad (P), and then naturally extends to induce a pairing

Qp(M; ad (P)) ® £»(Af; ad (P)) -*£*>+9(Af),
simply write gp a ax. The invariance of (,) on g implies that
= II>>4 >

and, as in this identity all terms retain their natural order, it persists for any three elements
u,v, win our complex D*(M; ad (P)):

[u A

Suppose finally that a fixed Riemannian metric and a fixed orientation is chosen on M, and
e corresponding duality operator, in Qfus *is characterized by

0A*0 = (0,0j|fvol (M) for

where (>}remhotes the natural Riemannian structure on Qg(M), and vol (A%) is the unique
form of length 1 in the orientation of M. Then the inner product on g, and the Riemannian
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metric of M combine to give Q*(M;ad (P)) a natural inner product structure, w
. F;recisely then
6.y) —1 (¢
I M

With these conventions out of the way we only need two more concepts to write down the
Yang—Mills equations. These are the notions of a connection  for P,and ofits curvature

F{A)ad (/>)).

By definition, a connection Afor Pis a
(3.2 0 +TFPATP->7+1TM-*0
ofvector bundles over P.Here TEenotes the tangent bunc
tangent bundle of M. The group Gas on all terms of this sequence and so a G-ir
of (3.1) is a well defined concept. There are two complementary ways of describing a splitting,
and we correspondingly introduce the following notation: is the projection on the ‘vertical
bundle’ TFP,defined by Aand TAR the cor
the ‘horizontal bundle of A’jand is the kernel of

The splitting Ais therefore also equivalent to a G-invariant direct sum decomposition

TP ~TfP®TaPx

Connections clearly exist. For instance TAP can be taken to be the orthocomplement to TFP

relative to a G-invariant metric on Furthermore, the space of connectic
has an affine structure, with associated vector space ad (JR)).

To see this most clearly it is best to use the description of (3.1) as a pull-back under ofan
exact sequence of vector bundles on M. For this purpose let —E(P) be the vector bundle over
M whose fibre at ge Mlequal to the G-invariant sections of along the fibre w=1")

E(P)q- r{TP\

Then E(P) is easily seen to define a vector bundle over M, with a natural projection to
There results an exact sequence 0 n M
(32) 0 """ > ad (P) U

whose kernel is the earlier bundle ad (P), which under the pull-back to P goes over into (3.1).
Finally because G-invariance is clearly built into this sequence, a connection  can also be
definedsimply as a splitting of (3.2). Thus in this picture, (0A is an arrow
ad (P) <"-E{P)
with QA’i — 1; and the difference (0A—ga>therefore factors to an arrow
ad (P)
i.e. gives rise to a 1-formijeQ1(M; ad (P)):
(3.3 da—da, —1
This shows that <*/(P) is an affine space as asserted.
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We next recall how the curvature F(A) of a connection arises. This curvature has many
interpretations, but from the point of view of (3.2) it precisely measures to what extent  fails

to preserve the Lie structures in (3.2).
Indeed, it is clear from the definition of E(P) t h

BE G-invariant vectorfields on P,
while rd (P) £ G-invariant vertical vectorfields on P.

Hence both of these spaces have natural Lie algebra structures, and so interpreted

(3.4) 0->rad (P)-+ TE(P)->

defines an extension of the Liealgebra jH{ TM) by the Lie algebra of the gauge ¢

is the Lie algebra of automorphisms of fhich do not necessaril
Now a connection Aassigns to every

projecting onto XEnce the element

FAX, ¥) = QA[S, f]

is a natural measure ofthe extent to which Afails to split
to verify that F& linear over the C@functions on M and hence defines a unique 2-form

N (P)).
With all this understood one now has the following
Definition. The Yang-Millsfunctional L on the space of connections $4 [P) is thefunction
L(A) = IF(v4)l«,
where F{A) is the curvature of Aand || | denotes the Z2norm in Q*(M; ad (P)).

Remarks and examples. To get a feeling for this function we start by considering the case of a
circle bundle Peer M. In this case the choice of an invariant form on g reduces to choos
generator véthe invariant 1-forms on S1, and in the sequel we shall assume that this vis norm
ized to have

We next write Z for the dual generator ofg —R1, so that v(Z) —1. We also write Z for the unique

vertical G-invariant vector field on P,which is the infinitesimal g
under the action of Slon P.
With these conventions, a connection Afor P is completel
which has the properties
(3.5) 6°(Z) —1, thatis r(Z)dA —1,
(3.6) & (Z)0A =0,
where BA) denotes the Lie derivative in the direction Z.
Note further that in this instance ad (P)is a trivial one-dimensional bundle and hence
F{A) e Q2(M) is an ordinary 2-form on M is characterized by t

(3.7) ddA= -n*F(A).


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 17, 2018

YANG-MILLS EQUATIONS OVER RIEMANN SURFACES 549

Indeed, let Js,  ¥be ”-horizontal lifts of X,Y on
(3.8)
ns such as ffdAflisappear. On the other hand ddA vanishes in the direction Z:
i{Z)ddA = 0, =0

as follows from (3.5) and (3.6) via the basic identity

&(Z) =i(Z2)d+di(2).
Hence (3.7) follows from (3.8).

Equation (3.7) implies that

d F(A)= 0.
Furthermore, the formula (3.3) now yields
(3.9) F{A") -
Thus the map A->F{A) sends j/(P) precisely onto a certain cohomology class ) eH?2(M):
P-->0.

We next turn to the fibre of this map FAgain from (3.9) it follows that
] = A —#sclosed, and conversely. Thus the fibre of F consists precisely of the space of closed
1-forms Z1(M) Hence we have the ‘exact sequence’

0-> AP -> ->0,

which is unorthodox in that B only an affinespace, and k(P) denotes the whole cosetin Z2(N
representing a class usually denoted by — 2niclph H2{M).

We next describe the action of Bo this sequence. In the present instance Ac
trivial, and hence
(3.10) S(/>) ~Ndp

We now have

Lemma 3.11. Iff: M-+S1is asmooth map, then its , via (3.10), given by

f* 0A mdA+n*f*y
where v is theform on S1discussed earlier.
As a first consequence we see immediately that, because isclosed, F(f*A) —  —F{A).
Thus Rsinvariant under the gauge group.

Next we see that *{P) acts on Z1(M) by translations

Consider now the action of the identity component &0(P) on Z1(M). Clearly such a map lifts
to amap/in the diagram

M-+->R

and if xd the linear function on R with

exp*v —d#
then

f*v =
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We have the converse also, so that under &fP)iEe Z I
class: thus
KiR) R).

Finally we turn to the components of S(P). Because S1is an Eilenberg-Maclane space, these
components are isomorphic to HXM\ Z), the correspondence being

f >das of/*y.

Putting all this together we obtain the formula

Thus in this case j/(P) J&iP) isatorus T(M) ofdimension equal to the dimension ?),
as it should be, because the action of S(P) on j/(P) only has the global gauge group Slin its

kernel, whence
B<Z{P)~ T(M) x

4. The Yang-Mills equations

We turn next to the equations of variation of = ||F(J)||2 and because j/(P) is naturally
an affine space, it suffices to vary Aalong lines
At =A+m3 Ea(P)).
The first problem is therefore to compute F{At) for such a variation.
To do this recall that a connection Aon
associated vector bundles of Ahus if

is associated with a representation

then Ainduces a way of differentiating sections j, of V(P):
4.2 s->Vis,

in any givendirection X on M. This6covariantderivative' then dually corresponds to a differential
operator

dy. a®(M; V(P))
which finally extends uniquely to a differential operator
dn: BV V(P)),
compatible with the natural pairing
QNBRMNBAIMV(P))
given by multiplication. Compatibility simply means
dA(0 Aw) = ddA

Recall here that (4.1) is defined by the following construction. We have

P(V(P)) = MapO(P;V).
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Hence §°)) corresponds to a G-equivariant map

s =p(9~Ds(p).
Now given yavector field on N& 4 -lift

X-s: P
is again G-equivariant, and corresponds to the section VxS e F(V(P)).

In our situation, the bundle ad (P)is associated to via the adjoint representation, so that
Q*(M;ad (P))inherits a natural differential operator from the connection 4 . Explicitly, we have

for*eP(ad (P)), XeT(T) and XeT(E)the 4-liftof to in (3.2)
Vi* --d As(X)= [X,*],

and, for instance, if 6eD 1M (P)) then

(4.2) SAHY -

The associated connections to 4 , on the various associated bundles are all ofcourse compatible,
in the sense that, if
VAW

is a G-equivariant map, then d* commutes with the induced maps
Q*(M;W{P)).

Furthermore, these covariant derivatives behave like derivatives relative to tensor-products.

It follows in particular that d” acting on Q*(M\ ad (P)) behaves as a derivation under both the
bracket [ ] and the A operation:

(4.3) d A — [d"a,
(4.4) d(a A?) = d"aA"™ +a AdM/?.
With all these functorial remarks out of the way, we have the following:
Lemma 4.6. Let At be the line of connections
At = A-\-trji rjeQL(M;2ad(P)).
Then the curvature of At is given by

F(At)=F(A)+tdAy +y*[y,y].

Proof. By definition, the horizontal lifts Xtofa vector field on

Xt =xt+tv(x
and, correspondingly, the vertical projections relative to  are related by
(&—(0—tyon.
Expanding Ft] now yields
F(X Y) = ] +[S,v(y)L+[?W. ?] +nv(X,v(Y)I}

- &, [F, r\-tr X, Y] H<PX)Y(F)]-([)i/(Z)] + n V(X),V(Y)I
which is the desired formula by (4.2), since [a,/?] for 1-forms a,/? is defined as the two form

[«./»] 6y = [a{X)I(Y)]-[a{Y), li(X)I
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With the help ofour lemma, it isnow an easy matter to compute the first and second variations
of L.

Proposition (4.6). Theconnection A is stationaryfor —]||P(.d)||2 ifand only if
dn —O0.
Proof Expanding Ft —F(At) according to (4.5) gives
4.7) HE - 112 2<(d™MN) +t|dN |2+ (P, ]} +higher terms.
Hence at an extremum (d* F) —O0, or equivalently
MSP) --0,
for all NeQd (P)). Hence at an extremum
(4.8) d *&{A)= 0.

Here d” is the adjoint of d” relative to our norm on D*{M; ad (P)) and, just as in the usual
Hodge theory, it is given by £ *d” *, Precisely, if = dim M, then
(4.9 dj' = (H)m¥u>H *d™ * on
Hence (4.9) implies (4.6).

For completeness we quickly review the proof of (4.9). Suppose then that cpeQv~x, i/reQp,
one of them having compact support. Then by (4.4)

d™{ FA *ilr} = dA pAT
Hence integration yields
0= (d» M+ (-1)21
*-| — (—I)(P-D(m-p+l) *

But

on (p —1)-forms, yielding (4.9).

Remark. The Bianchi identities assert that for every  we have dAF{A) —0. Hence at a
stationary point we have both

d aF(A)=0 and dzP(") =0.

Forms satisfying these two equations are clearly I) analogues of harmonicforms in the
usual Hodge theory. In short the condition for to be extremal is precisely that its curvature
F{A) be harmonic in Q*(M; ad (P)).

The expansion (4.7) of course also yields the Hessian of at an extremal connection  This
Hessian is a quadratic form on the tangent space to «s/(P) at  which in our identification is

precisely Q1{M;ad (P)). With this understood we have the formula for the second variation.
Proposition (4.10). The quadraticform Q{rj, rj) defined by the Hessian extremal connection
A is given by
Qfy.y) - {%dAij +

Proof From (4.7) we have
Q) = 1273 I TIFHA R
To bring this expression into the required form observe that ||d"9/||2—(d* dArj,y), while
@.ii) (P,I=))) = A *F =) MVAN= 9A * *-1[*P,iy].

Using the formula for *-1 this reduces to {y*[*P,iy]).
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We write Ffor the endomorphism
For/-+

of sI*(Af; ad (P)). This is clearly a degree-zero operator, which by the argument of (4.11) is
also characterized by

(A,S =Wfo,3)
and is therefore self-adjoint.

Remarks. The operator
LA = d5d™+*[«/m, ],
which appearsin (4.10), can also be interpreted as theJacobi operator associated with an extremal

of L{A). That is, if At — A +til + tX.. describes a curve of connections fo
extremal, then

Noa \- 0.
To see this we differentiate the equations
d %F(At) O
pect to tand set / = 0. If a dot denotes such a differentiation then we clearly have
&a=
whence the derivative of
* dA* HA—O
is given by
* [G°F(v4)] + *d** =0,

which, once the signs are taken care of, is equivalent to
(4.12) hAr= 0,

The solutions of (4.12) are therefore the ‘Jacobi-fields’ of  and describe the tangent space to
the space of solutions of the nonlinear extremal equations for

On the other hand our functional L is clearly invariant under the action of the group ofgauge trans-

formations. Hence the proper measure of the tangent space to the space of solutions is given by
the quotient of the solutions of (4.12) by the directions along the orbits of the action of t*(P).

Now this space is, as we shall show in a moment, precisely the image of ad (P)) in
JOX(AT; ad (P)) under d”. Thus the corrected tangent space to the space ofsolutions is the quotient
i fields JBy the image of d” and therefore fits into the exact sequence
4.13) Q°(M:ad (P))-*> JA > - >0.
We shall call NA the null space of QAand its dimension the nullity of A. Th
finite because of the following argument.
In our norm on ad (P)) the orthocomplement of the image of the d™ in (4.13) is
precisely the kernel of d*. Thus Nivay be identified with the space of sati
equations
L Ayv0, d -0

or equivalently
(4.14) dld» +d~dI+*[*P, 1=0, dl =0.

The first operator on the left is the Laplacian Aa of d* and hence elliptic. Hence the solutions of
(4.14) are fislagh and therefore the nullity is also.
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This argument immediately extends to the Morse index of ~ which is defined as the dimension
of a maximal negative subspace of @, equivalently, as the dimen:
in the kernel of dH on which the form

_ _ N Q) = (AAy+F =F(A),
Is negative definite.

Thus, to sum up, we have the following finiteness result.

Proposition 4.15. The index and nullity ofan extremal A arefinite and equal to the index and nullity

ofthe quadraticform A A A
QAy)= (A
on the kernel ofd* in QLM ;adP).
Finally, if XeF(AdR a left invariant vertical vector field it acts on T(P) via the
bracket. Hence, if ¥is an "-horizontal vector field, —  F] measures the first-c

the ~-horizontal spaces. It follows from (4.5) that in our identification
TAst =ad (P))
the tangent space to the orbit of S(P) at A is given by the image of

d™: &°{M; ad (P)) ->~(A/; ad (P)),
as was asserted earlier.

5. Yang-M ills over a Riemann surface

When the base-manifold of Pis two-dimensional the Yang-Mills equations naturally relate to
holomorphic structures and can therefore be understood best in a holomorphic context.

To see this recall first that when dim As —2, the * operator ofa Riemannian structure on M
maps Q1o 121, with *2= —I1. Hence we have a natural decomposition

Qc(M) = QW(MP £M (|
with Qdenoting Q@, and
* =— on "D, *=i on

of the complexified de Rham complex. This decomposition splits d: 0° intod: Q°->Qx0
and d": ->Q01, and so induces a holomorphic structure on As, whose holomorphic functions/
correspond locally to solutions of A

Suppose now that P is a principal 6-bundle over M (M and G both compact), and that isa

connection for P. Then the above argument can be applied to the complex ad (P)), and
dj,, giving a decomposition
Q'ciM;ad (P)) =W (M ; ad (P)) © ad (P))
according to the eigenspaces of *:
*——4 on QI® *=1i on

There is a corresponding decomposition of d*, so that we have the diagram:

d A
ad (P))--——>Dg(M; ad (P))
d ,
&c(M; ad (/>))-—->
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which is of course compatible with the corresponding decomposition of DC(M), and now the
operator dj[ defines a holomorphic structure on the vector bundle ad over M. This can be proved as
in Atiyah etal. (1978, theorem 5.1) by applying the Newlander-Nirenberg integrability theorem
for complex structures. Alternatively we can give a more elementary proof as follows.
Clearly all that has to be done is to construct local frames for ad (P), withd —0. Now if
sv is any frame over U ¢ M, we have
d a su= @su>

where 6 is some matrix of 1-forms of type (0, 1) on M. Further if we change  tofsv where/is
an appropriate matrix-valued function then

dJA =

Hence we need to solve the equation
(5.1) f-'d-f+d=o.

First consider (5.1) globally over the 2-sphere Sor the trivial bt
spaces H&nd using their basic properties, explained in §14, we see that the map

P ; H 2-

given by P (/) = /-1d'/is smooth. Moreover its derivative a t/ —1 (the identity matrix) is the
linear elliptic operator d", which on SB surjective and has the constar
The implicit function theorem for Banach spaces then ensures that the equation P(f) — has
(near/ = 1) aunique solution/e H Brthogonal to the constants, provided 6 is close to zero |
If Giin O0thensois/

To deduce the local solvability of (5.1) around 0 we introduce a cut-off function p{\z\)

with graph of the form

Figure 2.
This function is in H land we have a universal bound (independent of for its/P-norm:
Mi < 2ic*
Putting F fw can then estimate the H Inorm of
M I= 1< 2{\\pOV +\\p'0\2+\\pOV}  8icsup|P|* + 2||P|U.

Here | | stands for the usual L2-norm, p'stands for  and we restrict 1
\z2\ A F, which is the support of P\bw we can always assume that our frame was so C
6 (0) —0 and so, for 8gsfficiently small, both sup and ||P||| can be made as small as we ple:
Thus, for small 80||f is small and applying the global solvability of (5.1) to we find an/

44 Vol. 308. A
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satisfying f~1d"f+"—0. Restricting to \2\ < AF we have and sof is the required loca
solution.

Using the holomorphic structure defined by dj[ we shall continue our analysis of Yang—Mills
in the two-dimensional case and discuss the implication ofhaving a connection that is extremal

for L(A) and therefore satisfies the equation
(5.2) d" *P(A) —o0.

Now P(A) eQ2M (P))and hence ®ad(P)), and is
ad (P),on which both dj and dj[ —0. Thus (5.2) implies that *P(A) is a holomorphic section of
ad (P), which is covariant constant, .and we claim that we can therefore decompose ad (P)

completely according to the eigenvalues of the endomorphism

A= iad ),
that is
Act= i[*P(A),a], ad (P)).

More precisely, we claim that the eigenvalues of A on ad (P) locally ,and, as A is

self-adjoint, there is therefore a natural decomposition
ad (P)®C = ©adA(P), A
A

ofad (P) ¥ Qito orthogonal sub-bundles where reduces to the scalar A

Furthermore, (5.2) now implies that the induced decomposition

ad (P)) R adA(P))

is stable under d”*. The local constancy of the eigenvalues of A follows by considering the
trace functions tr Anh —1,2,.... We have

dtr Aw—trd"A” —0.
Actually our main concern will be with the decomposition
ad (P) ® Cfad_(P) © ad* (P) © ad+(P)

corresponding to negative, zero, and positive eigenvalues of A. Note also that the Reimannian
metric on ad (P) induces on complexification holomorphic dualities

(5.3) ad* (P) £ ad* (P)*, ad- (P)* ad+(P).
With these matters understood we now have the following formulae for the index and nullity.
Proposition 5.4. LetA be an extremal connectionfor P. Then
nullity (A) = 2dim ad* (P)),
index (A) = 2dim0/P(As;ad-(P)),
where H %lenotes the cohomology of the sheafof holomorphic sections of the bundle indicated.

Proof From the discussion in 84 we have to compute the nullity and index of the quadratic

form
8{V)= (aaV+ Fvs

in (M ; ad (P)), where as before we have written Pfor the transformation
F:7)-> *[*P(A),iy].
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We can furthermore clearly decompose this equation according to the eigenvalues of A, and
so are naturally reduced to three cases with A —0, or a positive or negative scalar. Consider first
A —0, that is the case corresponding to ad* (P). In this situation = sem”~
definite. Hence the index is zero, and the nullity equals the dimension of the harmonic forms

(5.5)
in herd*. But (5.5) implies that d
in ad* (P)).

We next turn to the case when A is a positive scalar, that is corresponding to adA(P) with

A> 0 in the spectrum of A. In this situation we shall need the following estimate on the first
positive eigenvalue of the Laplacian.

Aa\V=0
at—o0 and

Lemma 5.6. Consider Aa acting on Q\<for the bundle adA(P) with A > 0. Then Aa preserves the spaces
QL0and <@, and thefirst positive eigenvalue of AN-Q10is N 2A
From this lemma and the self-evident formula

P\QW -- -A, FfJ01=A

it follows immediately that our operator
Aa+F
Is positive on &0FLand has on

Qfthe single negative eigenvalue -A with
dimension of the harmonic forms in

Q1,0.Hence (5.6) leads to
A N
Corollary (5.7). The quadratic form Q of (4.15) has nullity zero , index =
Index Q —dim harmonicforms in Q1°°.

In short then, this corollary computes the contribution of adAP) to the index of A, in terms of
the dimension of the harmonic forms in Q1 and it is then quite s

translate this answer into the statement in proposition 5.4. We shall review these matters in a
moment, but turn first to a proofof lemma 5.6.

For this purpose recall our decomposition of Q
£1.° dA
f
(5.8) tut dA,
~0,0-—-->Q0,1

and the corresponding decomposition of d” into dA+ Now in this diagram each arrow has
a natural adjoint and we can therefore associate a Laplacian with each arrow. Each such Laplacian
gives a self-adjoint operator on the spaces at both ends of the arrow. Thus we have a and

an upper O j[, defined by
O;-djfdi)*+(di)*dj]
as well as left and right \AA defined by
0J =di(dJ)* + (dJ)*di.
Now the basic relations between these operators are given by the following.

Lemma 5.9. The Laplacians \AA and \PA induce the same operator on QIt0 and Further Aa
preserves these spaces and

@) Aa=2mi -- 2 U'an and
44-2
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while
(i) Aa =nl +rn and
and, finally, on i2°*° these two Laplacians differ by A:
(iii) ni-ni =A

Proof. Both (i) and (ii) are formal consequences of the equation d* ——*d* and the fact
that * ——on Dénd *=1ion D04

For instance, for ae-Q0*0 we obtain

Aaac= —*dA *dAa
—+ *d(idja-id

=i*(dj[dj-djd]
= nla+nla-
The last relation (iii) now follows from
id2a = (djdj[ +d~dj)a = *[A,a] for aef£°’"

Now this lemma serves to estimate the spectrum of by means of the standard theory of
elliptic complexes. Indeed each arrow of diagram (5.8) is an elliptic operator. Hence by the
Hodge theory the positive spectra of the two associated Laplacians are isomorphic. Thus the positive
spectra of \2a0 and QZTlare equal. On the other hand by (iii]
below by A because \2A is semi-definite. But on QT0we have —2\2A. This completes the
proof of lemma 5.6.
It remains to translate the harmonic forms into sheaf conomology terms in the standard way.
This translation is based on the fact that each ofthe operators in our diagram can be interpreted
as a resolution for the kernel sheaf of the operator.
Thus the lower dA, together with Hodge theory, yields

MA/>>Y- Ker
while the upper dgives
MIAP) ® DD~ Ker
Finally Serre duality gives:
A ®
Thus our index formula (5.7) for A> 0, becomes
index Q—

once we recall the duality (5.3).
Finally if we take A < 0 a completely analogous argument yields

index Q-
Summing over Athen completes the proofof proposition 5.4.

Remarks. Although the formulae for the index and nullity seem similar, there is an essential
difference between them. The nullity is essentially unstable (under changes of A) while the index
is not. This stability of the index follows from the Kodaira vanishing theorem and the
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Riemann-Roch formula. Indeed on ad™ (P),with ju <0, ad™ (P)) —o, as also follows
from the formula
>0,
on ~°'°, and the diagram (5.8).
Hence the index is also minus the Euler characteristic of adA(P).Now, by Riemann-Roch,

dim H°{M; E) - dim HAM; E)=cx(E) + (g-1) dim
Applied in our situation, this then leads to the following rigid and computable formula for the index:
(5.10) index A= 2{t1(ad+ (P)) + (g- 1) dimc (ad+P)}.
Here adenotes the first Chern class and we have switched to ad+ (P) via the formula
m*)=

6. Representations of the fundamental group

In the previous section we saw that, over a compact connected Riemann surface M> a con-

nection Ais extremal for the Yang-Mills functional if and only if *F(A) is covariant constant
(relative to at is

(6.1) dn *F(A)= 0.

In particular, if our G-bundle is topologically trivial, a flat connection, that is with =0,

necessarily satisfies (6.1) and corresponds to the absolute minimum ofthe Yang-Mills functional.
Now a flat G-connection is locally trivial and globally corresponds to a homomorphism

(6.2)
describing the holonomy. Solutions of (6.1) that are non-zero can be described in a similar

manner by using a suitable central extension of wi(M).
We recall that n*M) is a group with 2

ggnerators
relation
(6.3) fll'AA] =i,
where [A, Blis the commutator ABA~XB~xIt follows that, for " 1, w{M
central extension

1->Z"P > 1,

where Pis generated by ABZL...}JA0 Bgand a central element satisfying the sing
(6.4) irlii \At9Bt-\=1J.
Let P&enote the group obtained from P by extending the centre to P, so that we have a central
extension:
(6.5) 1> R—m Pr 4M(Al) ->
On dividing by Z the group FElearly becomes a direct product

(6.6) 1->Z->Ps ->£/(I) Xriy(M)->1.
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Now let Q->Al!be a (7(1)-bundle with Chern class 1 endowed with a fixed harmonic or Yal
Mills connection. Ifwe normalize the metric on £0 th
this harmonic connection on Qi—

covering ke Alis of course a flat /q(Af)-bundle, so that the fibre product ~isa
71(M)-bundle with connection still having curvature — Lifting to TR we then get a FR-
bundle over Alwith connection and curvature — In particular this connectior

Yang-Mills connection, a notion which makes sense even though T r is not compact.
Given any homomorphism
p:rR*"G
we then get an induced G-connection Ap also satisfying the Yang-Mills equations, since (6.1)
is clearly functorial for homomorphisms. Our observation is that all Yang-Mills connections are
obtained in this way, namely we have

Theorem 6.7. The mapping p->Ap induces a hijective correspondence between conjugacy classes oj

homomorphisms p TR->G and equivalence classes of Yang-Alills connections over Al.
To prove this theorem we have to understand the significance of the Yang-Mills equation
(6.1). First we shall show that, as a consequence of (6.1), the conjugacy class of = *F{A) is

constant. To see this recall that *F can be considered as a g-valued function on P,

*F;P->q
which is equivariant under (e
*F(pg) = Ad gF(p).
Hence the values of * Fertainly lie in a fixed conjugacy class of g (i.e. orbit of Ad
fibre of P.On the other hand the condition
d*F =0
asserts that for any vector field Xo Al, its horizontal lift X (relative
follows that * Biconstant along horizontally lifted curves.
To proceed further let us now choose a point i th
inverse image of Xoder *F:
Px= =~
Because * Fraps ontothe orbit of Ais set will &

reduction of the structure group of G to Gx, the centralizer of X in  that is Px is stable under the
action of Gx and

(6.8) Px/Gx = M.

Furthermore the horizontal subspaces of Aare tange

that A restricts to a connection ofPx over Al, with curvature F(A), where now *F(A) is the constant
map

(6.9) PxAX.
It follows that we may think of F{A) as the Lie algebra valued 2-form,
(6.10) F(A)=

with athe volumeform on Al.
The Yang-Mills connection Apdefined by a homomorphism p :r R-+G has curvature
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where X the element of the Lie algebra g of Gdefined by g. Since is central in
it follows that p (rR) centralizes Xpand so p is actually a homomorphism

P'Rr-"Gx with X —Xp.

Thus in proving theorem 6.7 we can restrict ourselves to the case when s central, i.e. when
Gx = G.

Next let us consider the case when Gia torus, so that we are dealing
line-bundles. Now line-bundles with harmonic connection form an abelian group under ® and
so can be uniquely expressed as QR Lvh
degree 1 and L& flat. Taking direct sums then shows that theorem 6.7 is true in this abelian
case. As we have already remarked itisalso true in the flatcase, =~ now factoring through

The general case is essentially a combination of these extreme cases but to proceed further we
need to recall the basic facts about the structure of compact connected Lie groups  First of all
the commutator subgroup S —[G, G] is the maximal connected semi-simple subgroup of G. The
connected component H of the centre of G is a torus, which together with  generates G. The

intersection D= Sn Hia finite subgroup of the centre of and so
HxS->G
is a finite covering with group @d¢ting diagonally). Thus we may write G :
factoring out further by Devcan put
G= G/D, H=H/D

so that we have

(6.11) G- HxS.

Any G-bundle P with connection induces a G-bundle P with connection. Conversely if P
lifts to P then P is unique and inherits a connection from that of  Similarly a homomorphism
p: PRGinducesp: PR G. Moreover if B cer
and so p factors through

In view of (6.11) we see that p is determined by a pair of homomorphisms

fa: *7(1) XT
(6.12) .
\fil7¢l{M)-+38.
A central Yang-Mills connection for Gis equivalent to a Yang-Mills connection for and a flat
connection for SWe have already seen that (6.7) holds in these two separate cases so that we

end up precisely with the pair of homomorphisms a and
This completes the proof of theorem 6.7. We should note, however, that in this theorem we
have simultaneously considered all topological types. It remains therefore to describe the
topology of the bundle associated with a given representation Now G-bundles over
Mare trivial over the 1-skeleton of M (since G is connected) and are classified by a class in

For the group Gof (6.11) we have
Mi(G) g Thi(H) © n”nS).

The homomorphisms a, /? of (6.12) determine classes
[a] 6 ~,(5 ), [/i]677,(5).
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The definition of [a] is clear, we simply regard the restriction to (7(1) as a loop. For [/?] we note
that siextends canonically to a homomorphism
fttr°S,
where Sithe (finite) universal covering of S:thisis

of rrfM).The class [/?] is then just given by

m -
where as before Jgenerates the kernel of r-nfM).
To any homomorphism p :rR-*-Gwith p(R) central we then pass
described by the pair a, (i. The class [a] 0 [/7] gien

associated 6 -bundle, and so that of the 6 -bundle. Since 6 ->6 is a finite covering with group
it follows that we have an exact sequence

0->t"G) -> n4>D->0
and the pair [a] ® [/?] in wl(6 ) belongs to the subgroup nx{G) if and only if [a] and [/?] have
opposite images in D,using the exact sequences
0-"rrfH)
0->n~S) ->n”"S) ->Z)->0.

Since for the semi-simple group Sw have [S,S] it follows th.
(6.13) 1f[1 [Ai,Bi]=V
have solutions with ABieS for any given yeS. In particular on replacing S b
covering and taking yto be any element of the centre it follows that /?->[/?] de
(6.14) Horn (nfM),A)*n LS)
More trivially c>[a] gives a surjection since restriction to 6 (1) defines an isomorphism
(6.15) Horn ((7(1), ~

Thus we have proved

Proposition 6.16. Every topological G-bundle P over M possesses a central Yang-Mills connection.

The space of [equivalence classes of) such connections is given by all ( classes of) solutions of (6.13)
with given y, multiplied by the torus Horn H).
As explained above the element yin (6.16) is determined by th

curvature also is determined by the topology ofP. More precisely it depends on the characteristic
classes via (6.15). Hence the value of the Yang-Mills functional is also determined by the top-

ology of R is not hard to check and will be proved in §12 that this value isthe minimum
for P.
The general Yang-Mills 6 -connection for Rten arises
group Gx . If Sx is the maximal connected semi-simple subgroup of Gx then Gx/Sx = IS
a torus and _
AX — Npx

is a lattice. This contains rrfHx) as a lattice of finite index, so that we may view as sitting
inside the Lie algebra of Hx, which in turn is in the Lie algebra of 6. In this way

(6.17) XelLX ag
Note that Xan now be identified with the class [a] of the homomorphism a: 6 (1) ->GX/SX
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It remains to examine the topological relation between the bundles and P. The inclusion

Gx ¢ Gsends Skto Since S maximal semi
universal coverings Sk a factor of Sad so the centre of
Elements of w1(G) can be viewed as pairs (a, bvith

aen™"G/S), £ecentre

Similarly elements of 71 (Gx gre given by pairs bx and the homomorphism

then assigns (& ,bx) to (@ In the obvious way. In particular b determines bx unique
element ax is then constrained by two relations

6.18 (ax >a

(6.18) \ax =’ brod

Here the congruence is to be understood in the sense that we use the two natural homomorphisms

centre Sx ->centre Sx
LX->DX ¢ centres.

For the Gjr-bundle defined by a pair of homomorphisms (acX) as in (6.12), we have

ax — [aknd bx — knd [ax] can also be identified with the point in the lattice
To sum up we see therefore that, for a given C° G-bundle P the Yang-Mills connections fall

into a countable number of families or types determined by conjugacy classes ofelements in g.

These Xee constrained by the condition (6.17) and (6.18) rewritten in the form

(X—y‘-cl
' 1N u = hmodDx,

where (a, b) are the pair determining the topology of P with aen1(G/S)i ecentre

In theorem 6.7 we formulated the results for full equivalence classes. If instead we pick a
base point x0e M and work with the subgroup  of gauge transformations that are the identity
at #0, then (6.7) becomes the statement that we have a bijection

Horn {Tn,G)"J
where s the space of all Yang-Mills connections. The group acts on both sides
and induces the bijection on quotients expressed in (6.7).

We shall now spell this out in more detail for the case of = The Lie algebra is then the

space of skew-hermitian matrices. We write such a matrix as —27tiA so that A is hermitian. Its
conjugacy class is determined by the eigenvalues AlsA2 ..., An of A, which we may arrange in
descending order:

(6.20) AXN RN N A
The maximal semi-simple subgroup is SU(ri) while the diagonal £7(1) is the centre. The group
DB-

is the group of wth roots of unity. The homomorphism U(n) -> £7(n)/SU(ri) £ £7(1) is of course
given by the determinant. The lattice

= %(E7(»)/5£7(n)),
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therefore corresponds to diagonal hermitian matrices with integral trace, i.e. the diagonal
entries Aare such that PAisintegral.

If As= —2niA with Ahaving the eigenvalues in (6.20), the centralizer

many coincidences there are amongst the Ay. Thus if the first  are equal, the next are equal
and so on, we have

(6.21) Gx— UM x ... x U(nr).
The lattice Lshen has dimension rad the condition (6
(6.22) WA s integral for allj.

Thus when the Ayare all distinct they must all be integers, while at the opposite extreme, when
they are all equal, they are rational with denominator

Since n*U~MnE Zis free abelian, a £/(m-bundle over M is determined topologically by a
single integer, its Ghern class. Thus the general description we have used for n*G) contains
redundant information in this case. More precisely we considered the finite Zn-covering

U((n)-+U(HxPU(Nn)t
where PU(n) is the projective unitary group, and identified z1(£/(«)) with the appropriate
subgroup of ]

NET(1)) ©Ix[PU{%)) ~ Z©

Itiseasyto seethat our subgroup isgenerated by the element 1 0 1 . Thusforapair(a, eZ©

to represent an element of n\{U(n)) we must have mod n, and our element is then given by
the integer a.Condition (6.19) now reduces to the obvious requirement
(6.23) trace X—
where ais the Ghern class of P.

In terms of vector bundles, a reduction from U  to a Gx ofthe form (6.21) corresponds to a

direct sum decomposition
E— #O.. ©
The condition (6.22) merely asserts that the Ghern classes ofthe  must be integers while (6.23)
asserts that the sum of these Ghern classes must coincide with the Ghern class of
For U(n), ahomomorphism r R-+U{n)gust a unitary representation of-T". Ifarepresentation

is irreducible then Xinecessarily central so that all its eigenvalues Ay are equal and give
where Id the Ghern class. The converse is true when (n, = 1, since a reducible representation
can only produce eigenvalues with smaller denominators in view of (6.22). Narasimhan &
Seshadri (1965) have shown that, provided 9”2, irreducibl
The proofis a simple matter of exhibiting irreducible sets of matrices satisfying (6.4) with any

given nth root of unity. Naturally for F — 1, n*M) is abelian and so has no irreducible unitary

representations for n >1 Thus for k —0and
while for (n, k)—1 they do exist. This is consistent with the results of Atiyah (1957) on
classification of holomorphic bundles over elliptic curves.

Yang-Mills Uh)-connections for which Xl
have mentioned to the absolute minimum 4 nX2for th

shown therefore that the most general Yang-Mills connection for a vector bundle issimply a
direct sum of Yang-Mills minima for sub-vector bundles.
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7. Holomorphic bundles

In this section we shall consider holomorphic vector bundles over our compact Riemann
surface M and discuss the general nature of the classification problem. In particular we shall
explain how to compute the cohomology of the moduli space of stable bundles. In principle the
approach we shall give is entirely ‘non-unitary ’and does not involve Morse theory. However, in
§8 we shall explain the relation between this holomorphic approach and the unitary approach
based on the Yang-Mills functional and Morse theory ideas.

To demonstrate clearly the structure of the argument we shall not enter here into any techni-
calities. The relevant analytical details are treated in U 14 and 15.

We consider therefore a fixed Coocomplex vector bundle E over  ofrank nand Chern class
and we denote by "{E) or #(w, A, or simply ~f, the space ofall holomorphic structures on E. In
concrete terms a holomorphic structure may be defined by its d"-operator, so that the local
holomorphic sections are the solutions of d "u—0. Relative to a C®loc

d" = dZ+B

where dy is the usual Cauchy-Riemann operator and is a matrix-valued (0, I)-form on
Since dim M= 1there are no integrability constraints on  so that can be chosen arbitrarily
(see 85). From a global point ofview it follows that  is a complex affine space whose vector space
of translations is QOX(End-E), where End J? denotes the Cm vector bundle of complex enc
morphisms of E.
Let Aut Fenote the group ofautomorphisms of so that an element of this group is locally
a Coomap of M into &g Then Aut fets on %(E)
isomorphism classes of complex analytic bundles on  with rank and Chern class Our aim
is to describe this orbit structure as fully as possible and in particular to discuss the ‘moduli
space’.
As usual with classification problems in algebraic geometry, in order to get a good *moduli
space’, we have to consider a restricted class of holomorphic structures, those that are in
the sense of Mumford (1965). The set of stable points in ~(E) forms an open set #8(2?) and the
corresponding orbits are then closed in #s(2?) so that the quotient space ~(E)/Aut (E) is a
Hausdorff space. In fact it turns out to be a complex manifold and is compact if = 1. This
is the moduli space we are primarily interested in studying and whose cohomology we want to
compute.
We recall now the precise definition of stability. It will be convenient first to introduce the
normalized Chern class or 6slope ’ (in the terminology of Shatz (1977)) si —Chern class/ rank. Then
a holomorphic bundle Bistable if, for every proper holomorphic sub-bundle  of  wwe
h(Z>) < fi{E). Semi-stable is defined similarly but we allow now the weak inequality fi(D) < JNE).
Elementary arguments as in Harder & Narasimhan (1975) then show that every holomorphic
bundle E has a canonicalfiltration.

(7.2) o=focf£i1cf2c, .c£r=¢£
with Dt—EifEi_xsemi-stable and
Ay sWA)> WA

Ofcourse if Bisemi-stable then 1.
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IfD* has rank nand Chern class™ sothatn — k = we shall call the sequence
(ni}ki) i —1,...,r the typeof E. It is sometimes convenient to describe the type
the single n-vector si whose components are the ratios  each represented ni times and arrangs
in decreasing order. Thus

P — @@iPn)

with Pin Pz~ ™ where the first K are equal to  nv the next are equal to  n2and
SO on.

All the holomorphic bundles of a given type /t define a subspace # of In particular if all
components of/t are equal (hence are all k/n}hen N —#ssi

Since the filtration (7.1) is canonical the subspaces * are preserved by the action of the
automorphism group, so that each  is a union of orbits.

It is well known that the infinitesimal variations of a holomorphic bundle are classified by
the elements of the sheaf conomology group HI1fhd is).
as follows. The orbitin  corresponding to a given holomorphic bundle s, locally, a manifold
of finite codimension in  and its normal can be identified with HI{M, End is). This is because
an infinitesimal gauge transformation, namely a global Cmendomorphism () of is, alters d" by
the addition ofd pad the cokernel of

£°(End E) D°-*(End E)
isjustiil(As, EndE).
In the same way we can identify the conormal to  Since isa union of orbits its conormal
should be a quotient of if 1(As, End is). Now let End' denote the bundle of holomorphic endo-

morphisms of Btat preserve its canonical filtration and define End" E by the exact sequ
(7.2) 0->End'£-»End£-> End"is-"0.
From the exact cohomology sequence of (7.2) we see that End"is) isindeed a quotient of

HI1(MtEnd E) and this is clearly the right candidate for the conormal to  since H1(M)End'E)
describes variation inside ~ The important point to notice at this stage is

(7.3) dim//1(As, End" Bidgencs only on p.
This follows from Riemann-Roch together with the key fact that

(7.4) MEd" is) = 0.

This in turn is an easy corollary, by induction, of
(7.5) Ebare both semi-stable andp{E) >/ (D))

The proof of (7.5) is a simple consequence of the definitions and can be deduced from
Narasimhan & Seshadri (1965, proposition 4.4): it is in any case an essential step in the proofof
the uniqueness of the canonical filtration.

From (7.3) we can deduce that” islocally a submanifold of finite codimension in  Thus the
picture that is emerging of # is that it has a stratification by submanifolds giving a sort of
generalized cell-structure. To understand the mutual positions of the  we need to know some-
thing about the closure 0 f8". In algebraic terms we want to know what happens to the canonical
filtration (7.1) under ‘specialization’. This problem has been studied, in the framework of
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algebraic geometry, by Shatz (1977) who describes how the changes under specialization. To
explain this result we have to introduce a partial ordering on the vectors that parametrize our
types. This partial ordering can be described in several equivalent ways. First we follow Shatz
and associate with the type [be convex polygon

Figure 3.

Note that the convexity of i*, is equivalent to monotonicity of the quotients ki/n® Shatz now
defines the partial ordering by:

(7.6) AN si ifPx is above P

I f we consider P the graph of a concave function p” then p” is defined at the integers by
Pi) =jg:i

and interpolates linearly between integers. Here the /g are the components of our n-vector /i.

Hence, for our vector notation, (7.6) translates into the following partial ordering:

(7.7) A >if 22% > E Ei»jq_ = L

Note that 2 A- —2 /o —Xk is fixed. This partial ordering on vectorsin iswell known in various
contexts (see Marshall & Olkin 1979) and we shall discuss its Lie group significance in §12. For
the present we return to the result of Shatz, which now takes the form

(7.8) V < U kv

A> i

In the next section we shall give a differential-geometric proofof (7.8) that is more in the spirit
of this paper.

It isclear that this partial ordering on types satisfies condition (1.17). We shall check condition
(1.18) later (see (7.16)). We can thus use the stratification of *€ by the * to describe the equi-

variant cohomology of *€in terms of that ofthe%. It remains to show that this stratification is
‘perfect’ in the sense of 81.

Let  denote the space ofall Cofiliations of Ebtype /t. Thus
the fibre bundle over Mith fibre the manifold F,, —GL(n, C)/  where B” is the para
subgroup preserving a fixed (partial) flag of subspaces of Cn of dimensions + _ The
sequence of Chern classes ktorresponds to picking a definite component of the

sections. Since the filtration (7.1) is canonical we have a map (the continuity of which will be
established in U 14 and 15)

(7.9)
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If we fix a base-point of * corresponding to a definite Cifiltration  of  the fibre of (7.9)

over this pointis the subspace”™ ¢ ~ ofcomplex structures compatible with the given filtration.

If Aut (Ep)s the group of Co automorphisms of  preserving the filtration then Aut acts
on  3#"isthe homogeneous space Aut FAut (Ep) and” can be
bundle. Hence for the purposes of equivariant cohomology the pairs

(Aut (£),%)and  (Aut("),")
are equivalent as explained in 813

Next let us choose splittings of the filtration Ep ®thatwe
(7.20) E—1)i©-XO... ©
with Ei=

and let Aut-E®  be the automorphisms and complex structures (in - compatible with this
decomposition. Then we have

(7.11) Aut (LA - fL At ()9),

i=i
On the other hand the natural homomorphism
Aut (Ep) =>Aut (El)
Is a homotopy equivalence, and the fibration

has a vector space as fibre and is compatible with the group actions. It follows that, for purposes
of equivariant cohomology, the pairs

(Aut(£y,4y and (Aut(E®)"®)
are equivalent. Together with (7.11) this finally yields for rational cohomology

Proposition 7.12. The equivariant cohomology of the stratum ~ (E) is isomorphic to the tensor
product of the equivariant cohomology of the semi-stable stratafor the quotients Di.

Here of course the equivariant cohomology is always taken with respect to the automorphism
group of the appropriate bundle.

We also need to look at the equivariant conomology of the conormal bundle  to in
By this we mean of course the appropriate relative cohomology or the cohomology of the Thom
space of pixactly the same reduction as above shows that we can replace the triple (Aut (L),

AlJ by the triple (Aut (LA, J® AR) where ARis the restriction of A"to "®. Now from (7.11)
we see that Aut (£J) contains the r-dimensional torus ~ which acts trivially on S®. To showthat
our stratification is perfect it remains to show, using (1.9) and (13.4), that the representation
of Tron the fibre of Aais primitive. Now at a point of "® our bundle Lis a holomorphic direct
sumofthe and sothe bundle End' E of endomorphisms preserving the filtration is the direct
sum of Horn (D for P> jHnce
(7.13) End" E @tn(Di}D.).

i <j
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Now on Horn (i} Dj)the element (th..Ene
on HlMHomn (D~Df).Since the fibre of Ais Hif
representation of Tron IS indeed primitive. Thus we have proved

Theorem 7.14. The stratification of » by the is equivariantly perfect so that for the equivariant
Poincari series we have

ptm o
where d,, is the complex codimension of ™",
The dimension d"aan be calculated by Riemann-Roch, since  End"£) —e, and we
find (asin (5.10))
(7.16) H> i d,,=S {/»-I»+ (#-1)}
Alternatively, in terms of the sequence (nvAM),..., ( ),
(7.16) =7 {(n™-njki)+nin{g-1)}.

1=]
In particular this shows that our stratification does indeed satisfy the finiteness condition (1.18).

The first term in the series of (7.14) arises from the semi-stable bundles. All the remainder can
be calculated inductively by (7.12). Hence knowledge about (from 81) leads to inductive
formulae for Pt(%®).

Since the stratification of is perfect over the integers we can also deduce results about torsion.
First we should note that the equivariant conomology of* namely the cohomology of ~ Aut (is),
has no torsion. This follows from the identification with RS, to be explained in Ss, together with
the results of 8. It follows therefore that all strata  have no torsion (equivariantly). In
particular therefore

(7.17) thesemi-stable stratum &8ahas no torsion in its equivariant cohomology.

In the coprime case (n, K= 1 we have A and Aut (%) acts on N with the
scalars as the only isotropy group (Narasimhan & Seshadri 1965). From this we can derive
results for the ordinary cohomology of the moduli space N{n,k) —,/Aut (is). Thus we get
a formula for its Poincare polynomial and we shall also see that it has no torsion. This will be
treated in detail in 8.

8. Relation with Yang-Mills

In the previous section we have given a purely complex analytic approach to the moduli space
of stable bundles. We want now to look at the same problem from the unitary or differential-
geometric point of view. The connecting link is the key result of Narasimhan & Seshadri (1965)
identifying stable bundles as those that arise from irreducible unitary representations. Trans-
lated into the notation we have introduced in §6 their result can be formulated as follows.

(8.1) A holomorphic vector bundle of rank n is stable if and only if it arisesfrom an irreducible representation
p :Tr ->U{n). Moreover isomorphic bundles correspond to equivalent representations.

Remarks. 1. Actually the description given by Narasimhan & Seshadri (1965) is slightly dif-
ferent from (8.1) though equivalent to it. They puncture  at one points and consider coverings
of Mith ramification of order nap. This leads to a purely holomorphic descrij
our version, with connections, is a differential-geometric version.


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 17, 2018

570 M. F. ATIYAH AND R. BOTT

2. Donaldson (1983) has recently given a new proofof (s.1) in the spirit of this paper.

To understand the geometric significance of (s.1) we recall first, as explained in 85, that a
unitary connection A for a vector bundle E over our Riemann surface M defines a holomorphic
structure simply by taking the (o, 1)-component dj[ of the covariant derivative d*. This gives a
map which is in fact an affine-linear isomorphism. Locally this corresponds to the

isomorphism
~u(n)) £ S°»1(al (0,

for the Lie algebra valued 1-forms. Note that ~ is defined independently of any metric on the
bundle, whereas sad hence the isomorphism :
A associated in this way to the holomorphic structure will be called the metric connection. Since
any two metrics differ by a complex gauge transformation, i.e. an element of Aut (is), it will be
immaterial which metric we pick. The group Aut  may now be viewed as the complexifi-
cation # c of the group of unitary gauge transformations  of E.

NowletjV «j/ denote the setofconnections giving the minimum for the Yang-Mills functional.
As we have shown in se these are precisely "-equivalent to those given by representations
p:r U (nwithp{R) central. LetAl<"be those given by irreduc
(s.1) can be reformulated as follows:

(8.2)  Under the identification ofstf with  wehave ¢ <f and the induced map of quotient spaces

is a homeomorphism.

The proof of Narasimhan & Seshadri (1965) is essentially of (s.2). It is easy to prove the
inclusion Al sa%and infinitesimal arguments show that the map of quotients (which ¢
manifolds) is a local diffeomorphism. The hardest part of the proof is the surjectivity and this
requires compactifying both sides and a consequent induction on n. The real explanation for
(s.2) is probably to be found in the moment map ideas indicated at the end of 810 (see also
remark 2 above).

Note that the quotient space * 'S may be identified with the space ofhermitian metrics on E.
Since this is a convex set in a linear space it is contractible and so S and  have the same
homotopy type. Hence equivariant conomology is the same for the two groups.

Since direct sums of stable bundles with the same*“slope’ are semi-stable it follows C #3
note also that A = Alin the coprime case. More generally now let us transport the
cation of €by the * defined in §7, to give a stratification of by strata Let™ denote the
Yang-Mills connections whose curvature is of type  Such connections are direct sums of
connections of the form Al for smaller ranks. This shows that . ¢ A 5

Our firstaim in this section is to show how to characterize the  strata by properties of the
curvature. In particular we shall eventually show that the ~ are the ‘Morse strata’ of the
Yang—Mills functional. In fact we shall prove that this holds for a much wider class of functionals
than Yang-Mills. These functionals are obtained as follows. Let pbe any smooth function on the
Lie algebra g of éiat is invariant under the adjoint action and is convex. For example
G = U(n), so that xeg is a skew-hermitian matrix with eigenvalues iA, ...,iAn, we can take for
$£any of the following

i SAf, & |
8) exp (U ,)J K
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These can be written directly in terms of ithout resort to the eiger
smooth invariant functions. Why they are convex will be explained in 812 when we discuss this

notion more systematically. Given such a ™ we now define a function  on the space of

connections over M in the obvious way:

8.3 " 0 R f M*F(A)).
This reduces to the Yang-Mills functional when —itrace (corresponding to =1 in

(i) abowve). Since ¢sinvariant under the adjoint action,  isgauge-invariant. TairingAt = A + tij
and computing as in 84 we see that

(84) 0(At) = 0A)  +t) (EF
where Jg-»gis the derivative of i.e.

Px+ ty) = ¥ +<o '(#),y)mod

From (8.4) we see that the gradient of celative to the metric on the space
85) grad0=—*d
This reduces to the formulae of 84 for the Yang-Mills functional when —trace**# so that

W is the identity map g->q. In general ds an equivariant map (relati
of G)adsofor any section sdad (P) the covariant derivative of 3= can be obtaine
of sky the composition rule

(8.6) ($)= $°7(s)odAs.
This is most easily understood by viewing sa an equivariant funct

djiJ isjust the horizontal part (relative to the connection  of the ordinary differential d
From (85) and (s .s) we deduce at once

(8.7) a critical connectionfor the Yang-Mills functional L is also criticalfor O, and the converse holds i f
s strictly convex.

By a strictly convex function we mean as usual a function for which the second derivative ¢
IS everywhere positive #s0 that the linear transformation fi"(s) in (s.s) is invertible. Th
quadratic function trace xeed for the Yang-Mills function is clearly strictly convex an
(weakly) convex becomes strongly convex if we add a positive multiple of trace x*x. \We see
therefore that there are many functionals 0 that have precisely the same set of critical points as
the Yang-Mills functional L.

So far we have not really used the convexity of A only the non-degeneracy of the second
derivative fi".Ths — $wnould have had the same properties. The significance of convex

that the Hessian of obnays has afinite Morse index. To see this we compute as in 84 and find th:
the Hessian H corresponds to the self-adjoint differential operator

(s.8) 0 A— EF(A)) d*d™ -+ lower order.

Since @ gauge invariant we can, as in &4, restrict ourselves to ad  -valued 1-forms with
dMy = o, sothat in (s .s) d*d”™ can be replaced by the covariant Laplacian

= d*dn +drhd

45 Vol. 308. A
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Then 0 Becomes a second-order elliptic differential operator and the (strong) convexity of <
asserts that the leading-order terms are positive definite. This is enough to make the spectrum
discrete and bounded below so that there are only finitely many negative eigenvalues, showing

that HAfas finite Morse index.
Equations (8.5) and (8.6), together with the strong convexity of A imply that

(8.9) (grad Ograd ~ 0

with equality only if Alis a critical connection. This means that is strictly decr
paths of steepest descent for Z, i.e. the trajectories of —grad  In finite dimensions this would
imply that at the common critical points the Morse indices of and coincide. In our situation
this can be seen directly as follows. Expanding (8.9) at a critical connection  and discarding
higher-order terms, we deduce

(8.10) (Hoy, HL7) >0
with equality only if fjis in the null-space of H{which coinc
1j to the negative space V of Hive reduce (8.10) to a finite-dimensional ineq

implies that HO is negative definite on V (e.g. diagonalize HLon . Thus the Morse index of
is at least equal to that of L. Reversing the roles of and we get therefore

(8.11) theMorse indices of0 and L all coincide.

To sum up we see that any one of our functionals O, defined by a strongly convex invariant
function £mg, has exactly the same critical point structure as the Yang-Mills functional L.
next aim is to show that all such functionals lead in fact to the same Morse strata and that these
strata coincide with the complex strata introduced in §7.

We now return to the identification of the space  of unitary connections with the space
of complex structures, explained at the beginning of this section, together with the actions ofthe
groups S and of unitary and complex automorphisms. The tangent space to the S-orbit
through Aconsists of vectors dAc with ad (P))while for the ~ c-orbit it consists of
dAf with /? eQ°(M,ad (Pg). Since we are identifying ad (P)) with ad (Pc)) on
which * = i we can say that the tangent space to the " c-orbit at A consists of vectors

dAal+*dAa2 with al,az2ei2°(Af, ad (P)).

In particular then formula (8.6) for grad Osows that

(8.12) grad 0 is tangential to the " ¢- b.

In other words the ‘gradient flow’ of Opeserves the M-orbits
87 since these are unions of orbits. Since the stratum contains a unique component of

the critical set of (is then reasonable to expect » to be just the Morse stratur
manifold of Ossociated with For this to be true it is of course necessary that on st
take its minimum on JT™. Now for any AeA” the conjugacy class of *F(A) is constant and is
represented by the skew-hermitian diagonal matrix ~ with entries —2ni/ij = 1, Since

the volume of Asis normalized to be unity it follows that 0(A) takes the constant value <p(A )
and we shall write this simply as <X(ji). For example, for the Yang-Mills functional, we have *

=H 2=2/4
Thus we might expect the following to hold.
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Proposition 8.13. Forany and for any convex invariant function <> on u(n), we have
0(A) >

We shall begin by proving (8.13) in the simple case when
FI — Fi—* ~ Fr> !

so that the canonical filtration of the bundle E has just two steps. This means that, for the holo-
morphic structure defined by Aw have an exact sequence of vector bundles

0 Dx->E->D2->0,

where Jhes rank nipGhern class Kj (j—1,2) so
venience we shall use the notation IF —kj/mj (j = 1,2). The curvature F(A)
in the form

where Fjis the curvature of the metric connection of Horn IS its

transposed conjugate and di the covariant differential. Now letfp exj be scalar ntj xmatr
such that

(8.15) trace —trace *Fp

trace og —trace * (y Ay*) = —trace * (y* Ay) ——tracea?2

Then some elementary inequalities concerning convex invariant functions  (which will be
treated in §12) show that

*F(A)) O
SI ~a2
The convexity of Ftogether with the fact that M has normalized volume, then implies that
8.16 0(A) f 4>(*F(A))"<t,
(8.16) " w ., ("F(A)
But the Ghern class of Dj is given by
k>=

Since fs a scalar matrix this means that \ &5 a scalar matri
—2nikj/mj —— Bdso from (8.15) (since yeQ (@) it follows that —i trace  is non-negative
and so

J:IVI 2hicti
where als a non-negative scalar X matrix. Then

Js 2nia«

M
where al the non-positive scalar m2x m2matrix such that trace a2 ——trace av Hence we have
(8.17)
JJV [,-J=

45-2
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where [ ] denotes the diagonal matrix defined by a vector, so that [a] denotes the matrix * J '

From (8.16) and the convention we have adopted for defining O on w-vectors (absorbing the
factor —2rd) we then obtain

(8.18) 0(A) » $
But since ax o, aZ 0 with trace ax= —trace a2
the partial ordering defined in (7.7). As will be explained in §12 this implies, and in fact is

equivalent to,

00 +9) >00)

for all convex invariant 0. This completes the proof of proposition 8.13 for the two-step case.
As can be seen the essence of the proofis the basic principle that *curvature decreases in holo-
morphic sub-bundles and increases in quotients’ (Griffiths & Harris 1978, p. 79). The general
case of (8.13) proceeds in the same manner and we simply have to keep track of the notation.

The details are as follows.
We start with a holomorphic bundle E with its canonical filtration of type si:

0=£0c ™ c .. a Er=E,
where the quotients Dj — fiave normalized Chern classes frf with
l1>ji2> ... >

The curvature F(A) can then be expressed in a block form generalizing (8.14). For everyj <k

we have an element
Vik6 Q0,1(M Horn (Dk=Dj))

so that d fRppears in the (j,A)-block. The nik are the components

7keQ°'i(M, Horn (D "E ™))
related to the exact sequence

0->Ek_1-> Ek>Dk->
Now define scalar non-negative ntj x m-matrices  for by
trace ajk= trace(Vjkrvfk) > 0,
and define akk by
trace akk =" Jtraces A
so that trace aglk —0. Then the convexity of O leads to the inequality

0(A) >00 +1l,
where a stands for the vector (or diagonal matrix) whose7th block & is the scalar (matrix)
1= 2 _ak.
2 k>Jaj
Equivalently the vector a can be written as a sum

a= Zbk
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where bis the vector corresponding to the diagonal matrix whose blockis for < (and
zero forJ > k) The fact that
trace ak o for j <knd
implies that bk 0 relative to the partial ordering (7.7). Hence a—"bk ™ 0 and so A
As before this then implies that (i +ap
position 8.13.

It will be noted that we have nowhere used the maximal nature of the canonical filtration,

i.e. the fact that the quotients Djare semi-stable. Once we use this we shall be able
(8.13). For this we shall need to use the Narasimhan-Seshadri result (8.1).

If, for any holomorphic vector bundle Eeer M, and any convex inv

0(E) = inf<zx(\4),
where Aruns over all metric connections on E ,then (8.1), toge
that for stablebundles E we have 0(E) = )(ji). We shall now extend this to all bundles. First

suppose we have a holomorphic exact sequence
0->D1-"E~D 270.

Then a metric on Eiyes rise to a connection whose curvature is given by (8.14). The elemer

71e @P>L(M,Horn (22 Dt))defines a cohomology class Horn (22 Z”)), which
classifies the extension. Replacing rby tj with t a non-zero constant alters the
does not alter the isomorphism class of [nce the new extension is isor
by a diagram of the form

0--—-->Dx--—-> E>Z)2--->0
t
0--->D1--->E —-->D2---->0.
Hence replacing 1j by fad then letting t-+ 0shows that
0(E) <0(D1®
Similarly if E#s a filtration of arbitrary length with quotients Dj we have
(8.19) <z>(©Z>,).

Now an elementary argument (see Seshadri 1967) shows that any semi-stable bundle has a
filtration with stable quotients all of which have the same normalized Chern class. From this,
together with (8.13) and the result for stable bundles, it follows that we have the equality

0(E) = (Hnfor all semi-stable bundles. Finally using the canonical filtration ofany  (8.19)
and (8.13) yield the equality in general. Thus we have now established

Proposition (8.20). | f a holomorphic bundle

E is type si thenfor ¢
0(E) —<H{fywhere

0(E) =infs

A JM
and A runs over all metric connections on E.

Now in 812 we shall see that if/i, vare any two vectors (with ~ ... ~ finandrg > ... >
then

(8.21) <p(/i) —p(v) for all convex invariant < =
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In view of this we see that (8.20) amounts to a differential-geometric characterization of the
type, i.e. we have

(8.22) Bsoftype[iifandonly ifO(E) — for all convex invariant <>

Since @(E) is defined by an infimum it follows that
#Ain the closure of 0 ("A < #>(")

=>0(A)< by (8.20).
As will be shown in §12

(8.23) NA) < $B(f) forall® oA <

where A</t refers to the partial ordering (7.7). Hence we have established by differential-
geometric means the result (7.8) of Shatz.

In 85 we computed the index of the Yang-Mills functional at any critical point, and we
obtained in proposition 6.4 the formula

index A = 2dimc HX- (P)).
If the critical point Ais of type jti, so that the curvature is —2ni times the diagona
by /t,then the holomorphic bundle Eetermined by the connectio
E=@Dp

where the Jae semi-stable and have as normalized Chern classes the distinct components
si. We see therefore that the bundle ad” JR6 85 coincides witt
being isomorphic (see (7.13)) to @~ <idHom (Dp Dk). Hence the index of is equal to the co-
dimension ofthe stratum  containing A fact the normal to
the negative eigenspace of the Hessian of LaA, both being
harmonic forms. In view of (8.11) it follows that the codimension of  is equal to the Morse
index of any of our functionals 0.

To sum up we see that the play the role of the Morse strata not only for the Yang-Mills
functional Lbt more generally for any functional  defined by a strongly convex invar
function po the Lie algebra of U i his statement is to be

strata  satisfy all the properties of (1.19) relative to  which in good cases, as explained in
81, characterize the Morse strata. This suggests that each critical set should be an equi-

variant deformation retract of the corresponding stratum the retraction being given by

following the trajectories of grad 0.To prove this it would be enot
minimal stratum (for all U fn the coprime case (n, = 1thisisa consequ
in general the singularities ofgive rise to difficulties and we shall not pu

further. Thus although we have shown that the stratification of V by the is equivariantly
perfect we have not actually proved that the Yang-Mills functional is an equivariantly perfect
Morse function, although this seems very likely and would follow from sufficiently good pro-
perties about the Yang-Mills flow.

9. Cohomology of the moduli spaces
We have now shown how to compute inductively the equivariant cohomology of the space

of semi-stable bundles. In this section we shall show how to derive the integral cohomology of
the moduli space N(n,k)in the coprime case (n,k) = 1, and also that of the m
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NO(n,k) for bundles with fixed determinant. First, however, we shall need to extend theorem 7.14

by replacing the group &with a subgroup of finite index. As explained in 82, the gro
components of &is /11(Af, Z) ™ Z2y, and so a subgroup  of of finite index is specified by
giving a sublattice of maximal rank F'c F.As shown in 82 the classif
a finite covering of B & no torsion, it has the same Poincare series as and F/F" ac
trivially on its cohomology. We now consider our stratification relative to We proceed

exactly as with A. The only point to comment on is that the space  occurring in §7 (namely

the space of all Coofiliations of Ebtype /t) is connected. In more concrete terms this
any two filiations of E oftype /jiare homotopic. To see this we note first that, over the 1-skeleton

of  Mull bundles are trivial and all filiations homotopic (since the partial flag manifolds of (n)

are all simply connected). We can therefore collapse the 1-skeleton to a point and reduce to the

case M —A but now d? becomes connected and so two filiations of the same type, being iso-

morphic, are necessarily homotopic. Hence 3 equally a homog
No= glJF = then < is of finite index and corresponds to the same sublattice

r of .

Thus our stratification of s also perfect relative to In particular the d*-
cohomology of ffisshas no torsion and it is acted on trivially by  so that the and
Poincare series of ~ss coincide.

We move on now to consider the coprime case («, 1. Then stable and semi-stable coincide,
sothat — %and AutE acts on with only the constant central scalars as isotropy group
(Narasimhan & Seshadri 1965). The moduli space N(n,k) is then the quotient of by this

action. It isa compact complex manifold: it even inherits a natural Kahler structure as we shall
see later. We want now to deduce what we can about the cohomology of N(n, k) from our general
results about equivariant cohomology.

Let us denote by # the quotient of S by its constant central £7(1)-subgroup, and similarly

# cwill be the quotientof = Aut (E) by fhus  acts freely on
Hence (for any coefficients)
9.1) H*(N{n,k)) zH$(VY9)

where on the right we have replaced €chby @inethey give the same

investigate the relation between “-cohomology and -cohomology. This depends on the
fibration

9.2) BU{1)-+B&->B&
which is always trivial in rational cohomology. This is because restriction to a point of M
followed by taking determinants defines a homomorphism ~->17(1) and the composition

£7(2) -> 17(1) is of degree fhis implies that
H*{B&, Q)-+H*(
is surjective, which gives the triviality of the fibration over ~ Hence for any S-space the
~-Poincare series of %ithe product of the *-Poincare series of and (1 —2-1. Together
(9.1) this then gives the formula for the Poincare series of N(n, k):
9.3) Pt(Y(zA)) = (I-<9"Pt(")
where s)s given inductively by theorem 7.14. As noted in the Introduction, and will be

elaborated in §11, this formula coincides with that of Desale & Ramanan (1975)* which rests on
the Harder-Narasimhan approach.
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Taking determinants gives a natural map
9.4) det: N(n, k) -=>

where Jis the Jacobian of Mhrametrizing line-bundles of degree
by tensor product and the determinant becomes a J*-equivariant map if we make Jqact on Jk
via the rath power map

This shows that after lifting to a finite covering, with group Keran Zn) A~ Tn=r/nT,

(9.4) becomes a product. Thus if we denote by No(nyk) the fibre of (9.4) then

(9.5) N (n,k) = (N, (n,k)xJKk)/rn.

The manifold AY3, k) is the moduli space of stable bundles with fixed determinant. 1f we now take
c.  corresponding to the lattice nT <=71 so that = T/raT —Tothen the analogue of

(9.1) becomes

(9-6)

Since S and  give the same equivariant cohomology of  (over Q) the same holds for & and
and so comparing (9.1) and (9.6) we get

Proposition 9.7. For rational cohomology we have
H*(N{n,k)) ~H *(N 0(n,k))
or in terms ofPoincare polynomials
Pt(N (n,k))=Pt(NO(n ,k))(I+1t)K

This proposition, which is equivalent to saying that  acts trivially on the rational cohomology
of \">fc)i was the main result of Harder & Narasimhan (1975) where it was proved by number”
theoretic methods comparing pvth Jror us the tri\
consequence ofits triviality on the cohomology of

We turn next to the integral cohomology of the moduli space k). We want to prove that

it has no torsion. We already know by (7.17) that has no torsion and, in view of (9.1),
we want to deduce the same result for HS gt will be sufficient to p
isin fact a product so that
HI9 Qe
Now BU(2) is an Eilenberg—Maclane space K(Z, 2) and so (9.2) has a characteristic class in

H 3(B &,z) whose vanishing will imply the triviality of the fibration. Equivalently we need to
show that

(9-8) H\B<Zy) 1),
is surjective, but this was the content of proposition 2.21. Thus we have now proved

T heorem 9.9. fw, k) = \the moduli space N(n, k) ofstable bundles has no torsion.
For the space NO(n,kyve use the commutative diagram of fibrations

BU (1) -—>(%)Ss -*NOxJ


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 17, 2018

YANG-MILLS EQUATIONS OVER RIEMANN SURFACES 579

where NOxX the finite f n-covering. Since the bottom row has now been shown to be a
product the same is true for the top row. Since we showed earlier that * has no torsion for its
~N'-cohomology it follows that NO  xJhas no torsion, and hence alsohas no torsi
have

Theorem 9.10. I f («, k) — 1 the moduli space NO(of stable bundles \
torsion.

The triviality of the fibration (9.2) when (n,k)= 1is essentially eq
a (topological) universal or Poincare bundle over as we shall now explain. By definition

a universal bundle isa holomorphic vector bundle Vover x  sothatforall wE N the restriction
\hof Vto M x {«}is in the isomorphism class represented by the point  The projective bundle
P(V) exists naturally. To see this we recall that we have an obvious holomorphic bundle  over
Mx~8and acts holomorphically on W with the constant scalars  acting trivially on the
base and as scalars in the fibre of W.Thus  —3%/C* acts freely on and
gives Rver M x K universal vector bundle is therefore a Tift” back from this natural
projective bundle over M x N. If Vis holomorphic oneach  but only continuous in  we refer to
it as a topological universal bundle.
Quite generally there is an obstruction to the extension ofsuch a lift called the ‘Brauer class’.
It arises from the sequence

GL{n) -* ->1
and liesin H\M X N, Ehere 01s the sheafof multiplicative ho
the coboundary of the exponential sequence
€24
0----- B
leads to the topological Brauer class, which is an  torsion class in H3(M x N,Z). Explicitly in
terms oftransition matrices/” for a PGL{n)-bundle we lift these locally togy i
the scalar Xhy the formula
11jSjk= ~ijksik®
This is a 2-cocycle for 0&nd taking determinants shows that is a coboundary.
In our case since M and Ny (9.9)) are torsion-free it follows that the topologic

class must be zero and from this one can deduce that a topological universal vector bundle V does
indeed exist. In fact our proofof (9.9) depended essentially on the triviality of (9.2) and this in
slightly disguised form is equivalent to the vanishing of the topological Brauer class, as one
might suspect from the fact that the characteristic class of (9.2) is an element of H3(B&, Z). To

explain this we note that the bundle Wo M ss gives rise natu
Mx ("ss)#: this bundle is holomorphic only in the M-directions, since ("ss) is only a topological
space. Passing to the projective bundles we see that lifts to P(Wf) under the natural map
Mss ) <$ M xtss)#.

Thus the Brauer class of P (W Hiftsunder n*otk

this bundle comes from the vector bundle WEOnh the other hand the fil

(9.2) istrivial, and so the Brauer class of P(W )dmstitselfvanish. More
of 77induced by a section of (9.2) defines a vector bundle cr*W that has as projective

bundle. Finally we have only to observe that, homotopically,
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and that P{W)$ corresponds (topologically) to the projective bundle P(W)9 while
corresponds to a topological universal bundle F.This shows the tie-up between the different

points of view.
In fact in this coprime case a more refined argument shows that the analytic Brauer class in

H2AMx N,@%*) is zero, so that a holomorphic universal bundle exists. Let us recall briefly the
essential point of the proof, which is to construct a holomorphic line-bundle over  x”ss on
which S« acts such that C*t Ko acts via scalar multiplication in the fibres c
trivially on V@1 and so this is acted on by the quotient group S« = We can now
descend the bundle W® L rio the quotient space

(M x~"ss)/#c

to obtain the universal bundle. The bundle Lsiconstructe
by using the vector bundles given by the various More precisely if is sufficiently large (the
precise values will be given later) then for any semi-stable bundle of rank n and Chern class k

we have

H\M,E) —0
dim HQ@M,E)=k-n(g-1).
This gives a holomorphic bundle of dimension 1) over Taking determinants (i.e.
the highest exterior power) gives a line bundle Akn /s
of E acts on this with weight m= k—n(g—1), i.e.
E with a fixed line-bundle of Chern class 1 replaces by + sogiving a line bundle Ak+nover
Sgs on which €ats with weight m + B8ince

integers a, b such that
am+ b(m + n)}—1.

Hence L = A%® A\+nis acted on with weight 1 and leads to the universal bundle.
We note finally that the universal bundle is not unique and can be altered by tensoring with

any holomorphic line-bundle Lo M X
have degree zero (and must moreover satisfy Ln—1) bu
the component in H Xg) JIIN V).

We recall that in 82 we proved that the integral cohomology ring H*(B&) was generated
multiplicatively by certain explicit classes constructed from the canonical bundle on

This canonical bundle restricts to Wken we embed (~s)™ in”
cation of S is equivariantly perfect (theorem 7.14) it follows that our generators for H*(B&)
restrict to give generators for H"s) K) and hence generators for )
asection <bfthe fibration w).Since cr* WV (topologically), whe
M x N we see finally that the integral cohomology ring is multiplicatively generated by
explicit elements constructed (as in §1) from the universal bundle F on These classes
are of three types.

(i) The Chern classes aof F restricted to N.

(i) The odd-dimensional classes b{ (j —1,..., 29), whicl
component of the rth Chern class of F on M x N.

(i) The Chern classes dr tF) eK(N).

Note that in (i) and (ii) rans from 1to

morphic its R-theory direct image fray be computed directly. If
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thenjj(V)is simply the vector bundle Hon Whose fibre at is
H1{m.vy) —0 provided every homomorphism vfwhere k is the ¢
zero. By (7.5) this will hold provided k/n >2g—2 in which case Riemann-Roch gives the

dimension of H°(M,Vy)s k — {g—1). Now by tensoring with line-bundles we can always
arrange that 1§ of the form

k—(2g —2)n + kr with 0 <
(recall that (k,  n)= 1), sothat we then have
dim// —n{g—1)

Finally then we have proved the following theorem (cf. Newstead 1972 for 2).

Theorem 9.11. th — (2g - 2)n -\ktvith O
bundle over M x N (n,k).Define integral cohomology classes ar) bd, dr on N by
2 ar — cr(V\N),:I.< <

£ocj®bt=cor(v),L<I<N and oga [[*"M),
dr = cr(H(v)), 17 <nig-tf+k',

where H { V) is the bundle over N whosefibre aty is H°(M, Vy) Then the integral cohomology ring of N is
generated by these classes.

The moduli spaces N and YO0 are torsion-free when —1, and theorem 9.11 provides us
with a system of integral generators {abs, dr} While our Poincare series form
dimensions of their span. Hence these rings are in principle determined once a complete set of
relations for their generators is written down over the rationals. Ideally one should be able to
derive these from the Thom classes of the various strata ofj/, but we have been unable to make
much headway in that direction, except for the computation of the fundamental group.
Note that the complex codimension / of any stratum ~ other than the semi-stable stratum
<rss, as given by (7.16), satisfies

I-bte-1)>S if
This implies as in (1.12) that

On the other hand the triviality of (9.2) shows that
wi(07ss)gr) = Ni((N8s)#) = Tr™NV).
Hence
%(N) z HIM'Z);
and this isomorphism is naturally induced by the determinant map to the Jacobian

det

N ===
Thus the fibre NO6fthis map is simply connected. We recall that is the moduli space for stable
bundles with fixed determinant. Thus we have proved

Theorem 9.12. The moduli space o fstable bundles offixed y and with (n, k) —1, is simply
connected.

Remark. This result can also be deduced from the fact that is at least uni-rational. Its
rationality is conjectured but not yet proved.
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Returning to the general problem of computing the relations in the cohomology ring, a careful
analysis of the implications of the Riemann—Roch theorem applied to/ has a good chance of
succeeding, as was already noted independently by D. Mumford long before our involvement.

The hope is to derive all the necessary relations from the vanishing of the Chern classes of
beyond their dimension.

To provide evidence for this conjecture we shall discuss the rank two case in some detail
below and roughly compare our relations with those obtained by Ramanan (1973) f°r genus
three. Mumford is investigating this question more generally with the aid ofa computer and has
verified it up to genus five. But first it is expedient to make some general remarks on the normal-
ization ofthe vand their relation to the tangent bundle T of  This material can also be
in Ramanan’s paper but is considerably simpler in our context because theorem 9.11 furnishes us
with integral generators that are apriori Chern classes of holomol
plicity we shall only treat the case k—2n{g—) + 1, and write for

Recall now that Ms not unique, though its projective classis. It follows that we m

vy the pullback/-1/, of any holomorphic line bundle on n relative to the projection

M xN — >N.
Under such a twist our generators ax—r( Vnd — F) cl
respectively. Hence gax—dx changes by cx{L). But — is the Chern class of the hc
line-bundle L —AXDXXwhere Ax—det(INTV) and  —det/(F). It fol

V=W® f-'L -"

is now determined up to isomorphism and is called the ‘normalized universal bundle over
In what follows all our generators will be associated to this normalized F,so that in particular

gax —
We next relate T Fin the K-theory of N. F
canonically given by H 12nd wlurthermore, as stable
morphisms, H°(m ; End W) — C.Thus in the A-theo
i—T=/(End v).
Next observe that if, as before, QMenotes the line bundle of holomorphi
o f/ then by Serre duality
Ned W ~
whence
T*-1 =sI(EndV®Q1

so that subtracting these two expressions yields the relation
T+ Z-/{End D}
As a first corollary of these relations we prove the following proposition.

Proposition 9.13 (Ramanan). The cohomology group H 2(NQ;Z) is infinite cyclic and is generated
by halfthefirst Chern class of NO.

Proof Recall that the Riemann-Roch theorem in our present simple context is given by the

formula
ch¢ewy =/,{ch(™)}{I-H,
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where (ogH 2Ms the orientation class on A/, Wiany holoma
denotes integration over the fibre M.
Applied to End \His leads to the relation
—ehx( T)= chit/iEnd =/*ch2End
while with IV = Vityields the formula:

dx-- chffV)= -Z/*{ch1(F)-(u}+/*(ch2F).
Here ofcourse clq denotes the part ofthe character ofdimension 2 so that in terms ofthe Chern-
classes
chx= cch2 = - c2
Now recall our definitions of the aand
They imply the formulae

Cr= dr+ S Uj
where o —a{V) and ar,fr, b&re classes on Nientified with their pull
write

C—d+fr ®
for these relations, so that
Vi3

As a consequence note that the are nilpotent of order three: £r£sft —O0, and that =0,
while £r£sis a multiple of OVé therefore set

g =
and £4s=Ars@o r”"s.

In terms of the skew form  given by the intersection pairing in that is
we have
A= ~2 Mlijbrbl, — bfbs

so that these are integral non-degenerate forms in the br. They are pertinent for our purposes
because of the following easily proved result.

The push-forwardf* c a of any monomial in the dt is given by a universal polynomial Pa(a, ) terms
ofthe variables abnd Ay —1, n
For example

c\=/*(<zf + 2af+ + )

=2(sli+Jn),
so that by our formula for dx

dx = - gax+ axf x+ An~/2-
Now fx—2 ng+1, as we are dealing with Whence
d\= {2n—1)£ + 1}%+ An —
Together with the normalization dx—gax this yields the formula

/2= {(2»- 1) + 1}sli+An,
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and at this stage we are ready to compute JFecall first tha
c2End
Hence ttnd V)—ch”yjE

—-*{(”

—2(»—1) cti/i +~n) ~ 2w"}
—2(@l+A1)>

so that
cl{'T) —2(tir+ An).

The first part of our proposition now follows by restriction to My The second part also follows
because amust generate H2(NO,Z)by theorem 9.11. Note also that
Poincare series for NO.

Before proceeding to a more detailed account of the case = 2, observe that if we define the
total Pontryagin class™(T) of T as the product of the total Chern classes of T and T¥*,

then our relation for T + ThK(N) implies the formula
p{T) - go,
This follows from the Riemann-Roch theorem, or also from the fact that the support of 1
is at a point of M and c"QH1) =2 g.The formu

(cf. Newstead 1972)
r(End VIN) —I + (ctf—4a).

Thus the ring Pont ( Jenerated by all the Pontryagin classes of T is actually genere
single element (a2+4&2) — —pV

Newstead made two conjectures about the Pontryagin and Chern classes of  first of all that
Ci(T)=o0fori > 2gnd secondly that Pont (T)
has been recently proved by Gieseker (1982). The second conjecture remains open but, in view
of our formula for p(T), is equivalent to the assertion thatpi — 0.

We turn now finally to a more detailed examination of the relations we are after in the rank 2
case. Here we have to deal with only two Chern classes for and they are given by

cx —ai+ £1+ ko> 1-1,

Q~ az 2+ {2+ )" +Al}
where we have substituted for f the expression already found earlier. Apply
Roch procedure one therefore obtains universal polynomials in

such that

@f\v) =

Qq@'A) =0 for q> 2y

so that the “first’ of these asserts that

Hence the relations take the form

Qigfai™l) 0.
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To analyse the implications of this relation further, recall the diagram

N/Jq
which gave rise to the decomposition over Q,
H*(N)

of proposition 9.7. Note in particular that y*ks an isomorphism ove
introduce the new rational classes

hi=n*p= 1 ..,2F,

ak = 73(1:/*)*1**/\ *=1,2,
then these will generate t*H*(N/JDso that as a A* (£j[)-module, isfreely generated b
their span.

In terms of these variables, and the corresponding A, our polynomial Qff(a,A) is now trans-
formed into a polynomial Rg(a;A)and if this expression is expanded in terms of the ba
b\ — b.
for A * (b fhen Rg(a,A)= 0 implies that each coefficient in this expansion must vanish.
valently one can multiply Rpy b{ and integrate over the fibre of &, to obtain
[l b{Rg(a;= 0,

yielding a large number of relations in ax, a and b\

To carry out this process one first of all has to determine the old generators in terms of the

new bold-faced ones, and this is done quite easily by observing that End V descends to N/JO
so that the characteristic classes of End Vertainly are in the image of
the image of zr* and restricts to r* agn NOwhence

ax AXr = —
Similarlypx(T) isin this image. Hence

> (N*)~li*(a\ 4t —ax—4a2
On the other hand as z*, y *and

n *are ring-homomorphisr
equal to a\ —4a2 Eliminating one obtains:

a2 = a2—|A o1+ JAFi.

Finally to determine konsider r2(End V)
all be in the image of n*.Applied to the first mixed component this yields the result that
(2a,b\- 4

is in the image of 77*, whence
b\ = b2+A-f) b\.
Let us now expand our first relation Rg(a,A)in terms of An and Al
part to avoid subscripts and in part to come closer to Ramanan’s notation, let us set

h=alb v=a2 = A2
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and
to—An, —AL2

Then for dimensional reasons the possible monomials in  and  occurring in R3are given by
the following table:

Here the dimension of a term relative to the bfsindicat
below. The total dimension of RB 12 so that the coefficient of one of th
a polynomial in tvand 6inust make up for the deficiency in
every element in the top row must be a multiple of A... A —/gb. Hence is also such a

multiple and, as is easily checked, is in fact given by
A2 —const, X
In short then, the expression Rakes the form
R3— A g g2 BMAU)24-C8(2+ BECA2
The first two relations now follow immediately. We must have
A6=0 and R\b\= 0,

At the next level more care has to be taken as the two terms interfere. One procedure is to
write down the implications n%(oRg— 0, and —0 with m
u(2—o. The first of these leads to a relation of the form

C8+ const, x 62D2—0
while the second one implies that

D2<0 forall xeA20bl,..,

In short then, in these and subsequent relations the decomposition of A*(b\) into primitive
classes relative to Orakes its appearance, and as is really not too surprising this de
corresponds under t* to the corresponding decomposition under in .., .Thus the last

relation is equivalent to
D2x—0 for —0.

Similarly the EQA2term produces the relation
Egx—0 for

We have traced the nature ofthese five relations so carefully because they correspond precisely
to the complete set of relations actually found by Ramanan in this case using a quite different
method. Here are his relations:

(1) 3 hz—10 hv—49 —0,
(2) (h2—2v)V = 0¥ = span of b{),
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(3) (A2 —Sv)v=0
(a) hx =o, for xeA 2V, wth x02-o,
() y =0, for yeA3r, with yd —0

This concludes our remarks on the relations among the generators of theorem 9.11. Clearly
the computations involved in carrying out the programme laid out here are quite astronomical
and therefore appropriately best left to a computer. Note that in the present case of genus 3 the

single equation c235 = 0 implied all the necessary relations. On the other hand it is dis-
appointing, and shows how deep Newstead’s conjectures lie, that even with all the relations
before one, the formulae px{T)° —0and o(T)=0fori

Finally we revert to the geometry ofthe moduli space N(n, and show that it inherits a natural
Kahler structure. The essential observation is that the space j/ of unitary connections has a

natural symplectic structure: ifa, pee two ad
j Ma AP (we recall that this uses the inner product in the Lie algebra). This symplectic structure
is preserved by the action of Kdoreover the curvature
-+Q2(M;ad (P))
can be identified with the corresponding moment map. To see this we first note that ,ad (P))
iscanonically dual to Q°(M,ad (P)), whichisthe Lie algebraof Henceforany ad (P))
we have a real-valued function  on s/,defined by iI"(A) — To say that
map for the ~-action on Braans that the Hamiltonian vector field on j/ defined by F* coin

with the vector field given by the Lie algebra action of  Equivalently we have to show that,
for any r/reQl(MJad (P)),

(9.14) (<&**)= As.

But, as we saw in 83, the left-hand side is equal to J(d  As> Since d” is a derivation and
fd(™ A 99—o we have the usual formula for integration by parts

(dAf) A<p=
which verifies (9.14).
The constant central £7(1) subgroup of &acts trivially on  correspor
function ftrace FA.constant and equal to — 2 ke

The moment map is ~-equivariant and so to every orbit  <<QZM, ad (P)) the inverse image
F-1(C c j/is ~-invariant. The quotient F-1(C)  is sometimes called the Marsden-Weinstein
quotient. Under appropriate non-degeneracy conditions, it is a manifold and it inherits a natural
symplectic structure from that of stfln particular taking C to be the orbit given
Mills minimum (i.e. the constant conjugacy class with all eigenvalues —2Ai  we obtain the
moduli space N(n, kThus N(n,k) inherits a natural symplectic structure.
The symplectic structure on stf together with its natural metric defines the complex structure
of ~ Similarly the induced symplectic structure and metric on N define its complex structure.
Thus Yis a Kahler manifold.
Note that the tangent space to N at Bi/A(M, End  and it is easy to defin
complex structure and symplectic structure on this tangent space. What is not immediately clear
Is the global integrability condition of the complex and symplectic structures so defined on
The complex structure becomes clear by expressing N as the quotient *SAut (E) while the
symplectic structure is similarly transparent as the BVlarsden-Weinstein quotient’.

46 Vol. 308. A
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10. The stratification for general 6

In this section we shall indicate briefly how to extend the results of the previous sections from
U fogeneral compact Lie groups (\£ shall content ourselves no\
rational cOhomology, since the presence of torsion in ¢ makes it difficult to say much in general
about integral cohomology.

On the algebro-geometric side the work ofNarasimhan-Seshadri has been extended to general
reductive groups by Ramanathan (1975). We shall, however, adopt a slightly different, although
equivalent, approach to stability and the canonical filtration, reducing everything to the vector
bundle case by a systematic use of the adjoint representation.

The general set-up is much the same as before and we shall use the same notation. Thus we
start with a given grincipal 6-bundle » over m and we denote by  the space of cc
and the group ofautomorphisms. It isagain true that a connectionon  defines a holomorphic
structure on Pc, the associated bundle with group  the complexification of ~ Conversely a
holomorphic 6 c-bundle together with a reduction ofstructure group to  determines a canonical
6-connection (Singer 1959) so that we may identify j/ with the space of holomorphic structures
on Pc.

To proceed further we need to introduce the appropriate stratification of by strata
analogous to the Harder-Narasimhan stratification for the case of c L{n). We shall in fact define
such a stratification by using the canonical filtration ofthe vector bundle ad (Pc) in an appropriate
way. First of all, however, we need a few lemmas concerning vector bundles.

We have already noted in §8 that a semi-stable vector bundle of slope (or normalized Chern
class) si has a filtration with stable quotients of slope/t. The converse is also true in view of lemma
7.5. This enables us to extend results for stable bundles to semi-stable bundles by induction. In
this way we shall prove

Lemma 10.1 .1 fEA~F aresemi-stable ofslopes /jI, v then E ® F is semi-stable ofslope /i + v.

Proof Consider the first case when gee both stable. Ac
Seshadri theorem 8.1 they then arise from unitary representations of the extended fundamental
group r R (asin 86) with slopes/t, vlhe tensor product then arises from
of the two unitary representations. This tensor product is not necessarily irreducible but, being
unitary, itis a direct sum ofirreducible pieces. Moreover the slope of a representation is given by

the character ofthe centre of r Bnd this therefore takes the same value o]
pieces. Hence a direct sum of stable bundles of slope and so is semi-stable and
the same slope. Now we move on to the general case and use nitrations of and  with stable
quotients Dk respectively. The tensor product then inherits a filtration with quotien
Dj ® Gk, which as we have just proved are stable and of slope Hence semi-stable

and of slope p+V.

For our next lemmas, which concern general vector bundles it will be convenient to intro-
duce some additional notation. Let

0= EO exC
be the canonical filtration of Ewh semi-stable quotients

[) slope (Dj) — j) Pi > >


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 17, 2018

YANG-MILLS EQUATIONS OVER RIEMANN SURFACES 589

We shall write .
inf# —fir) supls =

Thus Bisemi-stable ifand only if infis —sup J2.
The next lemma is then a straightforward consequence of lemma 7.5, with double induction
on the steps of the canonical nitrations.

Lemma 10.2. InfiS ~ ~ if and only if, for every F with SUP < si, every homomorphism F-+E is zero.
Using (10.1) and (10.2) and again using double induction one obtains

Lemma 10.3. inf(is ® F) = infis + inf.F.
With these vector bundle lemmas out of the way we return to consider a holomorphic U
bundle £over As.Let E =ad (£) be the vector bundle associated with the adjoint representati
so that e actually a holomorphic bundie of Lie algebras. Since the Lie algebra of  has a non-
degenerate invariant quadratic form so does the bundle  In particular is self-dual so that its
canonical filtration must be of the form

O<Erc E_rHC .. GE X ... <Er xc
where B the polar space (relative to the quadratic form) of We have indexed things in
such away that DO— EQE _kas slope zero. Sinceis the polar space of£'0we ha
non-degenerate quadratic form on DO.
Consider now the Lie bracket
<>E0(g EO-+E/EO.

Since inf (Eo® EOQ =0, by (10.3), and supE/EO< 0, lemma 10.2 implies that o = 0. Hence
EQs a Lie sub-algebra bundle of Eor similar reasons

\E_p ElcEj+ for 7O
so that E_Js a nilpotent ideal: it is the nilpotent radical and  the reductive quotient of
It now follows (see lemma below) that E#S @parabolic SUD-algebra bundle,

every point of As) amaximal solvable (Borel) sub-algebra. Nowa parabolic sub-algebra generates
a parabolic subgroup and this is its own normalizer. Hence the sub-algebra bundle ¢ ad (£)
determines a reduction of the structure group of £ to this parabolic subgroup ~ We denote this
new principal bundle by £Qand call it the canonical parabolic reduction of £
For Gec GL(n, the parabolic subgroups are the stabilizers of partial flags and a parabolic

reduction of the principal bundle is equivalent to giving a filtration of the associated vector
bundle. We shall now show that the canonical parabolic reduction defined above does indeed
coincide with the canonical filtration of Harder-Narasimhan. So let F be a holomorphic vector

bundle and let
O0=McFlcf2c.,.cFr=F

be its canonical filtration so that the associated quotients
W, =

are semi-stable and have slopes fir strictly decreasing withj. The adjoint bundle E is now End
The filtration of \rduces a filtration

0 — E~c ... ¢ E_1 & ¢ ... c=Er~1,

46-2
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where P8 In Epovided c: M+or all
preserving the filtration of v so that

E°/E~1 z ©Ends*.

More generally
. Ef/E*z ©Horn (h,
In view of (10.1) it follows that EQE ~ Xis semi-stable of slope 0 while

infis-1 >0 supAHJEO< Q.
Comparing the filtration EofE with the canonical filtration and using (10.
that isocoincides with Eand E~with

Remark. Note that the filtration Ej does not totally coincide with the canonical filtration
It has to be further refined depending on the particular sequence of slopes before it does so.
Next we shall prove

Proposition 10.4. The canonical parabolic reduction isfunctorial with respect to group homomorphisms.
Thus let £GG->H Che a homomorphism, £a principal Ge-bundle, and = o (£) the associz
/fcbundle. Then we have a homomorphism of Lie-algebra bundles

Nad (B ->ad ().

Since Gis reductive the homomorphism of Lie algebras induced by  has Ge-invariant comple-
ments to the kernel and image. Hence putting (), =ad we can decompose
<p:E->F into split exact sequences

0- K — E

Now for any direct sum A® B ofvector bundles it is easy to see, using 10.3, that the parts of the

canonical filtration with slope ~ 0 are additive: ® = ®  Applying this to our
situation we see that

Fg= Kg®/q
so that <psends Ento FO. This proves that the canonical parabolic reduction of is |
by that of £

For a vector bundle we defined its type si in terms of the Chern classes of the semi-stable
quotients of its canonical filtration. We shall introduce the corresponding notion for a general
group. Thus let £ be a principal Gebundle, £0 its canonical parabolic reduction. To every

character xb @€. a homomorphism x-Q~C*) we have a lin
an integer Chern class d X(Eq)h this way we obtain a homomorphism
(10.5) Q"Z,
where Qithe abelian group of characters of Q. This will essentially be our type. To see more
clearly what it involves let us pass to the reductive quotient of i.e. the quotient by its uni-
potent radical Rilaximal connected normal unipotent subgroup). For GL(n) we have

S = GL(ni)X...xG L{nr)
where the jae the dimensions of the quotients in the canonical filtration. Clearly that

for @ the homomorphism Q-+Z consists precisely of assigning the Chern classes kx ...,kr to
appropriate semi-stable factors. The general case is similar in that is a lattice of rank equal to
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the dimension of the centre of Sad the type will then be a vector in the dual lattic
GL(n) we found it convenient to replace the sequence of  kj) by a single re-vector and we shall
reinterpret our type in a similar way for the general case.

The group Qithe semi-direct product I fact can'l
cation Kofthe maximal compact subgroup of K.If7\is the c
then a character of Sdfines a (unitary) character of and the map is injective with finite
cokernel. Now we may assume Kc Qad that the maximal torus  of is cont
maximal torus T of G.Passing to characters gives surjective maps
while taking Horn ( , Z) gives an inclusion of the corresponding dual lattices

Zq -Lt "
Each lattice here can be identified with the integral points in the Lie algebra ofthe corresponding
torus (i.e. the kernel of exp Pihe lattice Horn Z) then contains  as a sublattice

index. In particular we may view Horn (£, Z) as a subgroup ofthe Lie algebra of In this way
the typeof our O-bundle £ becomes an element of the Lie algebra of T.

For &Tour vector psatisfied the inequalities

which describe a fundamental chamber for the action of the Weyl group The choice of this
chamber derived from the parabolic subgroup determined by the complex structure. From the
unitary point of view p,or rather its tV-orbit, corresponds naturally to a conjugacy class il
Lie algebra of W and this (up to 2m) is the curvature of the Yang-Mills connection associated
with p .In this way we saw that each stratum ~ contains a unique component of the Yang-Mills
connection. For general groups the situation is now exactly the same: determines a conjugacy
class in the Lie algebra of Qad hence a component ofthe Yang-Mills connection. The ¢
is the local holonomy group and this determines the integrality conditions on
The stratum consisting of all £ of given type  has a conormal bundle whose fibre at £ is
ad (£ /E Qwhere EB as above the canonical parabolic subalgebra c
If pGHs a homomorphism and £ is a Ge-bundle of type  then proposition 10.4 implies
that p(£) is an 7/c-bundle of type />(/*). Here pand are best cor

ofthe appropriate Lie algebras. Even ifp is an embedding does not necessarily determine /t,
but the Peter-Weyl theorem implies that if p(ji)=

for all unit
then p —Vv.Thus we have

Proposition 10.6. A Gcbundle £is oftype p if and only if p(£) is oftype p(p)for all unitary repre-
sentations p of G.
This proposition, together with (7.8), which describes the closure properties of the strata for
£/(re), enables us to derive similar results for every  Thus let  be a stratum for G lying in the
closure of* Then (10.6) implies thatp ) — lies in the closure oT8”> forall Hence by
(7.8) we have PAN fbr the partial ordering on conjugacy classes of tt(re)

this is equivalent to A A where this is the partial ordering on conjugacy classes of g defined it
812 (and corresponds to inclusion of convex hulls). Thus (7.8) holds for all

As with the unitary case the conormal to the stratum ~ at £ can be identified with
Ifi(M ad (£)/%)
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where £0 gives the canonical parabolic reduction of 8 Since inf(ad (E)/£<) < 0 It follows tha*
H°(M, ad () /EO0-0 and by Riemann-Roch we can compute the complex codimension
Vp,One finds the following generalization of (7.15):

(10.7) d= £ {awW+~"-1},

where a runs over the positive roots of G, and si is the representative in the positive Weyl chamber

(so that af{fiy* 0). In particular we see that

(10.8) d,, —00/£ isin the centre.

In this case pis uniquely determined by the topology of (there will be one Chern class for ea
circle factor in the centre). We define this stratum to be the semi-stable stratum. it is necessarily

open and non-empty. Moreover @ central ifand only ifad —Oso that

the following strengthening of (10.6).

Proposition 10.9. A Gc-bundle £ is semi-stable ifandonly ifad ~ is a semi-stable vector bundle.
As with the unitary case a general stratum ~ is equivariantly equivalent to a semi-stable

stratum for the group K.Moreover the connected centre  of acts on HI{Miad
no trivial character: in fact the connected centralizer of 7" in  isjust
We now have all the ingredients to deduce as in (7.14)

T heorem 10.10. Forany G thestratification of ~ by the”™  equivariantly perfect over the
thatfor Poincare series we have §
where d"is given by (10.8).

In principle this enables us to calculate the equivariant cohomology of the semi-stable stratum
by induction on the dimension of G.The point is that, for any other st
cohomology is equal to that of a semi-stable stratum for a proper subgroup of  namely the

maximal compact subgroup of the parabolic subgroup of Gcdetermined by  When U{n)

the group Kialways ofthe form U(n¥ x ... x Z/(nr) and so our induction in the unitary case di
not use other groups. However, for general Ge groups tha

can be of many types.
To relate this to the Morse theory for the Yang-Mills functional we note first that, after

suitable normalization lsifunctorial for homomorphisms of Lie groups. Hence (
with (8.13) enables us to deduce, for any G,

(10.11) Aof type p=>A — |/t|2

On the other hand our description of Yang-Mills connections shows that every stratum ~  does

in fact contain a critical set j¥ that, on achieves its minimum. To ¢
establish the generalization of (8.20) we need the following lemma, in which denotes the

central extension of wi(M) by Reffined in 86.

Lemma 10.12. A holomorphic Gc-bundle £ arisesfrom a homomorphismp :r R->G ifandonly if ad (£)
arisesfrom a unitary representation of PR.

Proof In one direction this is trivial. For the converse let ad arise from a unitary repre-
sentation of PR,and consider the Lie bracket homomorphism of vector bundles:

&ad ( £ )
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Both sides are vector bundles arising from unitary representations of and, as proved by
Narasimhan & Seshadri (1965), this implies the homomorphism is covariant constant. This means
that ad (8) as an ad (G)-bundle comes from a homomorphism ad (G).It is then easy,
using the theory ofline-bundles, to lift this to ahomomorphism : ->G, which will, on extension
to Gc, define £

Arguing along the lines of 88 and using (10.12) one can then prove

Proposition 10.13. 1 a holomorphic Gc-bundle £ is oftype p then
mEL(A) =
A

where A runs over all compact connections on £,

Quite likely (10.11) and (10.13) hold for all convex invariant functions on the Lie algebra of
G: they certainly do for any giduced from a representation.

To sum up therefore we see that the picture for general Gis in practically all respects similar
to the unitary case, with the notable difference that we have had to switch from integral to
rational cohomology.

11. Comparison with Harder-N arasimhan approach

As mentioned in the Introduction the Poincare polynomials of the moduli spaces of stable
bundles have been computed by number-theory methods in Harder & Narasimhan (1975) and
Desale & Ramanan (1975). In this section we shall compare those methods with ours.

We begin with an example by spelling out in detail our results for the simplest interesting case,

namely for n=2 and k=1 Our basic theorem 7.14 becomes
(11.2) o &PH{\B)+ i
where APstands for ~-equivariant Poincare series and  is the stratum corresponding to
unstable bundles oftype (r+ 1, J(.e. ofthe form (11.10)). Asshown in89 (see (9.3
for the stable bundles we have

WEAWA- PAMmM, . 1 %2
For the unstable stratum ~ we apply (7.12) to see that

m m =

Finally for the whole space we apply theorem 2.15, which, for = 2, gives

m m =pabv)=
Substituting these into (11.1) and cancelling a common factor (1 +2)2/(1 —2), we get

(11.2)

Summing the geometric series we see that this gives the formula
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It is true, though not entirely transparent, that this rational function is in fact a in
with non-negative integer coefficients (giving the Betti numbers). Moreover
dimive(2, 1) = 6

and so Poincare duality requires that
(11.4) Pt(NO} t«®-«P1t(NO).

We turn now to summarize the methods of Harder & Narasimhan.

We begin by taking a curve Maenus
then has the form
(H-5) fn )= {rf (1- <M-9j .
where the (o are algebraic integers (depending on with —  We now consider vector
bundles Eeer M that are defined over Fgnd have giver
This means that we fix the isomorphism class of the line-bundle  —detis. Then the Siegel

formula is the following:

| =F I ...m

where the sum is over all isomorphism classes (with det-E" fixed), and |Aut (E) | is the number of
automorphisms of E.

Thus (11.6) counts the number of isomorphism classes of  each being weighted inversely by
its number ofautomorphisms. In particular stable bundles that admit only scalar automorphisms
occur with weight (q—)-1 and so contribute

(11.7) mn,k)\/(q-1)
to the sum in (11.6), where the numerator denotes the number of classes of stable bundles of
rank nad determinant L (of degree yebfined over Fg. Now w
NL(n, k) ofstable bundles ofrank nand determinant L isa projective non-singular variety and we
can suppose that it is also defined over F@Gf not replace Fqby «
notation suggests, the numerator in (11.7) isjust the number of points of the moduli space that
are defined over FoBy the Weil conjectures, as established by Grothendieck and De
numbers of rational points over Fgfor all n, determine the Betti numbers of t
variety over C. In our case this means the moduli space for stable bundles of fixed determinant
over a Riemann surface of genus g:the variety denoted in §9 by NQn,

In this way (11.6) will lead to a formula for the Poincare polynomial Pt (\O(w; A)) provided we
can deal with all the terms arising from unstable bundles. This can be done inductively, but for
this purpose we need to consider also the non-coprime case and so we introduce

) = i i-
(11*8) 2w At (E)| K)=S nr i /TAl summed over semi-stable E.

Using the canonical filtration of Harder-Narasimhan explained in 87 we can collect together
in (11.6) all terms of the same type. These can then be summed explicitly in terms of y?(nf,

and the number of rational points Jgn the Jacobian of M. Now in t
(11.5) this is given by

(“ 9 - 3,=n
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Finally therefore (11.6) gives an explicit inductive formula for /?(«, in terms o with
< n. The formula is given rationally in gand the and is indepen
(Desale & Ramanan 1975; proposition 1.7). To get the Poincare polynomial one

now makes the substitution

For the purposes of comparison with our method let us now examine in detail the case
and k= 1.1n (1L6) we then have stable bundles, which contribute (11.7), and unstable bundles,
which have a canonical filtration

(11.10) 0->Z1->£'->L2->0
where degZ” =r+ 1, degZ2-- -r for r=qg1,.. and Lj® Z2=L.
consider separately the trivial and non-trivial extensions. For = ©  the automorphisms
consist of F F *together with the unipotents of the form 1 with
feHorn (Z22J = L%® LY.

Hence

|Aut(£)] = (-1) 2A,
where hO— L*®ZJ |. On the other hand for non-trivial extensions we have only on
copy of F*and so

|Aut(£)] =
The non-trivial extensions correspond to non-zero elements L* ® Z1) and proportional

vectors give isomorphic bundles. Hence the number of isomorphism classes of bundles  for
which (11.10) is non-trivial is

(Ai-1)/(?-1)>
where hx—\H1M,L* ® |.

Hence the contribution to the sum in (11.6) arising from a given  (Z2being then determined
as L®OL*) is
1 hi—i
{q-iVK* (g-l)na=1FW o'

Now by Riemann-Roch we have

dim Zf°(M, L*®ZX —dim /MAds,L* ® ZXY —
and so
hjhi —
Thus (11.6) becomes
K(2.1)I, J. f 1

11.11

( ) ? - (q-tYr 2).
Substituting for £3%(2) from (11.5) and for Jrom (11.9) we get

2 2
qg-2 N (1- «) -bs-s H (1-0)tg~2 ’

If we now make the substitution —t,q " t2then the expression for \NL(2,1)| given by (11.12)
converts into the formula for the Poincare polynomial given in (11.3).
Comparing these two derivations of the formula for 1)), we see that they are formally
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very similar with (11.11) playing the role of (11.2). We note, however, that (11.11) involves a

convergent power series in q_lwhile (11.2) involves a formal power ser

surprising that we should have made the substitution In fact it is better to make the

substitution

(11.13) qirt~24->-r 1

In view ofthe Poincare duality formula (11.4) we must now get

(11.14) \NI (2, D\M*-«0Pt(No()).

Making the substitution (11.13) in (11.11) we see that, after removing the factor 1)-1 and

multiplying by g6~6wve get precisely (11.2), with a correspondence term by term.
Ifwe were to compute for n = and

would not be dealing with the moduli space. Thus the leading term in (11.6) is the gquantity
/1?(2,0) defined in (11.8), while in (7.14) it would be the equivariant Poincare series of the semi-

stable stratum. Instead of (11.11) and (11.1) we then get

(|||6) yPtinBs)+ | t’\r+o—i) -
=1

where the stratum ~ corresponds now to extensions (11.10) with degLx—r, degL2

Comparing these two formulae we see that the substitution (11.13) now leads to

(11-17) A(Z»)

the denominator (1 arising only because on the right we did not fix the determinant.

We see therefore that, by making fi(n,k) in general correspond to the equivariant Poincare
series of the semi-stable stratum, (11.6) and (7.14) lead to identical inductive procedures. It
remains now to explain the origin of (11.6) and its relation to (7.14).

Just as the Jacobian arises classically as the group of divisor classes so moduli spaces of vector
bundles can be viewed in terms of “matrix divisor classes’ as originally described by Weil (1938).
In modern terminology this is best formulated in the language of adeles. Thus let  be the

function field of M over Fand for any affine algebraic group let GA be the
I.e. the restricted product of Gkeherep runs over all valuations of  and Kpi
local field. Then GA a locally compact topological group and is a discrete subg
G—  GLihe isomorphism classes of vector bundles of rank over M (defined over Fg) are in

bijective correspondence with the double coset space

where Kis a maximal compact subgroup of GATo understa
think of ®\Ga as a (multiplicative) matrix divisor and dividing by GK as rational equivalence.
In terms of bundles it corresponds to describing a bundle by a basis of meromorphic sections.

Ifwe take G — SLthere are different maximal compact subgroups Kfor different choice
line bundle L —detZi, and the corresponding double cosets are in bijective correspondence with
classes of L-oriented bundles, i.e. bundles Etgether with a chost

on Ga one introduces a special choice of Haar measure, the Tamagawa measure r. The total
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measure of GA/GK is finite and is called the Tamagawa number. For SLnit turns out to be 1
Decomposing GAjGK into K-orbits then leads to the formula

S t(«/iy = tiE=
where aruns over the orbits and  is the (finite) isotropy group of the orbit. Dividing by r(K)
then gives
(11.18) S 1 1
' ET W

If we denote by |£]| the number of inequivalent orientations on  then for each orientation a
on B has
|Aut (E) _ |F* _£-1
it I
I I | " |
Hence if we rewrite (11.18) as a sum over isomorphism classes of vector bundles  with fixed

determinant, by ignoring the orientation, we get

1 1
(7~ 1] §|Aut(AE)| “ r(ft)#
This is the same as (11.6) in view of the formula

(11.19) T(S)-1 =
The factor g—1 = |F*| has arisen because of the passage from GLnto SLn.

In comparing the derivation of (11.6) and (7.14) we see that in both cases we start from an
infinite-dimensional space hat describes all bundles, but in a redundant fashion. In one case this

space is GA/GK while in the other it is the space  As already noted the first description of
algebraic bundles relies on the fact that every bundle is trivial over  i.e. that it has a basis of
rational or meromorphic sections. In the Riemann surface case we used instead the fact that all
holomorphic bundles with the same degree (or Ghern class) are differentially equivalent.

In both cases we now stratify this infinite-dimensional space according to the type ofthe bundle,
so that we have a unique open stratum given by semi-stable bundles. Moreover we have a group
acting, preserving the strata, so that the equivalence classes represent isomorphism classes of
bundles. In one case the group is K the maximal compact subgroup of while in the other it
is the group of Emplex automorphisms. These equivariant stratifications can now be used
to compute appropriate invariants. In the number-theory situation we compute Tamagawa
measures to get (11.6) while in the geometric situation we compute equivariant conomology to
get (7.14). The parallel between these two procedures should be viewed as similar to that
involved in the elementary computation with Pn(C) in the Introduction. There are two notable
differences here. In the first place the spaces concerned are infinite-dimensional and in the
second place we work with equivariant notions relative to the appropriate group.

In these parallel treatments we see that in both cases the infinite-dimensional space itself s,
in the appropriate sense, trivial. Thus the space is contractible so that its ordinary Poincare series
is identically 1, while the Tamagawa number of GA/GK is also equal to 1 (notably it is inde-
pendent of g) The next step is to ‘divide’ in the appropriate sense by the group action and to
compute the result globally and locally and equate. On the global level we see therefore that the
equivariant Poincare series of  which is the same as the ordinary Poincare seriesof  and was
computed in (2.15), corresponds to the measure t(%)-1given by (11.19). Using the explicit
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formula (11.5) for £m(spnd applying the substitution —/-1, q-+t~2 we see tha
for trivial factors corresponding to the difference between and GLnand a power oft (related
to the dimension of the moduli space)

(11.20)

Thus the “‘global”’ terms in (11.6) and (7.14) correspond. On the other hand each stratum or
type ipoduces a “local’ term in both cases and when due account is taken of the isotropy groups
the resulting formulae in the two cases again correspond. Thus the ‘weighted counting ’ process
corresponds to the use of equivariant cohomology.

When we compare these two basic methods ofcomputing Betti numbers, i.e. the number-theory
method and the Morse-theory method, we see that in each case we need to be fortunate to get an
explicit answer. Thus when counting up points with a stratification the answer is clearly additive
but in general we may not know how to compute the number of points in each stratum. In the
Morse theory method each stratum retracts onto its critical set but we have no guarantee that the
exact sequences split, i.e. that we have a perfect Morse stratification. In our present case the
reason why we can count points effectively is that each stratum is made up of affine spaces
corresponding to extensions as illustrated above. On the topological side the perfect nature ofthe
stratification arises from the isotropy group behaviour. This is presumably linked in some way
with the affine space decomposition of the strata.

Another reason that sometimes simplifies the process of counting points is if all homology is
represented by algebraic cycles. In that case Frobenius acts on by and so there are no
mysterious eigenvalues. In our case this is nearly true in the sense that all rational conomology
of the moduli space No N& generated, as shown in 89,
Chern classes of the universal bundle on Asx A. Thus the only eigenvalues other than powers of
q arise from /f1(Af) and these are the o'thet appeared above.
substitution -* 1, g-+t~2is all that is required to convert the number-theory formulae
into Poicare series formulae.

Now that we have described the detailed correspondence between our method and that of
Harder-Narasimhan many questions arise. In the first place why is the Tamagawa number of
SLnEqual to 1? This is not very well understood but analogy with our method suggests that it
might have some cohomological significance. Why moreover do we have the remarkable
correspondence (11.20) and the analogy exhibited in (11.6) and (2.9), between the separate
factors of both sides, namely £M(K)and Pt(Map (As,
comparison suggest that the basic relation between numbers of points and Betti numbers for
algebraic varieties may have some extension to infinite dimensions in which counting of points
is replaced by a suitable measure.

Speculating in another direction we recall that the Yang-Mills equations arise in physics and
that to quantize them involves, at least heuristically, some process of integration over function
spaces. Comparison with the number theory suggests that there might be a natural measure,

depending perhaps on some real parameter t,othat what we
series actually turn out to be measures.
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12. Convexity and Lie groups
This section is essentially an appendix concerned with the partial ordering that we have
encountered in our stratification of the space A We shall take this o
but essentially self-contained account, which emphasizes the role of convexity in Lie groups.
The results are not essentially new, and can mainly be found in Horn (1954) for the unitary case
and in Kostant (1973) for the general groups, but our presentation brings out those aspects that
are of particular relevance to the theory of bundles and connections. In particular we stress the

role of convex invariant functions on the Lie algebra. For an extensive account of some aspects
see also Marshall & Olkin (1979).

For simplicity we shall begin with the partial ordering (7.7) for sequences (Al}..., An) of real
numbers. Thus one defines s<Alif, after arranging each sequence in decreasing order,
[ i
2 fji~x 2 A for i—1, —1,
(12.1) =1 i=i

Vi B2
This partial ordering occurs in Horn (1954) where it is shown to be equivalent to either of the
following properties:

(12.2) 2 _Siftjx 2 /(A7) for every convexfunctionf:R-+R;
1

(12.3) [ —PA whereA /te Rn and doubly stochastic matrix.

We recall that a real square matrix P —(pt]) is stochasticif ~ ~ 0 and 2jAy = *for all Ifin
addition the transposed matrix is also stochastic then P is called doubly stochastic. A theorem of
G. D. Birkhoff identifies doubly stochastic matrices in terms of permutation matrices, namely

The doubly stochastic nxn matrices are the convex hull of the permutation matrices.
In view of this (12.3) can be replaced by

(12.4)
where Zngenotes the orbit of any xeR n under the permutation group and Cdenotes the
convex hull of the set Cc Rn.
Geometric notions of convexity can be dualized into statements about convex functions by
virtue of the fact that, for €S
B<s u p <br all convex
C
Thus taking Jtobe a convex symmetric function on (i.e. invariant under we can see that
(12.4) implies
(12.5) 45(ft) ~ O(A) for all convex symmetricfunctions on Rn.

Since (12.2) is the special case of (12.5) for functions $(xIt ...,*n) ofthe form 2?=i/#)>it follows
that (12.5) implies (12.2) and so is equivalent to all the other properties.

Schur showed that if  (j —1,..., n)are the diagonal elements of a herm

eigenvalues are Ay, then ju “Ain the sense of (12.1). Horn (1954) proved the converse ¢
another equivalent of (12.1) is

(12.6) the Ay are the eigenvalues of a hermitian matrix with diagonal elements/q.
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A hermitian matrix A is determined, up to conjugacy by U(n), by the unordered set of its
eigenvalues, or equivalently by the orbit ZAe
C(B) ofa hermitian matrix B then (12.4) clearly implies that lies in the convex hull of
Conversely if a diagonal matrix B ,with eigenvalues fij, lies in the convex
in the convex hull of the diagonal parts of the matrices in (). But by Schur’sresult this means
that /ieR s in the convex hull of ZhA where the Ayare the eigenvalues of A. Hence (12.1) is
also equivalent to

(22.7) <S) <gX),

where C(A) denotes the conjugacy class of hermitian matrices with the given eigenvalues A..
As before (12.7) implies

(12.8) is(B) ~ ijs{A) for all convex invariantfunctions ijr on the space of hermitian ,

where BeC(/i) and AeC(X).Clearly such a convex invariant  defines a convex
function $m Rhy putting i/r(A) —"(A). Thus (12.8) is also directly implied by
converse is not quite so clear because it is by no means obvious that convexity of on  implies
convexity of ¥ron the space of hermitian matrices. We shall, however, prove that this is in fact

true, sothat (12.8) isequivalent to all the earlier properties. This proofisjust as easily given in the

more general context of a general compact Lie group, so we move on now to consider how one
generalizes all the preceding ideas.

For a general compact Lie group G,the role of the hermitian
matrices is played now by the Lie algebra g of G.The diac
algebra t of a maximal torus Tb Gad En be
decreasing order corresponds to picking a (closed) positive Weyl chamber in t: this is a funda-
mental domain for the action of W.Ifwe fix once and for all a bi-invaria
we get a IT-invariant inner product on t and we define C* to be the dual cone of C, namely
(12.9) xeC*o (x,y)* o0
In the semi-simple case Cand C* are both of maximal dimension but if g has a non-trivial centre
then CHiesin the subspace orthogonal to the centre, i.e. in the semi-simple part. The following
lemma relating VWZand C* is then standard (Bourbaki 1968, ch. VI, prop. 18).

Lemma 12.10. xeCo(l-co)xeC*for all meW.

The cone C*defines a natural partial ordering on t by
(12.11) R yox —ysC
With this notation (12.10) can be rewritten as
(12.12) Xe Co R ooxfor all toe W.

For U(n) the cone Gaalready mentioned is given by the conditions xx >
standard inner product () —" Ixiyi can be rewritten as
(12.13) ¥ (X1-x yl + (x2-x 3 (yl+y2d + ...
showing that the cone C* isgiven by +7”_1 N+ F +Ap-1N+ + oo

2 yi® for 1<?7<fz-1

=
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n
7n=o

and

Thus the partial ordering (12.11) reduces in this case to that given by (12.1).

The following lemma, which is an easy corollary of (12.10), generalizes the equivalence of
(12.1) and (12.5).

Lemma 12.14. If x,yeC then
A
ye W

Proof. Let us first illustrate the geometric meaning of this for ££7(3), in which case the diagram
is as below.

Figure 4.

The shaded region is the intersection Cwth the ‘backward’ cone centrec

describes the sety such that
yeC and <

The lemma asserts that this set is also the intérsection of and the hexagon \{X. In one direction
A
this is easy because for y e Wx we have

y:u%\N a’cox, a0 IX =1
so that
x=(IX)8" 2av(ix=y

by (12.12). For the converse it will be enough by continuity to assume that is an interior point of
Cand that x—jg an interior point of C*. The directed line  then meets the boundary of ina

point zad we must show that the whole finite interval ofxz lies in Wx. Since the relationy e Wx
Is transitive, it will be enough to show that there is a constant  z) so that, if —tz +(1—)X,
with 0~ A 1 is any point in the interval en

(i) c(y.2) >c(x.2),

@) yeWx if t< c{xyz).
A firg'tne number Asof repetitions, where A-1 < z), will then prove that the whole interval
zxeWx.
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Now let a*be the simple roots normalized to have length one, so that the a* are the unit normals
to the faces of Qad form the basis for C*Sne * is ac
<# X>>0 forall .
Since X—zis assumed interior to Ctve have
[
X-Z =2 alagd >
1=1
Now let to*e Wthe reflexion in the face (x, a*) = 0 so that
X=X 2(x}
and define for 0 » t< 1 constants
bi —<a*/2(x, a*), = 12%r-
Then _
bx + oI x —a+ X—X)—\—22

=X-trdidi = *Z+(1-f)* = y-

Hence ye PYxprovided bi*t 0and 370, and this will hold if
0</< 2(x,ai}/laifor all .
It remains to examine the quantity
Z):
when we vary # on the interval zx. Replacing &by the variable pointy = Pz+ (1 — gets
replaced by (1— )& and
<y, a*) = tg,a*>+ (1-
N 1— t)g*) since zeC and

Hence c*(y,z2) * ¢*(*,z) and the proofis completed by taking c(*,z) —min*r*(Af, z).

Remark. The partial ordering y ™ x for xe Githe usua
representations, when we consider not the Lie algebra of but its dual. The reinterpretation in
terms of convex hulls of PY-orbits is given in Adams (1969). In our case we are interested not in
representations but in conjugacy classes but the partial ordering is essentially the same.

Kostant (1973) proved the following generalization of the Schur-Horn theorem:

(12.15) r(Gy) —

where yet, m:g->t is orthogonal projection and Gy denotes the (7-orbit of y under the adjoint
action. See also Atiyah (1982) for a different proofin a more general context. Using (12.15), or
rather the easier half that gives the inclusion 77(Gy) ¢ PYy, we shall now prove the promised result
about convex invariant functions:

Proposition 12.16. B=be a W-invariant convexfunction ont and ijr the correspon
function on g. Then xpis also convex.

Proof. For any function on Rit will be convenient to define T (/) to
graph’, i.e. all points ( ywith xeRn, yeR such that y >f(x). Convexity of t
then equivalent to convexity of T (/). Recall also that T is convex if every boundary point
has a supporting hyperplane Hé.e. Tis contained in one ofthe two half
to  Ha)Now consider the functions A fad the correspondin:

TEO A <g©
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Because ftis G-invariant so is I'(ft)and it is therefore sufficient to pi
supporting hyperplane to A(ft)at boundary points (A of T("). By hypothesis T(0)
so we have a supporting hyperplane H <u0®

projection. We shall show that H' is the required supporting hyperplane for Any point

(x,y) e T (Jatisfies y > ft(x). From (12.15) and the convexity of we see that

ft(x) >
Hencey > <p(nx) ® that (nx,¥s(”) and hence is on one side of  This me
(xy) is on the corresponding side of//', which completes the proof.
As with U (n) we can give several further equivalent definitions of the partial ordering and we

summarize this in

Proposition 12.17. Thefollowing conditions x,yet are all equivalent:

1) WyrWx;
2 K ¥br all W-invariant convexfunctions t;
(3) £3 Gx-

(4) ft(y) <ft(x) for all G-invariant convexfunctions ft on g.
Raf(1) = (2), (2) > (4), (1) =(3) and (3) =>(4) are all trivial. (3) (1) follows from (12.15)
and (4) =>(2) follows from (12.16). It remains to see that (2) =>(1). For this we take
N — S exp(ootx,e) (t>0),
W

<oe

where the eare a basis of C (the ‘edges’ of the cone) and let x,yeC. In view of (12.11) and
(12.12) we have
*, ety @ for

It will be sufficient by continuity to suppose that both and y are interior to  then the above

inequalities are strict so that for large the firstterm (for 1) in the sum defini
Hence

<P < H, >
= X—yeC*

y:(
Remark. Proposition 12.17 remains true when ‘convex’ is interpreted as ‘smooth convex’
(or even analytic). This is clear from the proof because, for the essential implication (2)=> (1),
we use only exponential functions.
If we take any irreducible representation pit has weights .
may view as elements oft, so that any #et gives rise to the hermitian matrix with eigenvalues
Xj —(#, AN). If Axis the maximal weight then A and forallj 1, AX> Ay, i.e. AXx—A/gc~.

This means that, if xeC ,then xt xfor

x,yeC and we assume p< ften in particular < Xl
run over all irreducible representations then Axruns over all integral dominant weights and these

span @ fact there are / basic integral weights that lie in the edges of C and generate it. This

proves (cf. Kostant 1973)

Proposition 12.18. For xfye$we haey < xop(y) < for all unitary representations p.

47 Vol. s08. A
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This completes our survey of convexity and essentially contains all the results we have used
earlier. Thus in 88 we used the inequality

Hi.a >4 4

for every convex invariant function A B sa skewagrogitlanwhertgix,jn ~
entral components of D. This follows in fact from Horn’s theorem

and the observation that 83 O isiin the convex hull of the Ervorbit of the diagonal part of

é g 1 The same proof holds for the more general block decomposition also used in §8.

The result (8.21) (and its generalization to any  is an easy consequence of (12.17). In fact if
) —(¥¥) for all IT-invariant convex functions then Vvy - and so the extreme points

of these two convex polyhedra must coincide. But the extreme points of  are certainly among
the finite set Wx.Hence Wx and Wy intersect and so coincide.

13. Equivariant cohomology

In this section we shall review some of the general facts about equivariant cohomology and
establish some of the more particular results that we have had to use.

We recall first that for any topological group  the classifying space BG is defined as the base
ofa principal (7-bundle whose total space is contractible. It is unique up to homotopy so that in

particular @llepends only on ®vre generally if  acts

the associated bundle over BG with fibre
HO(X¥
sothat H(BG) isnow the equivariant conomology ofa point. If  acts freely on X sothat X-+X/G

is a principal (-bundle then the map Xg->X/G has contractible fibres and so is a homotopy
equivalence. Thus in this case

Ha{X) ~ H

Suppose now that 1§ B closed normal subgroup of G, and that U s a (7-spaceon v
freely (with Xx/Kaprincipal *-bundle). Then the quotientgroup = actson
and we have
(13.1) HO(X) s
To seethis let Ely Ebe the total spaces of universal bundles of (7, respectively. Note
on E2m4 Ssthat E1X E3ialso a free contractible

X0 = X x 0E2
Projecting onto @2 with fibre Exis a homotopy equivalence and
: X X gE2=

so that XG ¥ proving (13.1).

So far we have been rather imprecise about the class of topological groups to be considered
and the reader might feel uneasy about the use of these ideas for the large infinite-dimensional

groups gfyauge transformations. In view of (13.1) we can effectively reduce all our application
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ofequivariant conomology to the case when Gis a compact Lie group. In factif S is the group of

gauge transformations of a principal G-bundle over a manifold M, it has a normal subgroup

consisting of transformations that are the identity at some fixed base point of M and the quotient

group is isomorphic to G.Moreover  acts freely on the space of connections so that by (:

IW ) - HO(s*/%)

with a similar result for any "-stable subspace of  We could therefore always work in - /"0
and use G-equivariant conomology if we wished.

If Kc Qul wia Aspace we define its ‘extension*to a G-space by putting — X
Note that %just the bundle with fibre vred base associated wi
G->G/K. If B free contractible G-space then
XO=Ex QX =ExgGxkY=ExkY—Y
so that HO(X)s Hk )

We come now to some more specific results, which concern compact connected Lie groups G

without torsion In their cohomology. The examples we need are just  (n) and more generally
products of the form U (/g) x ... x U(nr) If

the fibration
G/T-+Bt->BO

behaves like a product for integral cohomology and all the spaces involved have no torsion. It
follows that, for any G-space e induced fibration

G/TAXt->X0
Is multiplicative for integral conomology

so that e
(13.2) HO(X) is a directsummandof HT
or equivalently for all primesp
(13.3) Hg(X, Zp) -»Ht  Zp) s injective.
Next let T = Tox Tke the product of two subtori with Toacting trivially on the connected
T-space Xhen
XT = BTOXTI
so that for zp coefficients (and any prime p)
HT{X)zH (BT*)® H TI(X).

Now H(BTqg is a polynomial ring and so any aceH (B T0) with a0# 0O is not a zero-divisor in
Ht{X). More generally if oceHt(X) restricts to such an aQ i.e. if

a = a0@® 1+ terms of positive degree in HTI(X),

the same holds. This follows on filtering by the degree in HTI(X) and noticing that  acts via a0
on the associated graded module.

In our application the element aOabove will occur as the Chern class of a vector bundle
over  BT@rising from a representation N of TOFor dim 1 the assig

47-2
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gives rise to an isomorphism
fO~H*(BT0Z),

(Where T the character group of 7Y which we shall consider as an identification. The who
cohomology ring H*(BT0iZ) @n then be viewed as the symmetric algebra of tr
For an re-dimensional representation Nnerefore we decompose

n
N= 2 L,

. : . . /-1
into one-dimensional representations, and
i=1 oan("TO -si
Ifeach Ljs primitive, i.e. is not divisible in f oby any prime/>we shall say that  isprimitive. |
this case cn(Nis clearly non-zero when reduced mod/> for any p.

We shall now put all these remarks together into the following.

Proposition 13.4. Let X be a connected G-space on which some subtorus  acts trivially and let N be
a G-vector bundle on X. Assume that the representation thefibre of N is primitive and that H{G) has
no torsion. Then multiplication by the top Chernclassa —en(NO) on HO(X, Zp) is injectivefor all primesp.

The prooffollows from 13.3, which allows us to restrict from  to a maximal torus 750
that we are in the situation just discussed.

14. Sobolev spaces

In this section we shall show, by introducing appropriate Sobolev spaces of functions, how to
justify our heuristic use of infinite-dimensional manifolds. Much of this is standard and can be
found in Narasimhan & Ramadas (1979), Uhlenbeck (1981) or Mitter & Viallet (1981) but some
of the more detailed results related to the complex structure depend of course on the dimension-
ality of the base manifold being 2 For this reason we shall give a self-contained account tailored
to our purposes.

For the convenience of the reader we shall now recall some of the basic facts about Sobolev
spaces. For fuller details we refer to Palais (1965, ch. 9). On a compact smooth re-dimensional

manifold M the space  (for 1< p €)) denotes those functions’Yall of

and including order kee in the Lebesgue space Lp. The definition can be €

integral k and to sectionsf of any smooth complex vector bundle over ~ Each  is a Banach

space and for p —21s a Hilbert space also denoted by =~ The Sobolev embedding

assert that

(14.1) < L k> | nd kK—n/p > |—n/q and the inclusion is compact
ifwe have strict inequalities,

(14.2) C Clf k—n/p>1) and the inclusion is compact.

Here C(for integral 1"0) denotes as usual sections whose partial deriva

continuous. In particular

(14.3) n Hk=0.

Recall now the Holder inequality
Iv r <I/UM*
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where | ||p denotes the Zp-norm and r-1 =

p~x+ q~XThis implies th
plication map

(14.9)
Applying this together with (14.1) one deduces
(14.5) ZJ?is a Banach algebra for k n/p and

In the good range k >n/pone can also define nonlinear generalizations of the spact

Thus one can define the space Z,f(M, N)ofmaps/: M *N where is

More generally one can define the L%sectionsofa CMfibre bundle over  with

spaces are dense in the space of continuous sections. In particular on taking A to be a Lie group

and using (14.5) the L%automorphisms ofa vector bundle (or a unitary bundle) form Lie grou
We come now to the special case that interests us, namely —dim As —2. For a complex C®

vector bundle Ecer Mith hermitian metric we then have for ~ 2 the

unitary automorphisms of class Hk—Ff, which we shall denote by Its

(6?0 ttis the (complex) Lie group of all automorphisms of ofclass  Since automorphisms act

on connections by affine transformations it follows from (14.5) that we can define the space of
unitary connections s/k~ofclass

Hk~and that
when we view &5 the space of (almost) complex structures (or d"-
complex Lie group (&0 k also acts smoothly on $

For k > 21 space srtk~xonsists of continuous connections. However, the most natu
for our purposes is in fact ja/l, so the reader should remember that this includes discontinuous

connections. A little more care will be necessary in various places but there is no fundamental
difficulty. As an indication of this we shall establish the following regularity results.

Lemma 14.6. For R 2 and any A es#k~x let F: (&C)k->s>/k- 1 be the map given by the action «
i.e. F{g) —g(A). Then the differential d F atthe identity is a Fredholm operator.

Proof. The differential dF at the identity is just the operator dj[ acting from //*-sections of

End Eti/ fc-1-sections ot~ °'1(End H fwe fix a standard C@®connection
and

di<c = d;>+[£,/].
Since B ek land <pe Hthe mapping 0 ->[F, 0] can by (14.5) be factored through the c
inclusion Hk-+Hk&nd so is compact. Since, for the smooth connection the operator dy

is elliptic of order 1and so Fredholm, it follows that dj[ is also a Fredholm operator.
Applying the smooth group action it follows that d is a Fredholm operator at all points of
the orbit of A .The implicit function theorem for Banach manifolds then implies (for * 2)

(14.7) for neighbourhoods U ofthe identity in {fSc)kand VVofAin j/* -1, theimage U[A) is a closed Banach
submanifold o fV o ffinite codimension.
From this we shall deduce

Lemma 14.8. For  kn2, worbit in stfk~x contains a
Proof. Let A be a finite-dimensional subspace of transversal to the orbitat i.e. Aisa

complement to the image of dF. Then (14.7) implies that for a suitably small neighbourhood

of Ag/k~xwe have a continuous map tt VA NWith —U{4
Bv., Br+lg \W{here r—dim N) I e

fs '<r
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be the affine linear map sending the vertices of  to the Composing with  we then get a
continuous map

7B <ar-+N,
which depends continuously on the BiStart now with any set of
dimensional simplex having Aas barycentre. For this choice of restricts 1
ddr-» N —A,
which generates H"fN—AE Z. By continuity it follows that this will be true for
\Ci— Btk e.Hence nfmust take the value
Finally since s4— s /s dense in ja*_1 we can find such forany Then
linear span of CIf ...,Cr+lisin s/and so the intersection/c(cr) n is
orbit of Acontains a *-connection.
Conversely we shall prove
Lemma 14.9. For R 2let A, B es/andgé (3%0)* v
Proof. The two connections BAdiffer by a C® 1-form B —A. The conditi

explicitly written
g-"gm{B-A)%

where w'isthe (0, I)-part ofthe 1-form  Hence
&lg =g(B-Ay.
Since (B—Cmwand g”H k the product lies also in (by (14.5)). The standard regularity

theorem for the smooth elliptic operator dj[ then implies that gEHk+L By iteration this proves
that @ CQ

We have now established all the local regularity properties that we need concerning the action

of the group  on the space §In particular the orbit through any point
versal, the harmonic space /f01(End Jhich is isomorphic to the sheaf c
HI1(M,End is). The structure of nearby orbits is then entirely determined by their intersection

with this (or any other) transversal slice N .More precisely the
is (“otequivariantly homeomorphic to the fibre bundle over the orbit of A with fibre and

group the stabilizer of A(which is finite-dimensional and consists of the autom
holomorphic bundle E{A) defined by A).

In the next section we shall use standard algebro-geometric methods to establish the global
properties of our stratification. For the present we note simply that the stratification ofj/, which
has been defined so far only for smooth connections, extends naturally to for any 1 by
our regularity results. The discussion in §7 can then all be made rigorous in terms of Sobolev
spaces and Banach Lie groups. Thus the groups Aut Aut (£),) will be replaced by the Banach
Lie groups Aut* (is), Aut* (ENad the space by which can be identifie
homogeneous space

Aut* RAut* (jy.

Similarly replacing B/} by A* 1,~* 1we have a continuous map
Autk (E)x38k-1"  k~1

This map is constant on the orbits of Aut* (Zy and so induces a map
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where Jf*-1 denotes the total space of the homogeneous fibre bundle over with fibre

Our regularity results tell us that this map is continuous and bijective. To establish that it is
actually a homeomorphism we need finally to prove that the map

(14.10)

refining (7.9) is continuous. In other words we have to show that the canonical filtration varies
continuously along <€ with a ‘gain of one derivative’.
Since the group Autt Jats continuously on both  and and commutes with
it will be sufficient by (14.8) to prove continuity o f at Cmpoints of”~ Moreover by our
regularity theorems it will then be sufficient to prove continuity in the harmonic space  1(End
at A Or any other smooth transversal N). On such a finite-dimensional space all the Sobolev
norms are now equivalent and the problem can be reduced to one of algebraic geometry, which
will be dealt with in the next section.
Once the continuity o f f k$ proved it follows that our strata are locally closed submar
finite codimension. Moreover the homotopy properties of the various function spaces are all
independent of Aby standard approximation theorems (Palais 1965, th..13.14). This thenjustifies
our heuristic arguments in 8§7.
Finally we note the continuity properties of the Yang-Mills functional.

(14.11) The curvature Fextends by continuity to a quadratic function stf1->H°® —  so that 1
Yang-Millsfunctional L gives a smoothfunction

The proof (given under more general conditions by Uhlenbeck (1982)) is a straightforward

consequence of the multiplicative properties of Sobolev spaces. In fact, writing in the
form A= AO+Buith AOfdixed Caonnection
Since Blve have dof g//° and [£, 27] &fsing the inclusion

multiplication (14.4)).
This result explains why is the most natural Sobolev space for the Yang-Mills functional,
although for our purposes any s/k with k™1 would do equally well.
As we have seen in earlier sections the strata should be seen as the Morse strata of the Yang-
Mills functional. A more careful analysis of the gradient flow or some alternative differential-
geometric argument might be able to show this directly and in particular to establish that
is a locally closed submanifold ofj/tfor all /iWe have not found
which is why we have to resort in the next section to algebraic geometry.

15The stratification in algebraic geometry

In this section M will denote a complete non-singular algebraic curve defined over a ground
field kdcharacteristic zero. As observed by Harder & Narasimhan (1975) the definition of semi-
stability and the canonical filtration ofvector bundles over M does not require kto be algebraically
closed. In fact the uniqueness of the canonical filtration over implies that it is already defined
over k. Moreover if Ekis a vector bundle defined over EK its extension to any larger (finitely-
generated) field K,th e n

(15.1) Ekis semi-stableo  is semi-stable.
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To see this we may first replace k by its algebraic closure in K so that K is purely transcendental
over k. Assume now that is not semi-stable so that there exists a sub-vector bundle  with

3K ) > /NEk) where /i denotes as usual the normalized Chern class. If = k(x%} the
bundles EK,FK can be represented by vector bundles 3= over ASx  where U is some Zariski
open set ofAn. Moreover $can be taken to be the pull-back of  under the projecti
Now restrict to any point of U algebraic over and we find a sub-bundle of  with

/i(FR > /i(EK) so that Els not semi-stable. The opposite implication is trivial so t
proved.

Now let k be algebraically closed, Sa irreducible algebraic val
vector bundle over M x S,which we interpret as an algebraic family  of vector bt
As parametrized by s eS.Afairly elementary result proved by Narasimhan & Sesha
that the set of points sbr which Efs semi-stable is
constructible set is a finite disjoint union of locally closed subsets in the Zariski topology, and
is locally closed if it is open in the closure X.Constructibility

intersections, complements, direct and inverse images. Since we shall need to refine this result of
Narsimhan & Seshadri we recall the essentials of the proof. First one shows that any inde-

composable bundle Fosmaller rank such that
(i) fi(F) >/i =/i(Es),
(i) Horn ) =0 for some seS
must belong to one of a finite number of irreducible families. Let T be the parameter space of
one of these families. Then the subset Z < T Bonsisting of all poin

Hom(Ft, #0

is a closed subset. Its projection onto Sinot necessarily closed but it is
that the set of se Br which Esis not semi-stable is constructible and so therefore is the compl
mentary set.

We want to prove the following

Lemma 15.2. LetK — IGathefunctionfield of S, EK the bundle over M definedover K aris
Assume EK is then there exists an gpenset U ~ S such that Es is semi-stablefor all self.

Proof Assume the conclusion false. Then for at least one of the parameter spaces T occurring
above the corresponding sub-set Z Fmst project onto a dense set of
open set). Replace Z by an irreducible component with the same property and it follows that
K'— Kis an extension of K= E The definition of Z, together with
images, shows that we have a non-zero homomorphism

Fc >>E >

Since /i (Fk 3 > fi{EKT) this means EKis not semi-stable. By (15.1) this mea
and gives the required contradiction.

We return now to consider a general family Eparametriz
K —  Bve consider the canonical filtration of This filtration can be represented by a
filtration for the family € restricted to some open set The associated quotient bundles
being semi-stable over Kwl, by (15.2), remain semi-stable over suitable open
Hence there is an open set \&< Ssthat our filtration is canoni
the type of Ess constant for all se V. Removing Vfrom S we get a variety (possibly reducible) c
smaller dimension. Applying induction therefore we have proved the following
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Proposition 15.3. Let Eabe afamily of bundles over M parametrized by S, and stratify
the type of Es.Then each stratum is a constructible set.

Note. This result is proved by Shatz (1977) in a different way. Our proof, using the approach
of Narasimhan & Seshadri (1965)5 is more in line with the rest of our paper.

When k = C, the field of complex numbers, we have shown in 88 that, with respect to the
partial ordering studied in 812, the subset Ua>#"a dosed in . This implies in particular
that in any algebraic family, as in (15.3), the corresponding set Ua> " ais dosed in the usual
complex numbers topology. Since it is also constructible it follows (Narasimhan & Seshadri
1965, lemma 12.2) that it is Zariski closed. Hence each stratum  must be locally closed in the
Zariski topology (cf. Shatz 1977). This is nearly but not quite enough to show that the
themselves are locally closed. For this we need to examine further the continuity properties of
the canonical filtration.

The proofof 15.3 shows that over a Zariski dense open set V ofeach stratum  the canonical
filtration varies algebraically. 1f we introduce the appropriate flag-bundle  over this means
we have a regular section of Fover W in particular this section is continuous (ft
ology). In fact continuity holds everywhere:

Proposition 15.4. Let Es be afamily of bundles over M parametrized by an irreducible variety S and
assume all Es are of the same type si. Then there is a continuousfiltration of the bundle $ over M x  that
induces the canonicalfiltration on each E8.

Proof. As we have observed above there will be a Zariski open set V¢  with the required
property. Also we can proceed by induction on the length of the filtration so we can restrict
essentially to filtrations of length two. Such a filtration is determined by a section £ of the
appropriate Grassmann bundle, and it will be sufficient to show that the Zariski closure of £ over
M x V coincides everywhere with the canonical section (because £-* is then proper and In-
fective, hence a homeomorphism). Since every point in the Zariski closure can be approached
along a curve we can suppose that dim S —1. Moreover there is no essenti
S by its desingularization so we may suppose Son-singular. Our se
surface and its Zariski closure intersects the Grassmann bundle  over M x {}; for sgS—V, in
some algebraic curve £s. We have to show that £sisjust the canonical section £s. Consider the
irreducible curves that make up £s. We claim there isjust one of these, say C, giving a section of
Gsover M and any others, say Dp nust lie entirely in the fibres (over points of
purely homological: since £is a section genetically the intersection number of£swith a fibre over
G8->Mmust be one. Now we shall use the assumption that E8is of constant type to deduce that

there are no Dp To do this let FBe the universal vector bundle over i.e. the fibr
pointy e GB the vector space represented by yHence the bund
the canonical sub-bundle of E&nd so has Chern class Aysay (independent of §). C

hand it is well known (cf. §8) that on the Grassmannian itself the universal bundle has negative
Chern class. Hence

cfFsIDfi <0
for any component Jof £ lying in the fibres. On the other hand the intersection number
Cx(FsHs
must be independent of sad hence is equal to

*] - _ a3y <


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 17, 2018

612 M. F. ATIYAH AND R. BOTT
and the inequality is strict unless the Djdo not occur. Now Cd
a sub-bundle FbEawith Chern class

H(F3-C>k

if the Dj occur. But the assumption about constancy of type of the  means that no such
can exist. Hence £s = Qad the proofis complete.

Remark. The continuous filtration £in 15.4 defines a continuous section £(z, ofthe flag bundle
over MxS. Now, for each se s holomorphic in zand hence its z-der;
in terms of its sup norm. This shows that £ is actually continuous from to the space (the
smooth filtrations of E over As of type si).

Proposition 15.4 shows that, for an algebraic family of bundles over As, the canonical stratifi-
cation is continuous. To prove the continuity ofthe map (14.10) it remains now to show that we
can always construct ‘sufficiently large > algebraic families. More precisely we need to show that
for any we can find a smooth transversal N to the ” c-orbit through A that represents
(locally) an algebraic family. This means we have to prove the following lemma.

Lemma 15.5. tHObe an algebraic vector bundle over the algebraic curve As. Then there exists an &
family of bundles Esparametrized by a non-singular variety S such that
() Eqf E® for some jOe S,
(i1) the infinitesimal deformation map
A ro(AT)->/si(M,End£0
isan isomorphism.

Before giving the proof we make a few comments on (ii). Here T(S) denotes the tangent
space to Stj0. The map Hs defined quite generally in such circumstances as follows. Consic
the sheaf 6"(As) —0{M xS)/m2where mis the ideal sheafof Asx in Asx ®We then have an
exact sequence of sheaves

0-> M T*0\M)-> ->0,
where T —T8&JS). For the bundle $on Asx
an exact sequence
0A(End£0 ® 0 (End ->End -»0.

From the cohomology of this sequence we obtain the coboundary
S:HEhd EO)> HAN
The image of the identity endomorphism gives therefore an element of
Horn (T}  As,EndEQ)

and this is the infinitesimal deformation map (>
From the Riemann surface point of view this map can also be defined as follows. First we

restrict to a small neighbourhood U of in Saer which

that we can identify all Esvith ES—

we get a family of unitary connections on EParametrized b
xjf: U

with i/r(S0= A representing the bundle EO.The differentia

tangent space to 154 A .Projecting onto the normal to the ~ c-orbit th


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 17, 2018

YANG-MILLS EQUATIONS OVER RIEMANN SURFACES 613

map. Thus the condition (ii) precisely guarantees that = ~[U) will be a smooth transversal to
the 3-orbit ofvi. As we observed in §14 continuity ofthe map (14.10) is equivalent to continuity
ofthe canonical filtration along the corresponding stratum in  But Ais (locally) diffeomorphic
to U and so the continuity follows from proposition 15.4 (and the subsequent remark).

We return now to give the proofoflemma 15.5. Observe first that it is sufficient to find an
with ()surjective, because we can then always pick a submanifold of transversal to the kernel of
0 to get an isomorphism. We now proceed by induction on the rank of£0.Let —q. Then
we can always represent £0as an extension of the form

0->/n_i(—m) £0->£0->0,

where /n-1 is a trivial bundle of rank n—1land
For the proofsee Atiyah (1957) where a stronger result is proved, namely that for indecomposable
£0the integer mepends only on mand the genus of M. Moreover w
that
q+m 2
which will imply that
,1561 cHa(M,L* ® In-i(-m)) - O,
' \H'(M ,L® In_1(m)) =0.
Now consider bundles Elgen by extensions of the form
(15.7) 0->£(—m)->£->Z->0,
where £ is a bundle of rank n—1land cy{F) —0 while s a line-bundle with
Ci(L) = ox(L,)= q+m(n—1).

Applying our inductive hypothesis to the trivial bundle Zn-1 we obtain a family Frparametrized
by reR having properties (i) and (ii). We then take for our family  all extensions of the form

(15.7) with F= Fparametrized by R, and L
tensions of this type are classified by elements of
(15.8) IZ(M ,L*®E£(-m)).
By (15.6) the corresponding H °vanishes when F — and hence for all Fr with r¢
Zariski neighbourhood of rih R.Then H will have ¢
space Sifibred over Ryx J with fibre the vector space (15.8).

We must now investigate End£) for any in our family. Denote by End £ the sub-
space of endomorphisms preserving the exact sequence (15.7), and by End"£ the quotient:
(15.9) 0->End'£ End£->End" O
Clearly End"£ —Horn (E(— B/ (15.6) H
vanish for all Fwith reR2c RYy;some new Zariski nel
from (15.9), that
(15.10) End’ Had

IS surjective.
On the other hand we have the exact sequence

0 ->L*RE (— WwENd'E->ENdEO <P-x(,
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which gives the exact cohomology sequence

®F{-m)) End’ FBdF)
I f we now compute the infinitesimal deformation map for our family S at the point jO and recall
that Sifibred over R2x J with fibre H1(M,L* )) we see that the surjectivity for
follows from that of Rand Jor

classical. Together with the surjectivity of (15.10) this completes the proofoflemma 15.5.

We have had the benefit of discussions with many colleagues on the topics in this paper
and we are in particular grateful to N. Ekedahl, G.Harder, N.J. Hitchin, D. Mumford,
M. S. Narasimhan, T. R. Ramadas and J.-P. Serre for helpful observations.
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