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Th e Yang-Mills functional over a Riemann surface is studied from the point of view of 
Morse theory. The main result is that this is a ‘ perfect' functional provided due account 
is taken of its gauge symmetry. This enables topological conclusions to be drawn about 
the critical sets and leads eventually to information about the moduli space of algebraic 
bundles over the Riemann surface. This in turn depends on the interplay between the 
holomorphic and unitary structures, which is analysed in detail.
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524 M. F. A T IY A H  AND R. B O T T

I n t r o d u c t io n

This paper is a greatly expanded account of the preliminary material that appeared in Atiyah 
& Bott (1980). Part of the reason for the long delay between that paper and this present version 
was that new view-points emerged that added further interest to the topic and enabled 
us to provide proofs for what had earlier been conjectures. The length of this paper is due to our 
desire to present the several different aspects of the problem. We feel that this is justified because 
the main interest lies not so much in the actual applications as in the methods employed and 
the interaction between different approaches.

Because of its long gestation period and its consequent size, we feel that we owe the reader a 
substantial and leisurely introduction that puts the paper into historical perspective. In fact, on 
a personal level, one of the attractions of this subject to us is that it brings together algebraic 
vector bundles and Morse theory, topics to which we separately made contributions a quarter 
of a century ago (Atiyah 1955,1957; Bott 1958, Bott &Samelson 1958). Even better, the catalyst 
that produced this interaction came from a quite unexpected quarter, namely that of theoretical 
physics in the form of the Yang-Mills equations.

At this stage we should perhaps explain that our main idea is to apply Morse theory methods to 
the Yang-Mills functional over a compact Riemann surface (or algebraic curve) and deduce 
results about the cohomology of the moduli spaces of stable algebraic vector bundles over M. 
To explain the background we shall now digress to give brief historical accounts of both Morse 
theory and algebraic bundle theory.

Morse theory is concerned with the relation between the homology of a manifold M  and the 
critical points of a real-valued function / on M. When is finite-dimensional these ideas go back
at least to Poincare but they have been applied in more refined form in recent times to derive 
deep results concerning the geometry of manifolds. Morse’s great contribution was to deal with 
the infinite-dimensional case arising from variational problems for functions of one variable. The 
most noteworthy geometrical application was to the * Energy’ function on the loop space, which 
yielded significant results concerning closed godesics. In Bott (1958), Bott & Samelson (1958), 
Morse theory was applied to nice spaces arising from Lie groups, such as (some) homogeneous 
spaces G/H  and the loop space QG, where explicit knowledge of natural functions could be 
exploited to derive information about the cohomology of the spaces concerned.

As a very simple example consider, on the complex projective n-space JRn ( C ) ,  the function /  
defined by

/(z 0, ...,zn) = |z0|7 2 W 2,

where we use standard homogeneous coordinates. Clearly /h a s  a unique maximum at the point 
(1,0,0, ...,0) and a minimum along the hyperplane z0 — 0. Morse theory then allows one to 
conclude that the cohomology of Pn(C) differs from that of Pn-\{C) by a single free generator in 
dimension 2 n.This is an easy consequence of the fact that the complement of = 0 is a copy of 
Cn. Of course in this example, and in many other explicit cases, one does not need the function/ 
to produce the decomposition into such pieces (or strata). In fact for complex homogeneous 
spaces one can always produce such a stratification from orbits of suitable groups. The same 
applies to QG.Thus in these cases derived from groups, Morse theory, which uses real functions, 
can be replaced by complex analytic methods. A much more sophisticated, though computa­
tionally simple method of computing Betti numbers is to use the Weil conjectures as established
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by Deligne, which involves counting the number of points over finite fields. This works for 
algebraic manifolds and for Pn{Fq) one finds

N(n,q) --- (?n+1- ! ) / ( ? - 1) = 1
Note that the equality

N(n, q) = N{n-l,q)+ qn
corresponds to the stratification of Pndiscussed above, which indicates the common role this plays 
in all three methods of computing Betti numbers. This number-theory approach is frequently 
very effective but it does not give as much information as the more direct geometrical methods. 
In particular the fundamental group and torsion cannot be computed by number theory. In 
fact the Morse theory proof in Bott & Samelson (1958) that was torsion-free was a significant
triumph of the method, particularly since G itself have torsion.

We turn next to the topic of algebraic vector bundles over an algebraic curve. Over the 
complex numbers these are equivalent to holomotphic vector bundles over the associated compact 
Riemann surface. For vector bundles with fibre of dimension one, i.e. line-bundles, the classical 
divisor theory of Abel-Jacobi expresses the fact that the isomorphism classes of line-bundles form 
an abelian group isomorphic to Zx J ,where J  is the Jacobian of the curve and the integers 
correspond to the Chern class of the line-bundle (or the degree of the divisor). Weil (1938) began 
the generalization of divisor theory to that of matrix divisors, which correspond to the modern 
notion of vector bundle. The classification problem for bundles of rank 1 is much harder than
for line-bundles partly because there is no group structure. Grothendieck (1957)showed that for 
genus 0 the classification is trivial, in the sense that every bundle is a sum of line-bundles. Atiyah 
(1957) extended the classification to genus 1 and (Atiyah 1955) treated the case of rank 2 bundles 
for genus 2. In general in order to get a good moduli space one has to restrict to the class of 
bundles as introduced by Mumford; otherwise one gets non-Hausdorff phenomena. A major 
breakthrough came with the discovery by Narasimhan & Seshadri (1965) that bundles are stable 
if and only if they arise from irreducible (projective) unitary representations of the fundamental 
group. This connection between holomorphic and unitary structures was already apparent in 
Weil’s paper, and in the classical case of line-bundles it is essentially equivalent to the identifi­
cation between holomorphic and harmonic 1-forms, which in turn was the starting point for 
Hodge’s general theory of harmonic forms.

The unitary view-point enabled Newstead to examine the topological properties of the moduli 
space for rank 2, obtaining in particular formulae for the Betti numbers. A direct generalization 
of this method to higher rank appeared intractible. A quite different approach, initiated by 
Harder (1970) for rank 2 and successfully generalized by Harder & Narasimhan (1975) for 
higher rank, was number-theoretical based on the Weil conjectures and counting points over 
finite fields. This method, pursued further by Desale & Ramanan (1975) led to an explicit 
inductive formula for the Betti numbers of the moduli space for arbitrary rank At this point we 
should comment that when the Ghern class kis prime to the moduli space N(n, k) is compact 
and non-singular, and this is the case for which Betti numbers are computed. If  («, 1 then
the moduli space needs to be compactified and the geometry is more complicated.

The success of the Harder method depends on the fact that the moduli space N(n, k) for a curve 
over a finite field Fqhas another description, showing that it is the function field analogue of the 
classical moduli space for elliptic curves (i.e. the upper half plane divided by the modular group). 
In modern terminology N(n,k) is a double coset space of an adele group and counting points in

N(n,k) can be reduced to computing adelic measures.

Y A N G -M IL L S  E Q U A T I O N S  O V E R  R I E M A N N  S U R F A C E S  525

42-2

 on January 17, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


526

We come now to the third and most recent ingredient in the story, namely the Yang—Mills 
equations. These have become prominent in elementary particle physics and they have been 
studied both in Minkowski space, where they are of hyperbolic type, and in Euclidean 4-space 
where they are of elliptic type. In this latter case they have deep connections with three- 
dimensional algebraic geometry for which the interested reader may consult Atiyah (1979) • The 
Yang—Mills equations can be formulated on any Riemannian manifold and they depend on 
a fixed compact Lie group G. In dimension 2, i.e. when As is a surface, the equations are practi­
cally trivial and all solutions can easily be described. Despite this apparent triviality our first 
surprising observation was that, for a 2-sphere, the Yang-Mills equations for G essentially 
reproduced the Morse theory picture of QG.The Yang-Mills functional plays the role of the 
Energy and the explicit solutions correspond to the explicit geodesic structure of The space QG 
is replaced by the space of (^-connections modulo (based) equivalence. Unlike the four-dimen­
sional case studied in Atiyah (1979) where the Yang-Mills functional for 2) appears only to 
have minima, in two dimensions there are critical points of arbitrarily high Morse index.

With this encouraging start it seemed natural to take the next step and investigate the Yang- 
Mills equations over a Riemann surface of arbitrary genus. The Narasimhan-Seshadri unitary 
approach fits naturally into this picture since the bundles arising from representations of 
are easily seen to give the critical points, and the irreducible representations give the Yang-Mills 
minimum.

It seemed reasonable to hope that, as for the genus 0 case, we would have a perfect Morse 
function, i.e. that the critical point structure would correspond precisely to the homology. 
Comparison with the results of Newstead showed that this was not true in the naive sense, but it 
eventually became apparent that if we used the full symmetry of the situation we should again 
have a perfect Morse theory. Technically this meant that we needed to use all bundle auto­
morphisms not just based automorphisms. The lesson learnt from this example is of wider validity 
and in § 1 we begin with a general discussion of equivariant Morse theory, illustrated with some 
very simple examples. For an interesting application of these ideas see Kirwan (1982).

In the application of Morse theory to QG by Bott & Samelson (1958) the conclusions drawn 
related to the cohomology of the whole space, since the cohomology of the various critical 
manifolds was all known. In the Yang-Mills case the situation is different, in that the critical 
manifolds are complicated and we would like to reverse the procedure, using information about 
the whole space to deduce results on the critical manifolds. This procedure works for two reasons. 
In the first place the cohomology of the whole space can be easily computed by relating it in fact 
to QU(n) (or equivalently to the Yang-Mills situation for genus 0). Secondly the critical
manifolds other than the minimum can all be expressed in terms of the minima for (m) with m < n, 
so that we can apply an inductive argument.

At this stage we reach the position that, provided the basic analysis works as expected, we have 
a perfect Morse theory and can inductively deduce information about the space of Yang-Mills 
minima, which by the Narasimhan-Seshadri theorem can be identified with the moduli space 
of stable bundles (in the coprime case (tz, k) — 1 ) . What has to be shown analytically is that the 
Yang-Mills paths of steepest descent always converge in a suitably strong sense to a critical 
point. We understand that Uhlenbeck (1982) has preliminary results in this direction that may 
do what is required. However, we have found an alternative presentation that is more direct 
and by-passes this question.

This alternative is a purely complex-analytic approach developed in §7 and it begins with the
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observation that the space of unitary connections on a given C00 vector bundle over a Riemann 
surface can also be viewed as the space ^  of all holomorphic structures on One can then define a
stratification of in which the one open stratum corresponds to semi-stable bundles and the 
other strata are described in terms of the canonical flags or filtrations introduced by Harder & 
Narasimhan (1975). Looked at equivariantly, relative to the group Aut of automorphisms of
Ey this turns out to be a ‘perfect’ stratification and enables us to deduce information about the 
equivariant cohomology of the semi-stable stratum, and hence in the coprime case about the 
cohomology of the moduli space of stable bundles.

This complex approach is analogous to the use of complex cell decompositions to compute 
the cohomology of Pn{C) and other homogeneous spaces. However, the stratification of is not 
given by orbits of a group, except in the case of genus 0. Although technically independent of the 
Morse theory approach based on the Yang-Mills functional our complex approach was motivated 
by Morse theory and, as explained in §8, it is essentially equivalent to it. By this we mean that, if 
the basic analytic facts of the Morse theory about convergence of trajectories are assumed, then our 
complex strata must coincide with the Morse strata, i.e. the stable manifolds of the critical sets.

The fact that stability in Mumford’s sense and stability in Morse theory coincide in this 
situation is not accidental. As has been pointed out to us very recently by D. Mumford and 
S. Sternberg, this phenomenon occurs quite generally in the context studied in Mumford 
(1965) of reductive groups acting on Kahler manifolds. The novelty in our situation is that we 
have an infinite-dimensional example of this type, although the resulting moduli spaces are 
finite-dimensional. The key observation in all cases is that one should introduce the ‘ moment 
m ap’ familiar in symplectic geometry. This point of view will be explained at the end of §9.

The detailed results that our methods yield on the cohomology of the moduli space A:), 
in the coprime case, are described in § 9. First of all we obtain inductive formulae to calculate the 
Poincare polynomials Pt(N(n,k)).These formulae are essentially the same as those obtained by 
the Harder-Narasimhan method and we shall comment on the comparison shortly. In addition, 
however, we prove that N(n,k) has no torsion in its cohomology. We also prove the same thing for 
the moduli space N0(n,k) for stable bundles with fixed determinanty and we show that k) is 
simply connected. Finally our methods give a natural and explicit set of multiplicative generators 
for the cohomology ring (theorem 9.11).

Although the number-theory approach of Harder-Narasimhan appears totally different from 
our geometric method there are close analogies, which are very intriguing. We discuss these 
analogies in detail in § 11.

We now review rapidly the contents of the sections not explicitly mentioned above. In §2 we 
study the topology of the gauge group which from the Morse theory view-point determines the 
homotopy of the space on which the Yang-Mills function is naturally defined. Sections 3 and 4 
develop basic general facts about the Yang—Mills equations while §5 deals with the special case 
of Riemann surfaces. In §6 we pursue the Yang—Mills solutions globally and show how they 
correspond essentially to (projective) unitary representations of the fundamental group. Up to 
this point we treat the general case of a compact Lie group but in §§ 7 and 8 we concentrate on 
the unitary group U(n) in order to make the connection with the theory of holomorphic vector 
bundles. However, we return to the general case in § 10, showing rather briefly how the whole 
theory extends to any G.The only notable difference is that we do not now get results about 
torsion, in fact the presence of torsion in Galmost certainly implies torsion in the corresponding 
moduli spaces.
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Sections 12 and 13 are both in the nature of technical appendixes. Thus in § 12 we review some 
elementary, though not widely known, facts about convexity and Lie groups. These play an 
important role in the partial ordering of the strata in our stratification of . An important notion 
that emerges in our analysis is that of a convex invariant function (}> on the Lie algebra of a 
compact group. As we show in §8 we get essentially the same theory if, in the definition of the 
Yang-Mills functional, we replace the norm-square || ||2 by <j). Finally §13 summarizes facts 
about equivariant cohomology and in particular we formulate a result (proposition 13.4) that 
is used in § 1 to give a criterion (proposition 1.9) for a stratification to be ‘equivariantly perfect’. 
This criterion is closely related to an argument due to Frankel (i959)> which asserts that Morse 
functions arising from circle actions on Kahler manifolds are perfect.

It remains for us to make some comments about infinite-dimensional manifolds. The function- 
space manifolds that we shall meet such as the space of unitary connections or the space of maps 
of Minto U(n) can be given various topologies, depending on the class of functions we take. As
long as our functions are at least continuous the homotopy type of the function spaces will be 
essentially the same. Technically it is usually convenient to work with Banach manifolds (so as 
to have the implicit function theorem) and one introduces Sobolev norms for this purpose. We 
explain in § 14 how this is done, much of it being fairly standard. In the main body of the paper 
we have ignored these technicalities and worked rather heuristically with smooth functions in 
order to concentrate on the geometrical ideas. Section 14 redresses the balance and provides the 
justification. Essentially this is a matter of establishing local regularity properties. For the global 
properties we need an additional argument and for this we fall back on algebro-geometric 
methods to which we devote § 15.

From this summary of the various sections it will be clear that not all sections are strictly 
necessary for the proof of our main results on the cohomology of moduli spaces of vector bundles. 
The proofs are essentially contained in §§ 1, 2, 7, 9, 13, 14 and 15.

We should perhaps point out that the theory of stable bundles over Riemann surfaces is only 
of real interest for genus g  ̂ 2. However, most of our discussion goes through for all values of 
the genus and is interesting even for g = 0,1, from the Morse theory point of view. There are 
a few minor differences in the rational and elliptic case and we comment on these in the appro­
priate places.

Finally we should warn the reader that the level of exposition and sophistication is not uniform 
throughout the paper. Thus the first few sections are written at a more leisurely pace and make 
fewer demands on the reader. The technical requirements increase substantially in the later 
sections.

1. E q u iv a r ia n t  M orse t h e o r y

We start with a brief review of the Morse theory of a non-degenerate smooth function/on a 
compact C00 manifold M.

Recall, first of all, that a critical point o f/is  a point at which d vanishes, and that at such 
a point the Hessian, Hpf,is a well defined quadratic form on TpM, the tangent space to at
In local coordinates {*1} centred at />, the matrix oiHpf  relative to the base 0/ 0** at p is then given 
by

h j = iey/a**0*|

and p is called a non-degenerate critical point of/ ,  if det #  0.
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At such a point the number of negative eigenvalues in a diagonalization of is called the 
index of p(as a critical point of/ )  and is denoted by A 

Now with any function /  all of whose critical points are non-degenerate we associate the 
Morse counting-series

M ,(f) -  d/„ = 0,
V

where the sum ranges over the necessarily finite number of critical points of/.
The Morse theory in its most elementary manifestation sets topological bounds for Mt(f) . 

Precisely, suppose that
Pt(M; K) = £  ** dim H*(M; K)

is the Poincare series for Mrelative to a coefficient field Then if /  is any non-degenerate
function on M, its Morse series satisfies the following Morse inequalities: there exists a polynomial 
R{t) with non-negative coefficients, such that

Mt( f ) - P t(M,K) = (i + t)R(t).

Thus in particular, the coefficients of Mt(f)  dominate those of Pt(M). On the other hand 
setting t — — 1 we see that M_x(f)  always yields the Euler number P_X{M) of 

We shall call a function/, a K-perfect Morse-function on if

Mt(f)  = P),

and call/perfect if this equality holds for all fields
Hence a perfect Morse function can exist only on a torsion-free manifold. In general it is of 

course difficult to decide whether a given/is perfect. However, there are two criteria for estab­
lishing ‘perfection’.

First of all, i f  the set (Ap(/)} of all indices o f f  contains no consecutive , then s is  perfect. This is
the lacunary principle of Morse. For instance, if it can be shown that /h a s  only even indices at 
its critical points, then this principle immediately yields the perfection of/, and this is the method 
that can be used to show that the Energy function on the space of loops of a Lie group is perfect 
(Lott & Samelson 1958).

Failing such a fortuitous disposition of the indices {Ap(/)}, one has the ‘ completion principle ’ 
also used by Morse and already foreshadowed by Birkhoff’s minimax principle.

Suppose then that pis a non-degenerate critical point p o f /  at level c, and of index Ap. The
‘ Morse lemma' then asserts that in a suitable coordinate system .., centred atp, the function
/h a s  near pthe form

/ =  c- x \ - x \  - ... - x\ + xl+ 1+ ...+*£,
where k — Ap(/). The set

vp = {tf|*! + ... +x% < exk+1 --- ... = = 0} 

is then a disc near p,whose boundary dvpis a (k— 1)-sphere in the space

M-e = {meM jf(m) <

We now call p‘ computable’ if this sphere dvpbounds a singular chain in Mc_e for small enough
e > 0. With this understood one has the following:

Completion principle. I f  s i s  non-degenerate and all its critical points are , then
perfect Morse function.
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Both these principles are easy consequences of the main structure theorem of the non-degener­
ate Morse theory. This theorem asserts that the sets --- { ) < change their homo-
topy type only at critical values off  and then only by the attaching of a cell of dimension Ap( /) .  
Thus we have:

Ma ~ Mb i f  there are no critical values between a and b, while Mb ~ U there is a single critical 
point p of index A in Mb — Ma.

From the standard exact sequences relating the cohomology ofA4  and Ma under these circum­
stances one may then easily deduce the Morse inequalities as well as the completion principle, 
which we have just described.

So much then for a quick review of the Morse theory in its most elementary form. For our 
purposes we must now extend the concept of non-degeneracy off  in the following manner.

If  -Y c  -Ads is a connected submanifold of M,it will be called a non-degenerate critical manifold 
for f  if and only if

(1.1) d f  = 0 along

(1.2) HNf  is non-degenerate on the normal bundle v(N) of N.

Note that because of (1.1) the Hessian HNfo f/is  a well defined quadratic form on v(N), so 
that (1.2) is the natural extension of the non-degeneracy hypothesis for critical points.

In the following a function on Mwill be called non-degenerate if its critical set is a union of 
non-degenerate critical manifolds. A prime example, which in a sense explains the virtue of this 
extension of the non-degeneracy concept, is the following.

Suppose E> M is a fibring and f  a non-degenerate function on in our new sense. Then it 
is easy to see that 7r*/onE  is again non-degenerate in our new sense. On the other hand rr*f will 
never have isolated critical sets unless Eis a covering.

We next formulate the proper way to ‘count’ a non-degenerate critical manifold The
recipe is as follows. We first endow y(iV) with a Riemannian metric. Then of course our Hessian 
HNf  defines a canonical self-adjoint endomorphism

An :v(N)-+v(N)
by the formula

(4 v#> V) = HNf{x, y), x ,ye  v(N) .

The non-degeneracy of HNfnow implies that the eigenvalues o f ^  are all non-zero, and hence 
that Andecomposes into an orthogonal direct sum

v(N) = y+(jV) ©

spanned by the positive and negative eigenvalues of respectively. We call the fibre dimension 
ofv-{N ) the index of N  -  as a critical manifold o f / -  and say that we are in the orientable case if 
this ‘negative’ bundle v~(N) is orientable. With this understood, and having chosen a 
coefficient field, AT, we ‘count’ a non-degenerate critical manifold N  o f f  with the polynomial

M f f N )  = S ^ d i m ^ V W )

where now HI denotes the compactly supported cohomology. In particular, by the Thom 
isomorphism, this polynomial reduces to

t^ P fN )
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in the orientable case, whereas in the non-orientable case P /A ) has to be computed relative to 
a twisted system of coefficients. This procedure turns out to be the proper one for ‘counting’ in 
the sense that if /is  non-degenerate and Mt(f)  is defined by

m s )  = 2 M ( / , ao
N

the summation extending over the critical manifolds o f/, the Morse inequalities , pro­
vided of course that the same coefficients are used on both sides of the equation. One may 
therefore speak of K-perfect Morse functions also in this extended sense. They are non-degenerate

functions/, with ^ ( / )  = Pt{M).

We have already remarked that the main advantage of this extended notion of non-degeneracy 
is its functorial nature under pull-back. Precisely, this amounts to the following.

Proposition 1.3. Let E ---- > Mbe asmooth fibring. Thenf is non-degenerate on M  i f  and only i f  rr
is non-degenerate on E. Further the index of N  as a non-degenerate critical manifold of M  equals the index 
of n̂ Nas a critical manifold of E.

The proof is self-evident, as tt~^N is clearly a manifold if is one, and its normal bundle in E  
is n~1v(N).

I t remains to formulate the completion process in this extended context. The pertinent 
diagram is the following one:

//* K(iV)} — -> /?» K W ,  a ^ W )  -J ->

(1-4) '" ‘I
--------------------

where we have used the following notation.
We assume that/(JV) = c, and write vj{N) for the set in the exponential image in M,

w h e re /^  c-e.This will be an ^-disc-bundle over if 0 is small enough. We write for 
the projection of this disc-bundle, so that zr-1 corresponds to the Thom isomorphism and H  for 
homology with coefficients in K .The f t  denotes reduced homology. With this understood we 
say that Nis K-completable i f  the dashed arrow in(1.4) zero.

It is easy to check that this condition reduces to the previous one for a non-degenerate critical 
point of/, and again a standard argument implies the following:

Completion principle. I f  all the critical manifolds K-completable thenf is a K-perfect
Morse function on M.

Remarks. Note that, as opposed to a critical point, a critical manifold can essentially be ‘self- 
completing’ in the following sense. By commutativity and the exactness of the horizontal 
sequence in (1.4), it is clear that a class aeH^_^N(N) certainly goes to zero under the dashed 
arrow if 7r-1a is in the image of Hence we call these classes iV-completed. This
phenomenon, of course, occurs only if the bundle is non-trivial over JV, and in a compact
finite-dimensional setting it will not occur for all a e (N ). However, in the infinite-dimensional
or equivariant case, which we shall encounter in a moment, this will happen, and then one is in 
the fortuitous circumstance that we refer to as ‘ self-completing ’.

We are now finally ready to discuss the question that is central for our considerations.

Suppose thatf is a smooth function on M  that is invariant under the smooth action of a Lie group G on 
M. When is such a function to be considered a perfect G-invariant function?
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If 6 acts freely on M, it is clear enough that such an should be considered perfect — as a 
6-invariant function -  if the induced function on G is perfect. On the other hand if the action 
of G is not free, this procedure is certainly not correct, and one has to bring the different 
stability groups of the critical sets into play in some fashion or another. The manner of doing this 
that we advocate is the following one.

Consider any smooth principal 6-bundle Eover a base-manifold and the corresponding 
mixing diagram

E  t - i —  E  X M —'— *■ M
7s' 7s Ts*

E/G <— E  x 0 M - j>  M /G

of the 6-actions on M  and E .Here of course the middle action is diagonal, so that under n,
( e*g,m) is identified with (e,F'm).

Now because the action on Eis free this diagonal action is also free. On the other hand a 
6-invariant f  on M  clearly lifts to a 6-invariant fo M, and hence descends to a smooth 
function f E on E x  aM. Now the space E x  a Mis itself a fibre space over the base B — E/G  of E, 
and is of course the bundle associated to E  with fibre In short then every G-invariant functions 
naturally defines a function f E on any smooth fibre bundle with M  as fibre and structure group 6. 
Furthermore we have the following.

Proposition 1.5. I f  s i s  a non-degenerate function on M, then 
is non-degenerate on E x  qM. Furthermore, i f  N  is a non-degenerate critical manifold o f f  on M, then f E will 
have as corresponding critical manifold the space E x  QN. Finally, the indices f  and E x  G N  relfE
are equal.

The proof is again self-evident in view of the functoriality of our concept. Indeed it is clear that

n~1(E x 0 N) =
and now proposition 1.3 implies the rest.

Now there are very many different 6-bundles but they are all induced from a universal G-bundle 
that is unique up to homotopy. Such a universal 6-bundle is characterized by having its total 
space E  contractible. It is then reasonable to say that our function f  is perfect in the domain of 
6-invariant functions, or G-equivariantly perfect ifthe induced function is perfect for the universal 
6-bundle E .In this universal case we shall simply write Ma for the space x aM, BG for 
and f 0 for f E.

To summarize then, this construction converts/into which is a function on the space 
constructed functorially out of the group 6  and its action on M. In homotopy theory this is of course 
a well known procedure and in fact Mais called the homotopy quotient of M  by 6. It has the 
following properties.

Proposition 1.6. I f  Gacts freely on M  {i.e. defines a fibration) then the natural map

M0 - ^ M / G
is a homotopy equivalence. On the other hand MQ is always afibring over BG with M  as , and its homotopy
type depends only on the homotopy type of 6  and its action on M.

There is just one difficulty with this construction, and that is that in general and BG will 
not be realizable as finite-dimensional manifolds. Hence MG is not usually a finite-dimensional
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manifold. However, this is not a serious problem and can be overcome in several ways. When G 
is a compact Lie group, which is the only case of essential interest, can be realized as an 
infinite-dimensional manifold or as a suitable limit of finite-dimensional ones. In the former 
situation all sub-manifolds occurring will have finite codimension and cause no problems. 
Alternatively, and this is the point of view that we shall adopt, we can stick to our original 
manifold Mand function/but introduce equivariant cohomology as the appropriate functor. By 
definition for every G-space Xits equivariant cohomology is by

H0 (X) -

In the category of G-spaces it has the usual properties of cohomology. In § 13 for the convenience 
of the reader we recall some of the basic facts about and prove some particular results that we 
shall be needing.

To illustrate these ideas let us consider an example in which M  is the 2-sphere
S2 --- {(x,y,z)\x2+y2+ z2-- 1}

in R3and let /  (#, y,z) — z, be the height function on S2. Also let G = be the group of rotations
about the z-axis in R3.Then/is clearly G-invariant, and also intuitively looks about as perfect as 
one could hope for. To construct an approximation to let be complex (/ +1)-space and 
consider the action of S1 on C,+1 given by

(z0, ..., z,) (ei0zo, ..., e^Zj).

Restricted to the unit sphere 5'2,+1 this action is free and gives rise to the Hops fibring
£ 21+1

S 1

Pi(C),
with base space the complex projective /-space. Now

7^(§A+i) --- o for 2/+1.

Hence this sequence of finite-dimensional fibrings approximates the universal one, which for 
S1 may be taken to be the fibring of the unit sphere in a Hilbert space H  over the space 
P(H)of rays in H.

Let us now consider the spaces
Mx — S2I+1 x £i S2.

They are the finite-dimensional approximations to i, and are naturally 2-sphere bundles 
over /j(C). We have schematically indicated this below:
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Q S n

p,(c)
Figure 1.
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Note that for the fixed point p (or q)

px&SMg n f l ) .

Thus the critical manifolds corresponding to p and q, are the sections Sp and Sq in indicated above. Hence,
since

Pt{Pi{C)) = i  +

and the index o f f  on S2is 0 at pand 2 at q, we obtain the formula

Mt(fJ = (l + t2) ( l  + t2 + ...+ t2')

for the Morse series of the function f  induced by f  on 5'2,+1.
When /->oo, this polynomial therefore becomes the formal power series

M (/si) = (i+<2) / ( i - < 2).
Now cohomologically, the fibring Mxover P\{C) is trivial (2-sphere bundles always are). Hence 

by the Runneth formula
Pt(M) = ( i + t 2) ( i + t 2 + ...+<21)

and so we see by inspection that our fwas indeed perfect, in fact not only on Msi but also each 
approximation Mv

Let us next modify/*so that it has a maximum at p and at <7, and a minimum along the equator, 
but still keeping it G = ̂ -invariant. Then, p and q both contribute

*2(l-M 2 + ...+ *21)
to M ss). On the other hand the critical set in Mx corresponding to the equator on is given by

S1x s iS2t+1 ~S*+1.
Hence it contributes 1 + tn+1.Thus

M f f )-- (2/2)(l+<2 + . . .+ 72i) + (1_H 21+l).

These functions are therefore not perfect for any particular I. On the other hand, letting /-* 00, 
we obtain

M O W  = 1 + 2<2 + 2 + ...
= (i+<2) / ( i - < 2),

so that this new/"is again perfect according to our definition, i.e. on MSl.
This example illustrates two phenomena. First of all that a perfect/^ on Ma need not come 

from a perfect/  on M. It also shows that in some sense the larger the orbit of a critical set 
on M, the * smaller' its contribution is in MQ. The precise formulation of this principle is as follows. 

First of all recall the identity
E / H ~ E x 0 G/H ,

when Eis a principal G-bundle and H  a closed subgroup of From this it follows immediately
that if A c  M is  the (7-orbit G/H, then

E x gN ~ E x 0 G /H ~ E /H .
But a universal G-bundle E  is obviously also a universal H-bundle. Hence in the universal case 
E /H  has the homotopy type of BH, the classifying space of H.

Hence by proposition 1.5 we have the following 
Counting principle. The non-degenerate critical orbit G/H, of index A (A) for son M, contributes
(1.7) pWPt(BH)
to Mt( fa), the * counting series' o ffQ on M0.
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Note also that if / / i s  connected then the Pt(BH) in (1.7) can be taken literally, whereas if H  
is not then a local coefficient system might still be needed.

More precisely, the correspondence (1.7) can still be refined in one very important respect. 
Namely if Nis the orbit of Gthrough q, then Hthe stability group of q acts on the normal space 
to N at q and, using an //-invariant metric, also on the negative normal space I t follows that
v~(N) is associated with the principal bundle G/H  --- via this representation, and corres­
pondingly that v~{BH)is associated with the universal //-bundle EH  over by that same 
representation.

Thus we arrive at the following refinement of (1.7).
Equivariant correspondence principle. Under the correspondence Nq BH of (1.7), the 

negative bundle ° ffo  along BH becomes the bundle associated with the universal H-bundle via the ‘ negative 
representation':
(1.8) XN: H-+AutVq(N).

Remark. We have here used the same notation for the index of N, and the negative repre­
sentation for obvious reasons; and in the future the context will make it clear which is meant.

The importance of (1.8) is that standard methods allow one to compute the characteristic 
classes in H*(BH) for bundles associated with representations, and one may therefore use (1.8) 
to compute to what extent the critical set BH  for is ‘ self-completing ’. For instance, in the 
2-sphere example, for the critical point q,which is the maximum of/ , we find that H  — and
that Xp is the standard representation of S1 on R2. The Euler class e(XN) of v~(BH) is therefore 
a generator of H 2(BSX) and hence generates H*(BS1) . It follows that multiplication 
bye{XN) induces an injection of H*(BS1) into H*(BS1) for any coefficient system. Dually, this implies 

precisely that H*(vj (BH)) maps onto H*(vJ, dv~) in the diagram (1.4), i.e. it implies that 
self-completing, as a critical set o ffG. Now as the minimum is always self-completing (the condition 
of (1.4) becomes vacuous), it follows that we have in this instance established the ‘perfection’ 
o f f Gby purely local considerations as opposed to our earlier global proof of the same fact. This state 
of affairs turns out to be the one we shall encounter for the Yang-Mills functional. For future 
reference we therefore formalize this principle in the following.

Corollary. I f  in (1.8) the Euler class of XN induces an injection of H* (BH) into itselffor a coefficient 
system K then, as a critical set of f a,BH is self-completing relative to K.

There now remains only one more appropriate extension of these concepts. In the domain of 
G-in variant functions, the formula (1.7) corresponds to a non-degenerate critical For a 
non-degenerate critical manifold Wthe contribution to the equivariant Morse series Mt( f0) is

tW P t(Na)

and again local coefficients are to be understood in the non-orientable case. The equivariant 
Poincare series is of course defined as

Pf(N&) = Xt* dim 
= dim

and we shall also denote it sometimes by GPt(N).The normal bundle to has an equivariant 
Euler class and as before we have, for the orientable case and any field K,

Proposition 1.9. I f  the equivariant Euler class of the normal bundle to N  is not a zero-divisor in 
Hq(N, K), then N  isequivariantly self-completing for K.
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If all critical manifolds satisfy the hypothesis of (1.9) then/w ill be equivariantly perfect over 
K, so that the equivariant Morse and Poincare series coincide.

In §13 we establish a useful sufficient criterion for (1.9) to hold. This criterion (see pro­
position 13.4) involves simply the isotropy group structure of the action of G and is easy to verify. 
It provides the key to the perfect nature of the Yang-Mills functional, which we shall be ex­
plaining in subsequent sections.

So far we have concentrated exclusively on the homological aspects of Morse theory. There is 
however more detailed geometrical information about the structure of our manifold M  that is 
provided by a function / . If we introduce a Riemannian metric on we can define the vector 
field grad /  dual to the differential d if.The ‘gradient flow’ of / i s  then given by the paths of 
steepest descent, i.e. the trajectories of — grad/. If/  has only non-degenerate critical points p 
then every trajectory converges to some p,and the set of all points on trajectories converging to 
a given p form a cell M+(p). This cell is called the stable manifold ofp since/  restricted to has 
an absolute minimum at p. Similarly, replacing/by — / we get another cell M~(p) called the 
unstable manifold ofp. The dimension of M~(p) (or the codimension of is equal to the
Morse index of p.Thus/defines a cell decomposition

(1.10) M = \JM + (p)
P

and the Morse inequalities follow at once by using these cells to compute the homology of M.
More generally if there are non-degenerate critical manifolds we have stable manifolds 

M+(N) that are cell-bundles over Nand we get a stratification

(1.11) As = (J M
N

which we shall call the Morse stratification.
One easy consequence of this stratification, which goes beyond homology, is the following:

Proposition 1.12. Let N0 be the manifold giving the absolute minimum o f f  and assume that, for all 
other critical manifolds, the Morse index is ^  3. Then, i f  M is connected, is also connected and we have an 
isomorphism of fundamental groups

7ri(Y0) ~

For the equivariant case if/is (7-invariant, where is a compact Lie group, we can always pick 
a (7-invariant metric. Then the gradient flow is (7-invariant so that the stratification (1.11) is 
(7-invariant. The equivariant analogue of (1.12) holds but is in fact equivalent to it because the 
fibration M-+Mq -> BG gives an exact sequence

-> n f M )  -> n-fiMf) -> ->
and there is a similar one with N0 replacing M.

The critical manifolds Nof our function /h a v e  a natural partial ordering. We first define a
pre-ordering •< by

Nx -< A ^othe boundary of M +(NX) intersects 
By following the trajectories of g rad /it is then easy to show that

-Yj -< N2 => there is a trajectory of grad f  starting on
and passing within e of

Here eis any positive constant. In particular taking to be less than f ( N 2) —/(A y  it follows that
X1< N 2^ f ( N 1)</(A y .
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Hence the transitive relation < generated by -< is a partial ordering and has the property that

(1.13) closure of M +(N)c  (J M +(N').
N ' > N

Sometimes one may be given an explicit finite stratification of M

(1.14) M  = \JM a,
A

where each A/a is a locally closed submanifold of As, and the index set of A is partially ordered so 
that

(1.15) Mxc: (J Mu
/»> A

holds for all A (we assume the partial ordering is strict, i.e. A < and A implies A = 
One can then use the stratification to get Morse-type information about the homology of M. 
We start with the open strata, given by minimal A, and inductively add other strata. At each 
stage we can write down the exact cohomology sequence for a pair (//, U — V) where is a 
closed submanifold of U. More formally this can be described as follows. Define a subset I  of 
indices to be

open if A e / and /t < A =>fiel 
closed if A e / and ^ A =>jiel.

It is easy to check that /  is closed if and only if its complement is open. Moreover the subspace 
of M  defined by

U Mx
A e l

is open or (or closed) if I  is open (or closed): this follows from (1.15). If is open and A e/' is 
minimal then J  = IU A is open, and our inductive step is from M1 to From (1.15) it follows 
that A/a — M j — A/f is a closed submanifold of M j. Assuming for simplicity that the normal 
bundles to all strata in M  are orientable we have the exact sequence

(1.16) ->//«-*(A/a) ->//«(A/,)

where we have used the Thom isomorphism

H*~k{Mx) ^  HQ(Mj, Mj)

with k = kA — codim A/a.
If, for a given field Kof coefficients, (1.16) breaks up into short exact sequences for all q and 

all A it follows that
Pt(M) = S A f .W ) .

In such a case we shall say that the stratification is perfect over If this holds for — Zp, for all 
primes p,we shall simply call it perfect. Thus a perfect Morse function defines a perfect stratifi­
cation.

If the stratification is G-invariant and the corresponding equivariant cohomology sequences 
break up we shall call the stratification equivariantly or G-perfect. Proposition 1.9 has an obvious 
analogue in this context with the normal bundle in question being the normal to a stratum.

Examples of manifolds with naturally arising stratifications are the flag manifolds G/T, where 
T  c  Gis a maximal torus. Using the complexification Gc of G one also has a complex description,
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namely as G°/B where Bis a Borel subgroup. The left action of B on Gc/B  then has finitely 
many orbits. These are the Bruhat cells and they give a (complex) stratification of the flag 
manifold. The loop space QG has also such a stratification (Pressley 1980) and we shall meet 
other examples in dealing with the space of (^-connections on a Riemann surface. The last two 
examples are both infinite-dimensional, but the strata will ha codimension. The indexing
sets will be countably infinite but will have the following finiteness property.

For every finite subset I  there are a finite number of minimal elements of the complement I  (  ̂  ̂'O

so that our inductive procedure still applies. Although the induction never terminates, only 
finitely many steps will be needed to compute HQ(M) for any given q provided the stratification 
satisfies the following further finiteness condition.

For each integer q there are only finitely many indices A for which codim Mx < q. (1-18)

Thus when (1.17) and (1.18) are satisfied we may proceed to compute the cohomology of 
as in the finite-dimensional case.

Sometimes we may be given a stratification of M  and a function f  and we might like to know 
if the stratification is the Morse stratification (by stable manifolds) arising fromy* (for some 
metric on M ). Thus for the flag manifold one has natural functions arising from considering 
G /T  as an orbit in the Lie algebra of G and restricting a linear function. I t is not hard to axio­
m atic  the Morse stratification, and one can then test any given stratification to see whether the 
axioms are satisfied. We shall prove the following.

Proposition 1.19. Let f:M -+ R  have only non-degenerate critical manifolds Nx and let M  — U aM*. 
be a stratification by disjoint locally closed submanifolds Mx, such that, for some partial ordering on the set of 
A, the following properties hold:

(1) A < M=>/(A) < /W »
(2) Mx czu  M

(3) grad j  fat any x e M  is tangential to the Mx containing x.
(4) Nx<= Mx.
(6) index Nx — codim AfA.

Then Mx is the stable manifold Sx of Nx so that we have the Morse stratification.

Proof. We have only to show that the trajectory of — gradjs through any point x of Mx 
converges to Nxas t-> co.Now (3) guarantees that x(t) remains in Mx for all finite and (2)
implies that *(00) eN f̂or some /t ^  A. Now if xis sufficiently close to the trajectory as
t-> co,either converges to Nxor ‘falls below Nx (this basic fact is needed to establish the existence
and properties of the Sxand is formally a consequence of (1.13)). Since #(00) for some > A
property (1) shows that x(oo) cannot be below Nx and so #(00) Thus locally near we have 
Mx c  Sx.By (6) we see that dim Mx-  d im ^  and so (near Mx is an open set of By (4) we
see that Mx and Sxmust coincide near Nx.Now return to a general point xeM x with x(oo) e N^. 
Then for large t,x(t) is close to and in Ŝ.Hence by what we have just proved (with for A)
#(t) lies in for large t. On the other hand x{t)eMx for all finite t. Since different are disjoint
this implies si = A and completes the proof.

This proposition can be applied for example to the flag manifolds to show that the Bruhat 
cells coincide with the Morse cells of an appropriate function. For a detailed discussion of this
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and related questions refer to Atiyah (1982). Proposition 1.19 also applies on the infinite­
dimensional manifold QGto show that the Birkhoff cells (see Pressley 1980) are the Morse cells 
of the Energy function (see Bott & Samelson (1958) f°r a discussion of this case).

In the Yang-Mills situation, which we shall be treating in this paper, we shall exhibit a 
stratification satisfying properties ( l) - (5) of (1.19). If the Morse strata exist, i.e. if one can 
prove good properties about the trajectories x(t) as £->00, then (1.19) will identify the Morse 
strata with our strata. However, there are analytical difficulties involved here because the 
manifold M  is infinite-dimensional and the critical sets A have singularities. We shall therefore 
by-pass these difficulties by simply using our stratification directly to compute cohomology. 
The connection with Morse theory is then left at a slightly conjectural level, but this is of no 
consequence for the topological applications.
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2. T he t o po lo g y  of th e  gaug e  g ro up

Throughout this section all maps, bundles, sections and other objects will be taken as smooth, 
i.e. of class G00. From the point of view of homotopy theory this gives essentially the same result 
as the continuous maps and we shall on occasion blur the distinction when we are dealing with 
homotopy computations.

If pis a principal 6-bundle over X, Ad P shall denote the bundle associated to with fibre G, 
the action of G on itself however being the adjoint one. Thus

Ad P = P x aG

is not a principal bundle any more, but rather a bundle of groups over X, whose sections can be
identified with maps/ :  P->G satisfying

(2.1) f(pg) =g~1f(p)g‘
The space of such sections TA dP forms a group under pointwise multiplication and this is by 

definition, the ‘ gauge group ’ &(P) of P:

( 2 .2 )  &(P) =  r AdP.

This group acts naturally as a group of G-equivariant maps of , which cover the identity 
map of X. It can in fact be identified with the group of such automorphisms:

(2.3) &(P) ~ Aut(P).

To see this le t/:  P-> Grepresent a section of Ad P. Then define

U P - + P
by /*(/>) =/> •/(/>)•
The relation (2.1) then shows that/*  is equivariant and covers the identity. Conversely given a 
map /* : P->Pcovering the identity,/* defines a unique m ap/:P -*G  such that

f*(P) =p-f(P)>
and now G-equivariance forces the relation (2.1) on/ .  This establishes (2.3).

The purpose of this section is to describe the topology of the classifying space (P) of the 
gauge group when M, the base space of P,is a compact Riemann surface, and G is the unitary 
group.

43 Vol. 308. A
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Proposition 2.4. Let BG be the classifying space for G. Then in homotopy theory

B&(P) -- Map P 

Here the subscript Pdenotes the component of a map of M  into BG which induces P .

Proof Let
G-+EG-+BG

by a universal bundle for G,and consider the space Map of (7-equivariant maps of
P to E.

The group S(P) now acts naturally on this space by composition, to yield the principal 
fibring

9 {P)---- » MaP{?(P, E)MapP(M, .

If  BG is paracompact and locally contractible, which is easily arranged, tt will be a locally trivial
principal fibring, as follows easily from the homotopy properties of fibrings. The total space 
Map0(P, E) is contractible so that this is a universal bundle for @(P), and

B 9 {P) = Map p
as was asserted.

Using (2.4) we now compute J3&{P)for the cases we have in mind.

Case I. The unitary group U( 1)
The group £7(1) is the circle S1 of complex numbers of norm 1. These act naturally on the unit 

sphere S(H) of a Hilbert space Hover C, and the quotient space

P (H )= S (H )/S 1

is the projective space of rays in H. When d im /f ---- oo, S{H) becomes contractible, and hence

(2.5) S1 > S{H)- 1 +

is a universal ^-bundle. From the corresponding exact homotopy sequence it now follows that

nk{P{H)} — 0 for #  2, 
while 7r2{P(/f)} = Z.

Thus P{H)i which is the BG in this case, is an Eilenberg-Maclane space K(Z; 2). Now it is a 
theorem of Rene Thom that, if Yis such a space, and any finite complex, then Map Y)
is again a product of such spaces. Precisely,

T heorem {Thorn). Let rrq{Y) — 0 forq ^  n and let rrn(Y) — n. Then
(2.6) Map (X, F) = n  K { H n ) ; n -

Q
For a Riemann surface M  of genus gthis yields the corollary:

Map (As; BS1) = Z x  S'1 x ... x S1 x

j.corresponding to the fact that

^ { M ; Z )  ~ Z ©  ... © Z  (2 factors), 
H°(M; Z) z H 2(X;Z) ~ Z.
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In particular then, we see that in this case B& has torsion and its Poincare series
Pt(B&) = S  dim

i> 0
is given by
(2.7) Pt(B&) = (1

When P is a £7(1)-bundle over S'4, on the other hand, the above recipe only yields
(2.8) B& = P{H). 

Remark. The gauge group S(P) as we have defined it here really corresponds to the * local gauge
group ’ as this term is used in physics. The global gauge group corresponds to the ‘ constant 
sections ’ of Ad P,which are given by the centre Z  of G. Indeed every z e Z is  invariant under the 
adjoint action of Gon itself and hence induces a canonical sections of Ad given by = z - 

We next consider the more general 
CaseII. G — U(n), n > 1.

Now it is no longer true that BGis an Eilenberg—Maclane space. However, over the rationals 
Q, BG is simply a product of Eilenberg-Maclane spaces:

BU(n)~ K(Z\2) x K(Z;4) x . . . x  ;2 .
Q

Indeed each Ghern class cie H 2i( BU(n), Z) induces a map.

C ̂
BU{n)—^ K { Z ;  2

and, since H*(BU(n)) is the polynomial ring in the product of these maps induces a
Q-equivalence of these spaces. Hence over Qwe may apply Thom’s theorem as before, at least to 
compute the Poincare series of a component of Map BG). Further as these behave multi- 
plicatively under products, it is enough to take each K(Z; 2k) at a time. Now

Pt{K(Z;2k)} = l / ( l - t ^ ) >
while

Pt{K(Z;2k - l ) )  = l-M2*-1.
Hence

PtMap (M, J^(Z; 2k)) = (1 + -  (1 -  for
Together with (2.7) for the case k = 1 this yields

(2.9) Pt {Ma.pp(M; BU(n))} — H ( i+ t 2̂ 1)20 \ H (1 -* 2fc)2 Ml
k= 1 U=1 J 

for any component, i.e. any Pover M.
Actually more is true.
Proposition 2.10. The space Map P(M, BU(n)) under , is free of torsion.
Proof. To see this we have to come to grips with the fibrings that lie behind Thom’s theorem. 

First recall that a compact Riemann surface As, can be obtained from a wedge of circles by 
attaching a 2-cell. This implies that there is a cofibration
(2.11) WS1->M->S2,

2 a
which, by the exactness of the mapping functor, gives rise to the fibring
(2.12) M ap*(§2, B-> Map*fAf; BU(n))

Map
43-2
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Here the * denotes base-point-preserving maps, which, by the same principle, are linked to the 
unrestricted maps via the fibring

(2.13) Map*(M; BU(n))--------> Map(Af,

BU(n).

We wish to show that both these fibrations are homologically trivial, and that all spaces involved 
are torsion-free.

Now recall that BU(n) and its loopspace QBU) — U{n) and its second loopspace QU{n) 
are all torsion-free. Hence after (2.12) is rewritten with the standard identifications, one obtains

QU(n)---- > Map*(As,
(2.14)

U(n) x... x U(n)(2 factors)

with both fibre and base torsion-free. Hence any non-trivial homology-twisting, i.e. a non-zero 
differential in the spectral sequence, or a non-trivial coefficient system, would be detectable 
over Qand produce a Poincare polynomial for the middle term that would be smaller than the 
product of the Poincare polynomials of the factors. On the other hand by Thom’s theorem, 
applied to pointed maps, it must be the product. This completes the proof.

The same argument now applies to (2.13) and we are done.
To recapitulate, we have established

T heorem 2.15. LetP be a U(n)-bundle over the compact Riemann surface. M  Then is the
gauge group ofP, B&is torsion-free and has Poincare series

n i f  n —1 ")
pt{B<g)-- n  (i +t2k-iy0 nn ( i _ ^ ) 2

k=l I U = 1 J
In the course of our proof we have also shown that, in the fibration (2.14), the fundamental 

group of the base, namely
P  = n fU in )^)  ~ Z2» L

acts trivially on the cohomology of the fibre QU(n). This implies that the cohomology is unaltered 
on lifting to a finite covering corresponding to a subgroup of finite index in P. Moreover from 
(2.13) and (2.14) we see that

TT-fB*#) ^  ^i[U(n)2°) =

But tt̂ BŒ )̂  7r0(^) is the group of components of S. Hence a subgroup of of finite index
corresponds to a subgroup of & of finite index and so we have

Proposition 2.16. In the situation of theorem (2.15 anV subgroup finite ,
B y  is torsion-free and has the same Poincare series as B&.

We shall now describe a way of producing explicit generators for the integral cohomology of 
B&.This will eventually enable us to describe corresponding generators for the cohomology of 

the moduli space of stable bundles. It also provides an independent proof of the cohomological 
triviality of the fibrations (2.12) and (2.13) without appealing to Thom’s theorem.

We begin by considering the natural evaluation map

s : Map (M, BU{n))x Af-> .
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Pulling back the universal vector bundle over BU  we then get a vector bundle V over x
Since M  has no torsion the Runneth formula gives, for integer cohomology,

(2.17) H 2r{B<&x M)s H»(B&j© H * - 1 (B&)® © ®

Taking the Chern class cr(V) and decomposing it, we get from this Runneth decomposition, 
elements

are H 2r{B@)>

b i e H ^ B # ) ,  1, . . . ,  

f re H 2r~2(B&)i

relative to a basis of H X(M ). These will give rational generators, but to get integral generators 
we need to replace the/. by elements dr constructed as follows. We introduce theory instead of 
cohomology and analogous to (2.17) we have a Runneth formula

(2.18) K°(B&xM ) ?  K\B̂)® © K*(B<0 ) ®

Now we have K \ M ) % Z ® Z

with two canonical generators, the first given by the trivial line-bundle and the second by the 
reduced line-bundle of Chern class 1 (i.e. H — 1, where H  is the line-bundle and 1 the trivial 
line-bundle). Starting with the class of Vin K°(B& x and projecting onto the second com­
ponent then gives an element W eK Q{B^). An alternative description of IT is to say that

W = f { V )

where/: B&x M-> B &is the projection,/ is the direct image map in theory and — 1 ®
with V0 — V\ B &x point. S ince /(1) — 1 —git follows that

(2.19) W  = /(F )  = /(T )  + ( g - 1) V0 

Finally, taking the Chern classes of Wwe get an infinite sequence of elements

r=  1, 2, . . . .
We shall now prove

Proposition 2.20. The elements ar) bJr, er constructed above are multiplicative generators of the integral 
cohomology ring of B&.The elements ari bi,fr are multiplicative generators of the rational cohomology ring.

Remark. The arare the Chern classes of V0so that by (2.19) we get another set of generators by 
replacing the erby the Chern classes dr o f /(F ) . These will occur more naturally in algebraic 
geometry.

The three types of element will in fact provide generators for the three factors in the fibration 
decomposition (2.13) and (2.14). Clearly the argive the Chern classes of BU{n) and so generate 
its cohomology. The classes b\(for fixed j)  are easily seen to give the generators for the cohomo­
logy of th e /h  factor U(ri) in U(n)2a. It remains to show that the elements give generators for 
the cohomology of QU{n). Now we have a natural stabilization map

i:QU(n) -+QU,

where U — limm̂.oo U(n) is the stable unitary group. The periodicity theorem gives a homotopy 
equivalence
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so that H(DU) is a polynomial ring on all the universal Chern classes .... Pulling these 
back by i we get classes in H(DU(n)). These coincide with the classes introduced above in view 
of the relation between ^s-theory and the periodicity theorem. To prove (2.20) it remains 
therefore to show that r * is surjective in cohomology, or in steps that the inclusions

j:DU(n)->DU(n +1)

have this property for all n.This can easily be deduced from the explicit description of
given by Bott (1958). This completes the proof for the integral cohomology. Over the rationals
the proof is similar but easier.

As mentioned earlier our proof of (2.20) produced cohomology classes in the total spaces of 
the fibrations (2.13) and (2.14), which generated the cohomology of the fibres in each case. This 
gives an independent proof of their triviality.

Over the rationals we can use the Chern character to compare (2.17) and (2.18). This enables 
us to express the infinite sequence of erin terms of elements / .  The fact that the are integral 
then leads to an infinite sequence of integrality relations involving polynomials (with rational 
coefficients) in the / .

Finally we shall derive a result that concerns the role of the constant £7(1) -subgroup of 
representing the central automorphisms of P.This will play an important role in §9 when we 
study the cohomology of the moduli spaces. We shall prove the following.

Proposition 2.21. Assume that the Chern class k ofP and the rank n are coprime. Then the inclusion of 
the constant central (7(1) in & induces a surjection

H2( B <0 , Z) ->H2(BU 1) ,  Z ) .

Using the cohomological triviality of the fibrations (2.12) and (2.13) it will be enough to 
check the surjectivity when M  is the 2-sphere S2.In this case S  is connected and

H2(B&>Z) ~  H1̂ ,  Z )

so we are reduced to checking surjectivity of

(2.22) &(&, Z) -+H2(B 1) ,  Z )

or equivalently that

(2.23) ^ (£ 7(1) ) - W 2?)

gives a direct summand of rrfjS). Now nf#)~ and, since M  = this can be calcu-*
lated from the fibration (2.13), which gives the short exact sequence

(2-24) 0---- > n3(U(n))---- > n ^ )  ) ) -> 0,

Thus rrx(^)  is free abelian on two generators. Note that the projection e is given by evaluation 
at a base point of M  = S2.

A  more convenient description of (2.24) is given in terms of ^-theory. Let be the vector 
bundle defined by Pand write &( E) for S? (P). Then to every map

f:S '~*& (E )

we form the bundle Ef over As x S2 by using/as clutching data and consider the element

[-£/] — [ÆJ e K(M x S 2y M x  point).
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The assignment ( /)  [£}] -  [Ex]gives an isomorphism
7 T X {&)-> K(M x S  point).

and (2.24) corresponds to the exact sequence obtained by restricting to a point in As.All calcu­
lations can then be made in K(Mx S2),which is generated by the Hops bundles H  and of the 
two factors. Using this description of 7Ti{<&)we shall now prove the following lemma, true for all 
pairs (n,k) with 0 < k < n.

Lemma 2.25. LetE be the direct sum of k copies of H  and n - k  trivial factors and let U ( k ) x U ( n -  k) be 
the corresponding constant automorphisms of E. Then the induced map

is an isomorphism. nl{U {k) ,U {n - k ) ) ^ m

Proof 'L z\.fg :S1-*<&(E)come from the standard generators of rrx(U{k)) and nx
respectively. Then in K(Mx S2) we have

(£"!)>
[ z y - [z y  = i<g>(£-i),

and these generate the kernel of
K(Mx S2) -> Kx point). 

Since by tensoring with line-bundles we can always reduce modulo n we deduce immediately 
what we want, namely

Corollary 2.26. I f  (n,k) — 1 the homomorphism

coming from the constant central automorphisms, is a direct summand.
This completes the proof of proposition 2.21. Our use of ./(-theory in this proof becomes very 

natural if we consider briefly the situation for manifolds Asof arbitrary dimension. Let &(E) 
denote the automorphism group for a vector bundle over M  and let 6?0(is) denote its identity 
component. Then we have a homomorphism (7(1) &0(E) given by the constant scalars and
hence a homomorphism
(2.27) rrt{U(i

Now if we are in the stable range n > \dim Asthen we can show, using the construction in our
proof of (2.21), that

Moreover, the image of the generator of 7t1(£/( 1)) ^  under (2.27) is just the class [is] in K{M).  
Hence (2.27) defines a direct summand if and only if [is] is a primitive element of the abelian 
group K(M).  When dim As — 2, K{M)  ^  Z © Z and [is] is represented by the pair of integers 
(n, k). Thus the coprime condition (n, k) = 1 generalizes naturally to the primitivity of [is] in 
K(M).

3. T he Y ang-M ills f u n c t io n a l

In this section Gdenotes a fixed compact connected Lie group, and a fixed principal (Un­
bundle over the compact manifold M.

The identity element eof Gthen defines a canonical section s6 of Ad P over As, and we use this 
section to pull back to As the tangent bundle along the fibres (T’p.AdP), of Ad

The resulting bundle on As, is denoted by ad (P), this being an abbreviation for
ad (P) = sT \T F
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Alternatively, ad (P)may be thought of as the bundle associated with P via the adjoint action 
of Gon its tangent space TeG at e.This space is in turn identified with the Lie algebra g of left 
invariant vector fields on G.Thus we also have

ad (P) = P x 0 g,

and both these descriptions make it clear that the space of sections

Tad (P)

has a natural Lie algebra structure induced by the structure on each fibre. Hence this space 
plays the role of the Lie algebra of the gauge group. Correspondingly we sometimes write

g(P) for Pad  (P).

Actually it is useful to extend this Lie algebra to the following graded Lie algebra:

Q*(M;ad (P)) 

consisting of the forms on Mwith values in ad (P). Precisely then,

(oqeQ*{M;ad (P))

is a smooth section of AqT * M ® ad (P) and the bracket operation in g together with the usual 
exterior multiplication, combines to define a pairing

Qp ® Qq-+Qp+q,

which we write [o)p, &>9]. This operation clearly satisfies the formula

[o)p, <--«j --- ( -  1)p9+1|> 9, U)V]

and the corresponding Jacobi identity

I V ,»«, < |]  = H V , < | ,  <1 ± IV, €/]],
Now a compact group Galways admits a. positive definite inner product ( , )  on its Lie algebra g, 

which is invariant under the adjoint action. Hence a choice of such an inner product ( , )  on g 
induces a Riemannian metric on ad (P), and then naturally extends to induce a pairing

Qp(M; ad (P)) ® £»(Af; ad (P)) -*£*>+9(Af),

which we simply write ojp a coq.The invariance of ( , )  on g implies that

= <*>!>> 4  >

and, as in this identity all terms retain their natural order, it persists for any three elements 
u, v, w in our complex D*(M; ad (P)):

[u, v\A w — uA .

Suppose finally that a fixed Riemannian metric and a fixed orientation is chosen on M, and 
that * is the corresponding duality operator, in QThus * is characterized by

0 A *0 = (0,0)j|f vol (M) for

where (>}m denotes the natural Riemannian structure on Qq(M), and vol (Ads) is the unique
form of length 1 in the orientation of M. Then the inner product on g, and the Riemannian
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metric of M  combine to give Q*(M; ad (P)) a natural inner product structure, which we write
(.).

Precisely then

(6, y?) ----- 1 *(p.
J M

With these conventions out of the way we only need two more concepts to write down the 
Yang—Mills equations. These are the notions of a connection for P ,and  of its curvature

F{A) ad (/>)).

By definition, a connection A for P is a G-invariant splitting of the natural exact sequence

(3.1) 0 -+Tf P ^T P -> 7 t~1TM -*0

of vector bundles over P.Here TFdenotes the tangent bundle along the fibres in , and the 
tangent bundle of M. The group Gacts on all terms of this sequence and so a G-invariant splitting 
of (3.1) is a well defined concept. There are two complementary ways of describing a splitting, 
and we correspondingly introduce the following notation: is the projection on the ‘ vertical
bundle’ TFP, defined by A ,and TAPis the complement to TFP> defined by is also called
the ‘ horizontal bundle of A ’,and is the kernel of

The splitting A is therefore also equivalent to a G-invariant direct sum decomposition

TP ~ T f P®Ta Px

Connections clearly exist. For instance TAP can be taken to be the orthocomplement to TFP 
relative to a G-invariant metric on P.Furthermore, the space of connections stf(P) naturally 
has an affine structure, with associated vector space ad (JR )).

To see this most clearly it is best to use the description of (3.1) as a pull-back under of an 
exact sequence of vector bundles on M. For this purpose let — E(P) be the vector bundle over 
M  whose fibre at qe Mis equal to the G-invariant sections of along the fibre tt-1^ )

E(P)q -  r{TP\

Then E(P) is easily seen to define a vector bundle over M, with a natural projection to 
There results an exact sequence o n M .

(3.2) 0 ----- > ad (P) —U  ETM-------> 0,

whose kernel is the earlier bundle ad (P), which under the pull-back to P goes over into (3.1). 
Finally because G-invariance is clearly built into this sequence, a connection can also be 
defined simply as a splitting of (3.2). Thus in this picture, (oA is an arrow

ad (P) < ^-E {P )

with 0)A’i --- 1; and the difference (oA — oja> therefore factors to an arrow

ad (P)

i.e. gives rise to a 1-form ijeQ 1(M; ad (P)):

(3.3) oja — oja, — 7].

This shows that <*/(P) is an affine space as asserted.
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We next recall how the curvature F(A) of a connection arises. This curvature has many 
interpretations, but from the point of view of (3.2) it precisely measures to what extent fails 
to preserve the Lie structures in (3.2).

Indeed, it is clear from the definition of E(P) t h a t

TE(P) £  G-invariant vector fields on P,

while rad (P) £  G-invariant vertical vector fields on P.

Hence both of these spaces have natural Lie algebra structures, and so interpreted

(3.4) 0 -> ra d  (P)-+ TE(P) -> TM ) -> 0

defines an extension of the Lie algebra jH( TM) by the Lie algebra of the gauge group. Here 
is the Lie algebra of automorphisms of P,which do not necessarily cover the identity on

Now a connection A assigns to every X e  T(TM)  a unique horizontal vector field XeTE(P)  
projecting onto X.Hence the element

FAX, ¥) = <0A[S, f ]

is a natural measure of the extent to which A fails to split as a Lie algebra. It is now easy 
to verify that FAis linear over the C00 functions on M  and hence defines a unique 2-form

F(A)eQ*(M;ad (P)).

With all this understood one now has the following

D efinition. The Yang-Mills functional L on the space of connections $4 [P) is the function

L(A) = |F ( v 4 ) |« ,

where F{A) is the curvature of A, and || || denotes the Z2 norm in Q*(M;  ad (P)).

Remarks and examples. To get a feeling for this function we start by considering the case of a 
circle bundle Pover M. In this case the choice of an invariant form on g reduces to choosing a 
generator vof the invariant 1-forms on S1, and in the sequel we shall assume that this v is normal­
ized to have

We next write Z for the dual generator ofg — R1, so that v(Z) — 1. We also write Z  for the unique 
vertical G-invariant vector field on P,which is the infinitesimal generator corresponding to Z 
under the action of S1 on P.

With these conventions, a connection A for P is completely described by a 1-form on P,
which has the properties

(3.5) 6^(Z) — 1, that is r (Z) dA — 1,

(3.6) & ( Z ) 0A = 0,

where JP (Z) denotes the Lie derivative in the direction Z.
Note further that in this instance ad (P )is  a trivial one-dimensional bundle and hence 

F{A) e Q2(M) is an ordinary 2-form on M. It is characterized by the equation

(3.7) ddA = -n*F (A ).

 on January 17, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


Indeed, let Js, ¥  be ^-horizontal lifts of X, Y on Then

(3.8)

as the other terms such as ffdA(¥)disappear. On the other hand ddA vanishes in the direction Z:

i{Z)ddA = 0, = 0

as follows from (3.5) and (3.6) via the basic identity

& (Z) = i(Z )d+ di(Z ).
Hence (3.7) follows from (3.8).

Equation (3.7) implies that
d F(A) = 0. 

Furthermore, the formula (3.3) now yields

(3.9) F(A)-F{A' )  -- d 

Thus the map A->F{A) sends j/(P )  precisely onto a certain cohomology class ) e H 2(M ) :

rf(P)̂k{P)------> 0 .

We next turn to the fibre of this map F.Again from (3.9) it follows that if F(A) — F(A’), then 
rj = A —A'is closed, and conversely. Thus the fibre of F  consists precisely of the space of closed 
1-forms Z1(M) Hence we have the ‘ exact sequence ’

0 -> Z\M)->jtf{P) -> -> 0,

which is unorthodox in that {̂P) is only an affine space, and k(P) denotes the whole coset in Z 2(M)  
representing a class usually denoted by — 2nic1(P) in H 2{M).

We next describe the action of &(P)on this sequence. In the present instance Ad P is clearly 
trivial, and hence

(3.10) S(/>) ~Map 

We now have

Lemma 3.11. I f f :  M-+S1 is a smooth map, then its , via (3.10), given by

f * 0A m dA +n*f*v
where v is the form on S1 discussed earlier.

As a first consequence we see immediately that, because is closed, F(f*A)  — — F{A).
Thus Fis invariant under the gauge group.

Next we see that ^{P) acts on Z 1(M) by translations

Consider now the action of the identity component &0(P) on Z 1(M).  Clearly such a map lifts 
to a m ap /in  the diagram
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M-+->R

and if xis the linear function on R with

then
exp*v — d# 

f* v  =
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We have the converse also, so that under <̂0{P)i £ e Z 1(M) is moved in its entire cohomology 
class: thus

Z\M)I&0(P) R).

Finally we turn to the components of S(P). Because S'1 is an Eilenberg-Maclane space, these 
components are isomorphic to H X{M\ Z), the correspondence being

f ->class of/*y.

Putting all this together we obtain the formula

Thus in this case j/(P )  J&iP) is a torus T(M)  of dimension equal to the dimension /?),
as it should be, because the action of S(P) on j/(P )  only has the global gauge group S'1 in its 
kernel, whence

B<Z{P) ~ T(M)  x

550 M. F. A T IY A H  AND R. B O T T

4. T he Y ang -M ills eq u a t io n s

We turn next to the equations of variation of = ||F (J)||2, and because j/(P )  is naturally 
an affine space, it suffices to vary A along lines

At = A + tr)3 7/eQad (P)).

The first problem is therefore to compute F{At) for such a variation.
To do this recall that a connection A on Pinduces a natural covariant derivative on all

associated vector bundles of P.Thus if

is associated with a representation
p: G- * A u t  

then A induces a way of differentiating sections j , of V(P):

(4.1) s-> V is,

in any given direction X on M. This6 covariant derivative' then dually corresponds to a differential 
operator

dy. a°(M; V(P))

which finally extends uniquely to a differential operator

d^: D*(M;V(P)) V(P)), 

compatible with the natural pairing

Q*(M;R)®Q*(M;V(P))->n*(M; V(P))

given by multiplication. Compatibility simply means

dA(0 Aw) = dd A (o± A d^

Recall here that (4.1) is defined by the following construction. We have

P(V(P)) = Map0(P;V).
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Hence seF(V(P)) corresponds to a G-equivariant map

s~:P->V,s(pg) =p(g~1)s(p).

Now given X,a vector field on M,its 4 -lift Xto Pis a well defined G-invariant vector field. Hence

X-s: P

is again G-equivariant, and corresponds to the section VxS e F(V(P)).
In our situation, the bundle ad (P)is associated to via the adjoint representation, so that 

Q*(M;ad (P))inherits a natural differential operator from the connection 4 . Explicitly, we have 
for*eP(ad (P)), X e T ( T )  and XeT(E)  the 4 -lift of to in (3.2)

Vi* -- d As(X) = [X,*],

and, for instance, if 6 eD1(M;ad (P)) then

(4.2) &Ad{x,Y) -- v x d(Y) r ) .

The associated connections to 4 , on the various associated bundles are all of course compatible, 
in the sense that, if

V ^ W

is a G-equivariant map, then d^ commutes with the induced maps

Q*(M; W{P)).

Furthermore, these covariant derivatives behave like derivatives relative to tensor-products.
It follows in particular that d^ acting on Q*(M\ ad (P)) behaves as a derivation under both the 

bracket [ ] and the A operation:

(4.3) d A[oc,ÆJ --- [d^a, fi ± [a, dA(l],

(4.4) d(a A/?) = d ^aA ^  + a Ad^/?.

With all these functorial remarks out of the way, we have the following:

Lemma 4.6. Let At be the line of connections

At = A-\-trji rjeQ1(M;2id(P)).

Then the curvature of At is given by

F(At) =F (A )+ td Ay + y*[y,y].

Proof. By definition, the horizontal lifts Xt of a vector field on relative to At are related by:

X t = x t +tv (x

and, correspondingly, the vertical projections relative to are related by

(ot — (o — tyon.
Expanding Ft] now yields

Ft(X, Y) = f ]  + [ S , v ( y )1 +[?W . ?] +nv(X,v(Y) l }
-  «„[*, r\ - t r , {X,  Y] +<[X)1/(F )]-( [f )i/(Z)] + n V(X),V(Y) l

which is the desired formula by (4.2), since [a ,/?] for 1-forms a,/? is defined as the two form

[«,/»] (X,Y) = [a{X )J (Y) ] - [a {Y ) , l i (X ) l
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With the help of our lemma, it is now an easy matter to compute the first and second variations 
of L.

Proposition (4.6). The connection A is stationary for — ||P(.d)||2, i f  and only i f

d^ — 0.

Proof Expanding Ft — F(At) according to (4.5) gives

(4.7) H E  -  I l l ' l l 2+ 2<(d^^^) + t2{ ||d ^ ||2 + (P, /̂])} +higher terms.

Hence at an extremum (d^ F) — 0, or equivalently

M S P )  -- 0,

for all r)eQ1{M\ad (P)). Hence at an extremum
(4.8) d *aF{A) = 0.

Here d^ is the adjoint of d^ relative to our norm on D*{M; ad (P)) and, just as in the usual 
Hodge theory, it is given by ± * d^ *. Precisely, if = dim M, then
(4.9) dj! = ( — l)m+”u>+i * d^ * on 
Hence (4.9) implies (4.6).

For completeness we quickly review the proof of (4.9). Suppose then that cpeQv~x, i/reQp, 
one of them having compact support. Then by (4 .4)

d^{ <pA *i/r} = dA q> A + ( — l ) p-1 A d^ *

Hence integration yields
0 = (d^ (p,^) + ( - l ) z>"1

But
* -l — ( — l)(P-D(m-p+l) *

on (p — 1)-forms, yielding (4 .9).
Remark. The Bianchi identities assert that for every we have dAF{A) — 0. Hence at a 

stationary point we have both
d a F(A) = 0 and dZP(^) = 0.

Forms satisfying these two equations are clearly !) analogues of harmonic forms in the
usual Hodge theory. In short the condition for to be extremal is precisely that its curvature 
F{A) be harmonic in Q*(M; ad (P)).

The expansion (4.7) of course also yields the Hessian of at an extremal connection This 
Hessian is a quadratic form on the tangent space to «s/(P) at which in our identification is 
precisely Q1{M;ad (P)). With this understood we have the formula for the second variation.

Proposition (4.10). The quadratic form Q{rj, rj) defined by the Hessian extremal connection
A is given by

Q{y,y) -- {d%.dAij +
Proof From (4.7) we have

ld2"""" id̂ Tll* +(A [<?,»])•Q(v,v) = I d ^ l l 2 t=0
To bring this expression into the required form observe that ||d^9/||2 — (d* dArj, y), while 

(4.i i)  (P,|>,)/]) = A *F = j Mv A v̂>= 9A * *-1[*P,iy].

Using the formula for *-1 this reduces to {y,* [*P,iy]).

 on January 17, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


Y A N G -M IL L S E Q U A T I O N S  O V E R  R I E M A N N  SU R F A C E S  553 

We write Ffor the endomorphism
F:r/-+

of sl*(Af; ad (P)). This is clearly a degree-zero operator, which by the argument of (4.11) is 
also characterized by

( A ,S  = W fo ,3 )
and is therefore self-adjoint.

Remarks. The operator
L^ = d 5 d ^ +*[«/■, ],

which appears in (4.10), can also be interpreted as the Jacobi operator associated with an extremal 
of L{A). That is, if At — A + ti/ + t2f... describes a curve of connections for which L(A) is 
extremal, then

•̂a V~ 0.
To see this we differentiate the equations

d %F(At)-  0 

with respect to tand set / = 0. If  a dot denotes such a differentiation then we clearly have

&a =  V, F{A =  d^t/,
whence the derivative of

* dA * F{A — 0
is given by

* [tj,*F(v4)] + * d^ * = 0, 

which, once the signs are taken care of, is equivalent to

(4.12) h Arj = 0, rieD1(ad (P)).

The solutions of (4.12) are therefore the ‘Jacobi-fields’ of and describe the tangent space to 
the space of solutions of the nonlinear extremal equations for

On the other hand our functional L is clearly invariant under the action of the group of gauge trans­
formations. Hence the proper measure of the tangent space to the space of solutions is given by 
the quotient of the solutions of (4.12) by the directions along the orbits of the action of t^(P). 
Now this space is, as we shall show in a moment, precisely the image of ad (P)) in
jQx(Af; ad (P)) under d^. Thus the corrected tangent space to the space of solutions is the quotient 

NA of the space of Jacobi fields JAby the image of d^ and therefore fits into the exact sequence

(4.13) Q°(M;ad (P ))-^>  J A  > ----- > 0.

We shall call NA the null space of QA,and its dimension the nullity of A. This nullity is always 
finite because of the following argument.

In our norm on ad (P)) the orthocomplement of the image of the d^ in (4.13) is
precisely the kernel of d*. Thus NAmay be identified with the space of satisfying the
equations

L Ay--- 0, d --- 0
or equivalently

(4.14) d ld ^  + d ^ d l + * [ * P ,  ] = 0, d l  = 0.

The first operator on the left is the Laplacian Aa of d^ and hence elliptic. Hence the solutions of
(4.14) are finite-dimensional, and therefore the nullity is also.
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This argument immediately extends to the Morse index of which is defined as the dimension 
of a maximal negative subspace of Q,or, equivalently, as the dimension of a maximal subspace 
in the kernel of dH on which the form

Q(y) = (AAy+ F = F(A),
is negative definite.

Thus, to sum up, we have the following finiteness result.

Proposition 4.15. The index and nullity of an extremal A are finite and equal to the index and nullity 
of the quadratic form A A ^

Q(y) = (A AV + FV>y)>F=

on the kernel of d* in Q1(M ;ad P) .
Finally, if X e F ( A d  P)is a left invariant vertical vector field it acts on T(P) via the Lie

bracket. Hence, if ¥  is an ^-horizontal vector field, — F] measures the first-order effect on 
the ^-horizontal spaces. It follows from (4.5) that in our identification

TAs t  = ad (P))
the tangent space to the orbit of S(P) at A is given by the image of

d^: &°{M; ad (P)) -> ^(A /; ad (P)),
as was asserted earlier.

5. Y ang- M ills o ver  a R iem ann  su r fa c e

When the base-manifold of P is two-dimensional the Yang-Mills equations naturally relate to 
holomorphic structures and can therefore be understood best in a holomorphic context.

To see this recall first that when dim As — 2, the * operator of a Riemannian structure on M  
maps Q1 to I21, with *2 = — 1. Hence we have a natural decomposition

Qc(M)  = QW (M )© £M (M ), 
with Qcdenoting Q© C, and

* = — i on ^ 1»°, * = i on
of the complexified de Rham complex. This decomposition splits d: .0 ° into d': Q°->Qx>0 
and d": -> Q0’1, and so induces a holomorphic structure on As, whose holomorphic functions/
correspond locally to solutions of ^

Suppose now that P is a principal 6-bundle over M  (M  and G both compact), and that is a 
connection for P. Then the above argument can be applied to the complex ad (P)), and
dj,, giving a decomposition

Q'ciM; ad (P)) = W ( M ;  ad (P)) © ad (P))
according to the eigenspaces of *:

* — —i on .Q1'®, * = i on
There is a corresponding decomposition of d^, so that we have the diagram:

d A
ad (P))---- > D2C(M; ad (P))

&c(M; ad (/>))---- >
d ,
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which is of course compatible with the corresponding decomposition of DC(M), and now the 
operator dj[ defines a holomorphic structure on the vector bundle ad over M. This can be proved as 
in Atiyah et al. (1978, theorem 5.1) by applying the Newlander-Nirenberg integrability theorem 
for complex structures. Alternatively we can give a more elementary proof as follows.

Clearly all that has to be done is to construct local frames for ad (P), with d — 0 . Now if 
sv  is any frame over U c  M, we have

d a s u  =  @ s u >

where 6 is some matrix of 1-forms of type (0, 1) on M. Further if we change to fs v  w here/is 
an appropriate matrix-valued function then

d J A  =
Hence we need to solve the equation

(5.1) f - 'd - f+ d  = 0 .

First consider (5.1) globally over the 2-sphere S(for the trivial bundle). Working with Sobolev 
spaces Hkand using their basic properties, explained in § 14, we see that the map

P : H 2-

given by P (/)  = / - 1d '/ is  smooth. Moreover its derivative a t /  — 1 (the identity matrix) is the 
linear elliptic operator d", which on S2is surjective and has the constant matrices as kernel. 
The implicit function theorem for Banach spaces then ensures that the equation P (f)  — has 
(near/  = 1) a unique solution/e H '2orthogonal to the constants, provided 6 is close to zero in H 1. 
If 0is in O0 then so i s /

To deduce the local solvability of (5.1) around 0 we introduce a cut-off function p{\z\) 
with graph of the form

Figure 2.

This function is in H 1 and we have a universal bound (independent of for its /P-norm :

M i  < 2ic*.

Putting <J) = pdwe can then estimate the H 1-norm of

M l  = 1 < 2{\\p0V + \\p'0\\2 + \\p0V} 8icsup|P|* + 2||P|U.
Here || || stands for the usual L2-norm, p 'stands for and we restrict throughout to the disc 
\z\ ^  F, which is the support of p.Now we can always assume that our frame was so chosen that 
6 (0) — 0 and so, for 8sufficiently small, both sup and ||P||| can be made as small as we please.
Thus, for small 8,||0||f is small and applying the global solvability of (5 .1) to we find a n /

44 Vol. 308. A
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satisfying f ~ 1d"f+ ^  — 0 . Restricting to \z\ < AF we have and so f  is the required local
solution.

Using the holomorphic structure defined by dj[ we shall continue our analysis of Yang—Mills 
in the two-dimensional case and discuss the implication of having a connection that is extremal 
for L(A) and therefore satisfies the equation

(5.2) d^ *P(A) — 0 .

Now P(A) eQ 2(M,ad (P ))and  hence *F(A)eQ°(M; ad(P)), and is therefore a section of
ad (P),on which both d j  and dj[ — 0 . Thus (5 .2) implies that *P(A) is a holomorphic section of 
ad (P), which is covariant constant, .and we claim that we can therefore decompose ad (P) 
completely according to the eigenvalues of the endomorphism

A  = iad ),
that is

Act = i[*P(A ),a], ad (P)).

More precisely, we claim that the eigenvalues of A  on ad (P) locally , and, as A  is
self-adjoint, there is therefore a natural decomposition

ad (P )® C  = © a d A (P), A
A

of ad (P) (x) Cinto orthogonal sub-bundles where reduces to the scalar A.
Furthermore, (5.2) now implies that the induced decomposition

ad (P)) adA (P))
A

is stable under d^. The local constancy of the eigenvalues of A follows by considering the 
trace functions tr An)n — 1, 2, .... We have

d tr  Aw — trd^A ” — 0 .

Actually our main concern will be with the decomposition

ad (P) ® C£ ad_(P) © ad* (P) © ad+ (P)

corresponding to negative, zero, and positive eigenvalues of A. Note also that the Reimannian 
metric on ad (P) induces on complexification holomorphic dualities

(5.3) ad* (P) £  ad* (P) *, ad-  (P) * ad+ (P).

With these matters understood we now have the following formulae for the index and nullity. 

Proposition 5.4. Let A be an extremal connection for P. Then

nullity (A) = 2 dim ad* (P)),
index (A) = 2 dim0 /P (A s;ad-(P)),

where H % denotes the cohomology of the sheaf of holomorphic sections of the bundle indicated.

Proof From the discussion in §4 we have to compute the nullity and index of the quadratic 
form

§{V) = (a a V + Fv> V)> Ker d*,
in ^ (M ; ad (P)), where as before we have written Pfor the transformation

F:7j-> * [*P(A),iy].
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We can furthermore clearly decompose this equation according to the eigenvalues of A, and 
so are naturally reduced to three cases with A — 0, or a positive or negative scalar. Consider first 
A — 0, that is the case corresponding to ad* (P). In this situation = sem ~̂
definite. Hence the index is zero, and the nullity equals the dimension of the harmonic forms

(5.5) Aa V = 0

in her d*. But (5 .5) implies that d a tj — 0 and dArj — 0 . Hence nullity — dim harmonic forms 
in ad* (P)).

We next turn to the case when A is a positive scalar, that is corresponding to adA (P) with 
A > 0 in the spectrum of A. In this situation we shall need the following estimate on the first 
positive eigenvalue of the Laplacian.

Lemma 5.6. Consider Aa acting on Q\<for the bundle adA (P) with A > 0 . Then Aa preserves the spaces 
Q1,0 and <Q0,1, and the first positive eigenvalue of A l̂-Q1*0 is ^  2A.

From this lemma and the self-evident formula

P\QW -- -A , F fJ0’1 = A, 

it follows immediately that our operator
Aa + F

is positive on &0’1,a n d  has on Qh0the single negative eigenvalue -A  with multiplicity the 
dimension of the harmonic forms in Q1,0.Hence (5 .6) leads to

A ^
Corollary (5 .7). The quadratic form Q of (4.15) has nullity zero , index =

Index Q — dim harmonic forms in Q1’ °.
In short then, this corollary computes the contribution of adA(P) to the index of A, in terms of 

the dimension of the harmonic forms in Q1,°, and it is then quite standard Hodge theory to 
translate this answer into the statement in proposition 5.4. We shall review these matters in a 
moment, but turn first to a proof of lemma 5.6.

For this purpose recall our decomposition of Q

(5.8)

£!.°

tu t

d A

f  ,dA ,
^ 0,0---- >Q0,1

and the corresponding decomposition of d^ into dA + Now in this diagram each arrow has 
a natural adjoint and we can therefore associate a Laplacian with each arrow. Each such Laplacian 
gives a self-adjoint operator on the spaces at both ends of the arrow. Thus we have a and 
an upper □  j[, defined by

□ ; - d j f d i ) * + ( d i ) * d j [

as well as left and right \Z\A defined by
□ J  = di(dJ)*  + (dJ)*d i.

Now the basic relations between these operators are given by the following.
Lemma 5.9. The Laplacians \Z\A and \F\A induce the same operator on Qlt0 and Further Aa 

preserves these spaces and

(i) Aa = 2m i -- 2 U'aon and
44-2
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while

(ii) Aa = n l  + nlon and 

and, finally, on i2°*° these two Laplacians differ by A:

(iii) n i - n i  = A

Proof. Both (i) and (ii) are formal consequences of the equation d* — — *d* and the fact 
that * — —io n  D1>0and * = i on D0>1.

For instance, for ae-Q0*0 we obtain

Aa oc = — *dA *dAa
— + * d ( id ja - id  
= i * ( d j [ d j - d jd j

= n l a + n l a -
The last relation (iii) now follows from

id 2a = (djdj[ + d ^ d j)a  = *[A,a] for a e £ ° ’°.

Now this lemma serves to estimate the spectrum of by means of the standard theory of 
elliptic complexes. Indeed each arrow of diagram (5.8) is an elliptic operator. Hence by the 
Hodge theory the positive spectra of the two associated Laplacians are isomorphic. Thus the positive 
spectra of \2aon and Q1’1 are equal. On the other hand by (iii) this spectrum is bounded
below by A, because \2A is semi-definite. But on Q1>0 we have — 2\2A. This completes the 
proof of lemma 5.6.

It remains to translate the harmonic forms into sheaf cohomology terms in the standard way. 
This translation is based on the fact that each of the operators in our diagram can be interpreted 
as a resolution for the kernel sheaf of the operator.

Thus the lower dA, together with Hodge theory, yields

H*(M;adA (/>>y -  Ker
while the upper dAgives

H*(M;adA (P) ® D1)~ Ker .

Finally Serre duality gives:

H*(M;adA (P)® Q1) %H ^ M ;  adA (P) *). 

Thus our index formula (5.7) for A > 0, becomes

index Q — dim H 1(Mad_A (P)) 

once we recall the duality (5.3).
Finally if we take A < 0 a completely analogous argument yields

index Q--- dimĤMadA (P)).

Summing over A then completes the proof of proposition 5.4.

Remarks. Although the formulae for the index and nullity seem similar, there is an essential 
difference between them. The nullity is essentially unstable (under changes of A) while the index 
is not. This stability of the index follows from the Kodaira vanishing theorem and the
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Riemann-Roch formula. Indeed on ad^ (P),w ith  ju, < 0, ad^ (P)) — 0, as also follows
from the formula

/* > 0,

on ^°'°, and the diagram (5 .8).
Hence the index is also minus the Euler characteristic of adA (P).Now, by Riemann-Roch, 

dim H°{M; E) -  dim H ^M ; E) = cx(E) + ( g - l )  dim

Applied in our situation, this then leads to the following rigid and computable formula for the index:

(5 .10) index A = 2{t1(ad+ (P)) + (g -  1) dimc (ad+P)}.

Here cxdenotes the first Chern class and we have switched to ad+ (P) via the formula

m * )  =

6. R e p r e se n t a t io n s  of th e  f u n d a m e n t a l  g ro up

In the previous section we saw that, over a compact connected Riemann surface M> a con­
nection A is extremal for the Yang-Mills functional if and only if * F(A) is covariant constant 
(relative to A),that is

(6 .1) d^ *F(A) = 0 .

In particular, if our G-bundle is topologically trivial, a flat connection, that is with = 0, 
necessarily satisfies (6.1) and corresponds to the absolute minimum of the Yang-Mills functional. 
Now a flat G-connection is locally trivial and globally corresponds to a homomorphism

( 6 .2)

describing the holonomy. Solutions of (6.1) that are non-zero can be described in a similar 
manner by using a suitable central extension of tt1(M).

We recall that n^M )  is a group with 2 ggenerators satisfying the single 
relation

(6.3) n  i A A ]  = i,
1=1

where [A, B]is the commutator ABA~X B~x. It follows that, for ^ 1, ttx{M) has a universal
central extension

1 - > Z ^ P  -> 1,

where P is  generated by A1}B1} ...}A0, Bg and a central element satisfying the single relation

(6.4) n i \At9Bt-\= J .
i=i

Let PRdenote the group obtained from P  by extending the centre to P, so that we have a central 
extension:

(6.5) 1 —>• R —>■ Pr ~̂ 7̂ i( Al) -> 1.

On dividing by Z the group FRclearly becomes a direct product

(6.6) 1 ->Z->Ps -> £/(l) X771(M)->1.
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Now let Q-> A! be a (7(1)-bundle with Chern class 1 endowed with a fixed harmonic or Yang- 
Mills connection. If we normalize the metric on A so that it has total volume 1 the curvature of 
this harmonic connection on Qis — 2nico,where is the volume form on The universal
covering X/l-> A/1 is of course a flat /q(Af)-bundle, so that the fibre product ^  is a 1) x
7r1(M)-bundle with connection still having curvature — Lifting to TR we then get a FR- 
bundle over Al with connection and curvature — In particular this connection is a 
Yang-Mills connection, a notion which makes sense even though Tr is not compact.

Given any homomorphism
p : r R^ G

we then get an induced G-connection Ap also satisfying the Yang-Mills equations, since (6 .1) 
is clearly functorial for homomorphisms. Our observation is that all Yang-Mills connections are 
obtained in this way, namely we have

T heorem 6.7. The mapping p->Ap induces a hijective correspondence between conjugacy classes oj 
homomorphisms p : TR -> G and equivalence classes of Yang-Alills connections over Al.

To prove this theorem we have to understand the significance of the Yang-Mills equation 
(6.1). First we shall show that, as a consequence of (6.1), the conjugacy class of = *F{A) is 
constant. To see this recall that * F  can be considered as a g-valued function on P,

*F;P->q
which is equivariant under G,i.e.

*F(pg) = Ad g *F(p).

Hence the values of * Fcertainly lie in a fixed conjugacy class of g (i.e. orbit of Ad on each 
fibre of P.On the other hand the condition

d^ * F  = 0

asserts that for any vector field Xon Al, its horizontal lift X  (relative to annihilates * It 
follows that * Fis constant along horizontally lifted curves.

To proceed further let us now choose a point Xin the orbit of * .F(vl), and set equal to the 
inverse image of Xunder * F:

Px = *F~

Because * Fmaps onto the orbit of X,this set will be a submanifold of and in fact it defines a
reduction of the structure group of G to Gx , the centralizer of X  in that is Px  is stable under the
action of Gx  and

(6.8) Px /Gx  = M.

Furthermore the horizontal subspaces of A are tangent to Px  (again because * = 0) so 
that A restricts to a connection of Px  over Al, with curvature F(A), where now * F(A) is the constant 
map

(6.9) P x ^ X .

It follows that we may think of F{A) as the Lie algebra valued 2-form,

(6.10) F(A) = X®coeQ*(

with co the volume form on Al.
The Yang-Mills connection Ap defined by a homomorphism p : r R-+G has curvature
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where Xpis the element of the Lie algebra g of Gdefined by g. Since is central in
it follows that p (rR) centralizes Xp and so p is actually a homomorphism

P 'R r -^Gx  with X  — X p.

Thus in proving theorem 6.7 we can restrict ourselves to the case when is central, i.e. when 
Gx  = G.

Next let us consider the case when Gis a torus, so that we are dealing with a direct sum of 
line-bundles. Now line-bundles with harmonic connection form an abelian group under ® and 
so can be uniquely expressed as Qk® L0where kis the Chern class, is our fixed line-bundle of 
degree 1 and L0is flat. Taking direct sums then shows that theorem 6.7 is true in this abelian 
case. As we have already remarked it is also true in the flat case, now factoring through .

The general case is essentially a combination of these extreme cases but to proceed further we 
need to recall the basic facts about the structure of compact connected Lie groups First of all 
the commutator subgroup S — [G, G] is the maximal connected semi-simple subgroup of G. The 
connected component H  of the centre of G is a torus, which together with generates G. The 
intersection D = Sn His a finite subgroup of the centre of and so

H xS-> G

is a finite covering with group D(acting diagonally). Thus we may write G = DS, and 
factoring out further by Dwe can put

G = G/D, H  = H/D
so that we have

(6. 12)

(6.11) G -  H x  S.
Any G-bundle P with connection induces a G-bundle P with connection. Conversely if P 

lifts to P then P is unique and inherits a connection from that of Similarly a homomorphism 
p : PR-> G induces p : PR-> G. Moreover if p(R)is central in G then <=■ since Z '<= [J1, T],
and so p factors through

In view of (6.11) we see that p is determined by a pair of homomorphisms
fa: *7(1) XT

\fil7t1{M)-+8.
A central Yang-Mills connection for G is equivalent to a Yang-Mills connection for and a flat 
connection for S.We have already seen that (6.7) holds in these two separate cases so that we 
end up precisely with the pair of homomorphisms a and

This completes the proof of theorem 6.7. We should note, however, that in this theorem we 
have simultaneously considered all topological types. It remains therefore to describe the 
topology of the bundle associated with a given representation Now G-bundles over

Mare trivial over the 1-skeleton of M  (since G is connected) and are classified by a class in

For the group G of (6.11) we have
^i(G) g  7Ti (H) © n^S).

The homomorphisms a, /? of (6.12) determine classes
[a] 6 ^ ,( 5 ), [/i] 677, ( 5 ).
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The definition of [a] is clear, we simply regard the restriction to (7(1) as a loop. For [/?] we note 
that si extends canonically to a homomorphism

ft: r ^ S ,
where Sis the (finite) universal covering of S:this is because is the universal central extension 
of rrfM ). The class [/?] is then just given by

m  -
where as before J  generates the kernel of r - ^ n fM ) .

To any homomorphism p : r R-*-G with p(R) central we then pass to /5:TR->6,w hich is 
described by the pair a, (i. The class [a] 0  [/?] enthen determines the topology of the 
associated 6 -bundle, and so that of the 6 -bundle. Since 6 ->6 is a finite covering with group 
it follows that we have an exact sequence

0 ->tt̂ G) -> 71 l->D ->0

and the pair [a] ® [/?] in tt1(6 ) belongs to the subgroup nx{G) if and only if [a] and [/?] have 
opposite images in D ,using the exact sequences

0-^rrfH )
0 -> n^S) ->n^S) ->Z)->0 .

Since for the semi-simple group Swe have [S,S] it follows that, for > 1, the equations

(6.13) f[ [Ai,B i] = V
1=1

have solutions with Ai}Bi eS  for any given yeS . In particular on replacing S by its universal 
covering and taking y to be any element of the centre it follows that /?->[/?] defines a surjection
(6.14) Horn (n fM ),^  ) ^ n 1(S).
More trivially cc-> [a] gives a surjection since restriction to 6 (1) defines an isomorphism

(6.15) Horn ((7(1), ~
Thus we have proved

Proposition 6.16. Every topological G-bundle P over M  possesses a central Yang-Mills connection. 
The space of [equivalence classes of) such connections is given by all ( classes of) solutions of (6.13)
with given y, multiplied by the torus Horn H ) .

As explained above the element yin (6.16) is determined by the topological type of P. The 
curvature also is determined by the topology ofP. More precisely it depends on the characteristic 
classes via (6.15). Hence the value of the Yang-Mills functional is also determined by the top­
ology of P.It is not hard to check and will be proved in § 12 that this value is the minimum
for P.

The general Yang-Mills 6 -connection for Pthen arises from a Yang-Mills minimum for the 
group Gx . If Sx  is the maximal connected semi-simple subgroup of Gx  then Gx /Sx  = is
a torus and _

Ax — ^ ip x
is a lattice. This contains rrfHx) as a lattice of finite index, so that we may view as sitting 
inside the Lie algebra of Hx , which in turn is in the Lie algebra of 6 . In this way

( 6 .1 7 )  X e L x  ag.

Note that Xcan now be identified with the class [a] of the homomorphism a: 6 (1) ->GX/SX .
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It remains to examine the topological relation between the bundles and P. The inclusion
Gx  c  G sends Sxinto S(since Sis maximal semi-simple) and hence Also for the
universal coverings Sxis a factor of Sand so the centre of is a subgroup of the centre of
Elements of tt1(G) can be viewed as pairs (a, b)with

aen^G /S), £e centre

Similarly elements of 7Ti (Gx )are given by pairs bx  and the homomorphism

then assigns (&x ,bx ) to (a, b)in the obvious way. In particular b determines bx  uniquely. The 
element ax  is then constrained by two relations

(ax ->a
(6.18) ,\.ax  = bxmod

Here the congruence is to be understood in the sense that we use the two natural homomorphisms

centre Sx -> centre Sx
LX ->DX c  c e n tre s .

For the Gjr-bundle defined by a pair of homomorphisms (ocX) as in (6.12), we have 
ax  — [ax\and bx  — \.Px\iand [ax ] can also be identified with the point in the lattice

To sum up we see therefore that, for a given C°° G-bundle P the Yang-Mills connections fall 
into a countable number of families or types determined by conjugacy classes of elements in g. 
These Xare constrained by the condition (6.17) and (6.18) rewritten in the form

(X —.y  cl

6̂' 19  ̂ u  = h mod Dx ,

where (a, b) are the pair determining the topology of P with a en 1(G/S)i ecentre
In theorem 6.7 we formulated the results for full equivalence classes. If instead we pick a 

base point x0e M  and work with the subgroup of gauge transformations that are the identity
at #0, then (6.7) becomes the statement that we have a bijection

Horn {Tn,G )^J

where îs the space of all Yang-Mills connections. The group acts on both sides
and induces the bijection on quotients expressed in (6.7).

We shall now spell this out in more detail for the case of = The Lie algebra is then the 
space of skew-hermitian matrices. We write such a matrix as — 27tiA so that A is hermitian. Its 
conjugacy class is determined by the eigenvalues Als A2, ..., An of A, which we may arrange in 
descending order:

(6.20) Ax ^ A2 ^ ... ^ An.

The maximal semi-simple subgroup is SU(ri) while the diagonal £7(1) is the centre. The group

D-- SU{n)n £7(1) £  Zn

is the group of wth roots of unity. The homomorphism U(n) -> £7(n) /SU(ri) £  £7(1) is of course 
given by the determinant. The lattice

L = %(£7(»)/5£7(n)),
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therefore corresponds to diagonal hermitian matrices with integral trace, i.e. the diagonal 
entries A are such that nA.is integral.

If As = —2niA with A  having the eigenvalues in (6.20), the centralizer depends on how 
many coincidences there are amongst the Ay. Thus if the first are equal, the next are equal 
and so on, we have

(6.21) Gx  — U(n^) x ... x U(nr).

The lattice Lxthen has dimension rand the condition (6.17) becomes

(6.22) WyAy is integral for all j .

Thus when the Ay are all distinct they must all be integers, while at the opposite extreme, when 
they are all equal, they are rational with denominator

Since n^U^n))£  Z is  free abelian, a £/(m)-bundle over M  is determined topologically by a
single integer, its Ghern class. Thus the general description we have used for n^G) contains 
redundant information in this case. More precisely we considered the finite Zn-covering

U (n)-+U (l)xPU (n)t

where PU(n) is the projective unitary group, and identified zr1( £/(«)) with the appropriate 
subgroup of

^(£7(1)) © irx[PU{%)) ~  Z ©

It is easy to see that our subgroup is generated by the element 1 0 1 . Thus for a pair (a, e Z ©
to represent an element of n\{U(n)) we must have mod n, and our element is then given by
the integer a.Condition (6.19) now reduces to the obvious requirement

(6.23) trace X  —

where a is the Ghern class of P.
In terms of vector bundles, a reduction from U to a Gx  of the form (6.21) corresponds to a 

direct sum decomposition
E  — Ey©.. .  ©

The condition (6.22) merely asserts that the Ghern classes of the must be integers while (6.23) 
asserts that the sum of these Ghern classes must coincide with the Ghern class of

For U(n), a homomorphism r R-+U{n)is just a unitary representation of-T^. If a representation
is irreducible then Xis necessarily central so that all its eigenvalues Ay are equal and given by In 
where kis the Ghern class. The converse is true when (n, = 1, since a reducible representation
can only produce eigenvalues with smaller denominators in view of (6.22). Narasimhan & 
Seshadri (1965) have shown that, provided g  ̂ 2, irreducible representations exist for all (n, 
The proof is a simple matter of exhibiting irreducible sets of matrices satisfying (6.4) with any 
given nth root of unity. Naturally for F ----- 1, n ^M )  is abelian and so has no irreducible unitary 
representations for n > 1. Thus for k — 0 and 1 irreducible representations do not exist,
while for (n, k) — 1 they do exist. This is consistent with the results of Atiyah (1957) on the 
classification of holomorphic bundles over elliptic curves.

Yang-Mills U(n)-connections for which Xis diagonal (with entries — 2t give rise as we
have mentioned to the absolute minimum 4 n2k2/for the Yang-Mills functional. We have 
shown therefore that the most general Yang-Mills connection for a vector bundle is simply a 
direct sum of Yang-Mills minima for sub-vector bundles.
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7. H o lo m o rph ic  bu n d l e s

In this section we shall consider holomorphic vector bundles over our compact Riemann 
surface M  and discuss the general nature of the classification problem. In particular we shall 
explain how to compute the cohomology of the moduli space of stable bundles. In principle the 
approach we shall give is entirely ‘ non-unitary ’ and does not involve Morse theory. However, in 
§8 we shall explain the relation between this holomorphic approach and the unitary approach 
based on the Yang-Mills functional and Morse theory ideas.

To demonstrate clearly the structure of the argument we shall not enter here into any techni­
calities. The relevant analytical details are treated in U 14 and 15.

We consider therefore a fixed C00 complex vector bundle E  over of rank n and Chern class 
and we denote by ^{E) or #(w, Æ), or simply ^f, the space of all holomorphic structures on E. In 
concrete terms a holomorphic structure may be defined by its d"-operator, so that the local 
holomorphic sections are the solutions of d "u — 0 . Relative to a C00 local basis of E  we can write

d" = d Z + B

where dy is the usual Cauchy-Riemann operator and is a matrix-valued (0, l)-form on 
Since dim M  = 1 there are no integrability constraints on so that can be chosen arbitrarily 
(see § 5). From a global point of view it follows that is a complex affine space whose vector space 
of translations is Q0,1 (End-E1), where End J? denotes the C00 vector bundle of complex endo- 
morphisms of E.

Let Aut (E)denote the group of automorphisms of so that an element of this group is locally 
a C00 map of M  into GL(n,C). Then Aut (E)acts on %(E) and the orbits are, by definition, the 
isomorphism classes of complex analytic bundles on with rank and Chern class Our aim 
is to describe this orbit structure as fully as possible and in particular to discuss the ‘ moduli 
space’.

As usual with classification problems in algebraic geometry, in order to get a good * moduli 
space’, we have to consider a restricted class of holomorphic structures, those that are in 
the sense of Mumford (1965). The set of stable points in ^(E )  forms an open set #8(2?) and the 
corresponding orbits are then closed in #s(2?) so that the quotient space ^ ( E ) / Aut (E) is a 
Hausdorff space. In fact it turns out to be a complex manifold and is compact if = i . This 
is the moduli space we are primarily interested in studying and whose cohomology we want to 
compute.

We recall now the precise definition of stability. It will be convenient first to introduce the 
normalized Chern class or 6 slope ’ (in the terminology of Shatz (1977)) si — Chern class/ rank. Then 
a holomorphic bundle Eis stable if, for every proper holomorphic sub-bundle of we have 
/t(Z>) < fi{E). Semi-stable is defined similarly but we allow now the weak inequality fi(D) < J^(E). 
Elementary arguments as in Harder & Narasimhan (1975) then show that every holomorphic 
bundle E  has a canonical filtration.

(7.1) 0 = f 0 c £ 1 c £ 2 c „ . c £ r = £

with Dt — EifE i_x semi-stable and

M A ) > M A )  >  >  M A ) *
Of course if Eis semi-stable then = 1.
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IfD* has rank ntand Chern class ^  so that n — k = we shall call the sequence of pairs
(ni} ki) i — 1, . . . , r the type of E. It is sometimes convenient to describe the type equivalently by 
the single n-vector si whose components are the ratios each represented ni times and arranged
in decreasing order. Thus

P — (Pl>"’iPn)

with P i^  P z .̂.. ^  where the first Kj are equal to nv  the next are equal to n2 and
so on.

All the holomorphic bundles of a given type /t define a subspace ^  of In particular if all 
components of /t are equal (hence are all k/n)then ^  — #ss is the semi-stable part of

Since the filtration (7.1) is canonical the subspaces ^  are preserved by the action of the 
automorphism group, so that each is a union of orbits.

It is well known that the infinitesimal variations of a holomorphic bundle are classified by 
the elements of the sheaf cohomology group H l(M,End is). In our picture this gets interpreted 
as follows. The orbit in corresponding to a given holomorphic bundle is, locally, a manifold 
of finite codimension in and its normal can be identified with H l{M, End is). This is because 
an infinitesimal gauge transformation, namely a global C00 endomorphism (j) of is, alters d" by 
the addition of d "<pand the cokernel of

£°(End E) D°- *(End E)
is just i i 1( As, End E ) .

In the same way we can identify the conormal to Since is a union of orbits its conormal 
should be a quotient of i f 1 (As, End is). Now let End' denote the bundle of holomorphic endo- 
morphisms of Ethat preserve its canonical filtration and define End" E  by the exact sequence

(7.2) 0 -> End' £ -»E nd£->  End" is -^ 0 .

From the exact cohomology sequence of (7.2) we see that End" is) is indeed a quotient of
H l(MtEnd E) and this is clearly the right candidate for the conormal to since H 1(M) End' E) 
describes variation inside The important point to notice at this stage is

(7.3) dim / / 1 (As, End" E)depends only on p.

This follows from Riemann-Roch together with the key fact that

(7.4) H°(M,End" is) = 0 .

This in turn is an easy corollary, by induction, of

(7.5) IfE,D are both semi-stable andp{E) > / i(D) then every homomorphism E->D is zero.

The proof of (7.5) is a simple consequence of the definitions and can be deduced from 
Narasimhan & Seshadri (1965, proposition 4.4): it is in any case an essential step in the proof of 
the uniqueness of the canonical filtration.

From (7.3) we can deduce that ̂  is locally a submanifold of finite codimension in Thus the
picture that is emerging of #  is that it has a stratification by submanifolds giving a sort of 
generalized cell-structure. To understand the mutual positions of the we need to know some­
thing about the closure o f8 .̂ In algebraic terms we want to know what happens to the canonical 
filtration (7.1) under ‘specialization’. This problem has been studied, in the framework of
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algebraic geometry, by Shatz (1977) who describes how the changes under specialization. To 
explain this result we have to introduce a partial ordering on the vectors that parametrize our 
types. This partial ordering can be described in several equivalent ways. First we follow Shatz 
and associate with the type [ithe convex polygon P with vertices (0, 0), (»1} , 4- , . . .  *
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F igure 3.

Note that the convexity of i*, is equivalent to mono tonicity of the quotients ki/n^ Shatz now 
defines the partial ordering by:

(7.6) A ^ si i f  Px is above P .̂

If we consider P̂ as the graph of a concave function p ^  then p^ is defined at the integers by

P fi)  = Sj<:i

and interpolates linearly between integers. Here the /q- are the components of our n-vector /i. 
Hence, for our vector notation, (7.6) translates into the following partial ordering:

(7.7) A > /iif 22% > E  £i» = L
j< i

Note that 2 A,- — 2 /q- — k is fixed. This partial ordering on vectors in is well known in various 
contexts (see Marshall & Olkin 1979) and we shall discuss its Lie group significance in § 12. For 
the present we return to the result of Shatz, which now takes the form
(7.8) V  <= U r<v

A > /i

In the next section we shall give a differential-geometric proof of (7.8) that is more in the spirit 
of this paper.

It is clear that this partial ordering on types satisfies condition (1.17). We shall check condition 
(1.18) later (see (7.16)). We can thus use the stratification of *€ by the ^  to describe the equi- 
variant cohomology of *€ in terms of that of the% . It remains to show that this stratification is 
‘ perfect ’ in the sense of § 1.

Let denote the space of all C00 filiations of Eof type /t. Thus p o i n t s a r e  sections of 
the fibre bundle over Mwith fibre the manifold F„ — GL(n, C)/ where B^ is the parabolic
subgroup preserving a fixed (partial) flag of subspaces of Cn of dimensions + __ The
sequence of Chern classes ktcorresponds to picking a definite component of the space of all 
sections. Since the filtration (7.1) is canonical we have a map (the continuity of which will be 
established in U 14 and 15)
(7.9)
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If we fix a base-point of ̂  corresponding to a definite C00 filtration of the fibre of (7.9) 
over this point is the subspace ̂  c  ^  of complex structures compatible with the given filtration. 
If Aut (Ep)is the group of C00 automorphisms of preserving the filtration then Aut acts 
on 3#^is the homogeneous space Aut (E)/Aut (Ep) and ̂  can be identified with the associated
bundle. Hence for the purposes of equivariant cohomology the pairs

(Aut (£),%) and (Aut(^ ) ,^ )
are equivalent as explained in § 13.

Next let us choose splittings of the filtration Ep so that we get a direct sum decomposition of
(7.10) E — I)i © -D2 ©. . .  ©

with Ei = Dx© ... ©
and let Aut-E1®, be the automorphisms and complex structures (in compatible with this 
decomposition. Then we have

(7.11) Aut (LA -  f[ Aut (/)<),
1 =  1

s  r ii=i
On the other hand the natural homomorphism

Aut (Ep) -> Aut (El)

is a homotopy equivalence, and the fibration

has a vector space as fibre and is compatible with the group actions. It follows that, for purposes 
of equivariant cohomology, the pairs

(Aut (£y,4y and (Aut (£®),̂ ®)
are equivalent. Together with (7.11) this finally yields for rational cohomology

Proposition 7.12. The equivariant cohomology of the stratum ^  (E) is isomorphic to the tensor 
product of the equivariant cohomology of the semi-stable strata for the quotients Di.
Here of course the equivariant cohomology is always taken with respect to the automorphism 
group of the appropriate bundle.

We also need to look at the equivariant cohomology of the conormal bundle to in 
By this we mean of course the appropriate relative cohomology or the cohomology of the Thom 
space of NpExactly the same reduction as above shows that we can replace the triple (Aut (L), 

A/J by the triple (Aut (LA, J*®, A®) where A® is the restriction of A^to ^®. Now from (7 .11) 
we see that Aut (£J) contains the r-dimensional torus which acts trivially on S®. To show that
our stratification is perfect it remains to show, using (1.9) and (13.4), that the representation 
of Tr on the fibre of Aa is primitive. Now at a point of ̂ ® our bundle Lis a holomorphic direct 
sum of the and so the bundle End' E  of endomorphisms preserving the filtration is the direct
sum of Horn (D^ Dj)for i> j.Hence

(7.13) End" E @̂Horn (Di} D .).
i <j
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Now on Horn (Z)i} Dj)the element (tly...,£r) e Tracts by and so it acts by the same character
on H 1(M)Horn (D^Df). Since the fibre of A is HEnd"^) it follows from (7.13) that the
representation of Tr on Nis indeed primitive. Thus we have proved

T heorem 7.14. The stratification of ̂  by the is equivariantly perfect so that for the equivariant 
Poincari series we have

ptm-
f*

where d„ is the complex codimension of™'.
The dimension d ĉan be calculated by Riemann-Roch, since End" £) — 0 , and we

find (as in (5.10))
(7.16) d„=  S {/»,-/», +  (#-!)}•Hi > II j
Alternatively, in terms of the sequence (nv  A^),..., ( ),
(7.16) dp = Z {(n^-njki)  +ninj {g - l ) } .

i> j
In particular this shows that our stratification does indeed satisfy the finiteness condition (1.18).

The first term in the series of (7.14) arises from the semi-stable bundles. All the remainder can 
be calculated inductively by (7.12). Hence knowledge about (from §1) leads to inductive 
formulae for Pt(%g8).

Since the stratification of ̂  is perfect over the integers we can also deduce results about torsion. 
First we should note that the equivariant cohomology of ̂  namely the cohomology of Aut (is), 
has no torsion. This follows from the identification with RS, to be explained in §8 , together with 
the results of §2 . It follows therefore that all strata have no torsion (equivariantly). In 
particular therefore

(7.17) the semi-stable stratum &8a has no torsion in its equivariant cohomology.

In the coprime case (n, k) = 1 we have ^  and Aut (As) acts on ^  with the constant
scalars as the only isotropy group (Narasimhan & Seshadri 1 9 6 5). From this we can derive 
results for the ordinary cohomology of the moduli space N{n,k) — ^,/Aut (is). Thus we get 
a formula for its Poincare polynomial and we shall also see that it has no torsion. This will be 
treated in detail in § 9.

8. R el a t io n  w ith  Y ang- M ills

In the previous section we have given a purely complex analytic approach to the moduli space 
of stable bundles. We want now to look at the same problem from the unitary or differential- 
geometric point of view. The connecting link is the key result of Narasimhan & Seshadri (1965) 
identifying stable bundles as those that arise from irreducible unitary representations. Trans­
lated into the notation we have introduced in § 6 their result can be formulated as follows.

(8 .1) A holomorphic vector bundle of rank n is stable i f  and only i f  it arises from an irreducible representation 
p :Tr -> U{n). Moreover isomorphic bundles correspond to equivalent representations.

Remarks. 1. Actually the description given by Narasimhan & Seshadri (1965) is slightly dif­
ferent from (8.1) though equivalent to it. They puncture at one points and consider coverings 
of Mwith ramification of order nat p. This leads to a purely holomorphic description whereas
our version, with connections, is a differential-geometric version.
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2 . Donaldson (1 9 8 3) has recently given a new proof of (8 .1) in the spirit of this paper.
To understand the geometric significance of (8 .1) we recall first, as explained in §5, that a 

unitary connection A for a vector bundle E  over our Riemann surface M  defines a holomorphic 
structure simply by taking the (0 , 1)-component dj[ of the covariant derivative d^. This gives a 
map which is in fact an affine-linear isomorphism. Locally this corresponds to the
isomorphism

^ (u (n )) £  S°»1(qI (n,

for the Lie algebra valued 1-forms. Note that ^  is defined independently of any metric on the 
bundle, whereas stfand hence the isomorphism stf -># depend on such a choice. The connection
A associated in this way to the holomorphic structure will be called the metric connection. Since 
any two metrics differ by a complex gauge transformation, i.e. an element of Aut (is), it will be 
immaterial which metric we pick. The group Aut may now be viewed as the complexifi- 
cation #c of the group of unitary gauge transformations of E.

Now let jV c= j/  denote the set of connections giving the minimum for the Y ang-Mills functional. 
As we have shown in § 6  these are precisely ^-equivalent to those given by representations 
p : r U (n) withp{R) central. Let Al  <= ^ b e  those given by irreducible representations. Then
(8 .1) can be reformulated as follows:

(8.2) Under the identification of stf with we have c  <jfs and the induced map of quotient spaces 

is a homeomorphism.
The proof of Narasimhan & Seshadri (1 9 6 5) is essentially of (8 .2 ). It is easy to prove the 

inclusion Al <=■ % and infinitesimal arguments show that the map of quotients (which are
manifolds) is a local diffeomorphism. The hardest part of the proof is the surjectivity and this 
requires compactifying both sides and a consequent induction on n. The real explanation for
(8 .2) is probably to be found in the moment map ideas indicated at the end of § 10 (see also 
remark 2 above).

Note that the quotient space ^ c/S  may be identified with the space of hermitian metrics on E. 
Since this is a convex set in a linear space it is contractible and so S and have the same 
homotopy type. Hence equivariant cohomology is the same for the two groups.

Since direct sums of stable bundles with the same‘slope' are semi-stable it follows c  #S8;
note also that A  = A l  in the coprime case. More generally now let us transport the stratifi­
cation of <€ by the ^  defined in § 7, to give a stratification of by strata Let ̂  denote the 
Yang-Mills connections whose curvature is of type Such connections are direct sums of 
connections of the form Al  for smaller ranks. This shows that c  A .r A

Our first aim in this section is to show how to characterize the strata by properties of the 
curvature. In particular we shall eventually show that the ^  are the ‘Morse strata’ of the 
Yang—Mills functional. In fact we shall prove that this holds for a much wider class of functionals 
than Yang-Mills. These functionals are obtained as follows. Let <p be any smooth function on the 
Lie algebra g of Gthat is invariant under the adjoint action and is convex. For example when 
G = U(n), so that xeg is a skew-hermitian matrix with eigenvalues iAj, ...,iAn, we can take for 
<f> any of the following

(i) SAf, 1 ,(“) exp (U,) j k
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These can be written directly in terms of x,without resort to the eigenvalues, and are clearly 
smooth invariant functions. Why they are convex will be explained in § 12 when we discuss this 
notion more systematically. Given such a ^ we now define a function on the space of 
connections over M  in the obvious way:

(8.3) 0 (A) - f M*F(A)).
J M

This reduces to the Yang-Mills functional when — trace (corresponding to = 1 in 
(i) above). Since (j>is invariant under the adjoint action, is gauge-invariant. Tairing At = A + trj 
and computing as in §4 we see that

(8.4) 0(At) = 0(A) + t j  (</>'(* F (A)), modi2

where <J)': g -» g is the derivative of i.e.
<f>(x + ty) = <])(x) + /<0 '(#),y)mod

From (8.4) we see that the gradient of 0,relative to the metric on the space of connections, is
(8.5) g r a d 0 = —*d
This reduces to the formulae of §4 for the Yang-Mills functional when — trace**# so that 
W is the identity map q->q. In general (J)'is an equivariant map (relative to the adjoint action 

of G)and so for any section sof ad (P) the covariant derivative of <}>'(s) can be obtained from that
of sby the composition rule
(8 .6) ($) = $ ”(s)odAs.

This is most easily understood by viewing sas an equivariant function P-*cj and noting that 
djiJ is just the horizontal part (relative to the connection of the ordinary differential d 

From (8.5) and (8 .6) we deduce at once
(8.7) a critical connection for the Yang-Mills functional L is also critical for O, and the converse holds i f  
<j> is strictly convex.

By a strictly convex function we mean as usual a function for which the second derivative (f>" 
is everywhere positive definite, so that the linear transformation fi"(s) in (8 .6) is invertible. The 
quadratic function trace x*xused for the Yang-Mills function is clearly strictly convex and any 
(weakly) convex becomes strongly convex if we add a positive multiple of trace x*x. We see 
therefore that there are many functionals 0  that have precisely the same set of critical points as 
the Yang-Mills functional L.

So far we have not really used the convexity of A only the non-degeneracy of the second 
derivative fi".Thus — <j>would have had the same properties. The significance of convexity is
that the Hessian of 0always has a finite Morse index. To see this we compute as in § 4 and find that 
the Hessian H  corresponds to the self-adjoint differential operator
(8 .8) 0 A — <j>"(* F(A)) d* d^ -1-lower order.
Since 0is gauge invariant we can, as in §4, restrict ourselves to ad -valued 1-forms with 
d̂ iy = 0 , so that in (8 .8 ) d^d^ can be replaced by the covariant Laplacian

= d*d^ + d^ d*.

45 Vol. 308. A
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Then 0 Abecomes a second-order elliptic differential operator and the (strong) convexity of <]) 
asserts that the leading-order terms are positive definite. This is enough to make the spectrum 
discrete and bounded below so that there are only finitely many negative eigenvalues, showing 
that H0has finite Morse index.

Equations (8.5) and (8.6), together with the strong convexity of A imply that

(8.9) (grad 0 ,grad ^ 0

with equality only if A is a critical connection. This means that is strictly decreasing along the
paths of steepest descent for Z, i.e. the trajectories of —grad In finite dimensions this would 
imply that at the common critical points the Morse indices of and coincide. In our situation 
this can be seen directly as follows. Expanding (8.9) at a critical connection and discarding 
higher-order terms, we deduce

(8.10) (Hoy, HL7}) > 0

with equality only if rj is in the null-space of HL(which coincides with that of H0). By restricting 
rj to the negative space V of HLwe reduce (8.10) to a finite-dimensional inequality, which easily 
implies that H0 is negative definite on V (e.g. diagonalize HL on . Thus the Morse index of 
is at least equal to that of L. Reversing the roles of and we get therefore

(8.11) the Morse indices of 0  and L all coincide.

To sum up we see that any one of our functionals O, defined by a strongly convex invariant 
function <f>on g, has exactly the same critical point structure as the Yang-Mills functional L. Our 
next aim is to show that all such functionals lead in fact to the same Morse strata and that these 
strata coincide with the complex strata introduced in §7.

We now return to the identification of the space of unitary connections with the space 
of complex structures, explained at the beginning of this section, together with the actions of the 
groups S  and of unitary and complex automorphisms. The tangent space to the S-orbit 
through A consists of vectors dAcc with ad (P))while for the ^ c-orbit it consists of
dAf  with /? e Q°(M,ad (Pc)). Since we are identifying ad (P)) with ad (Pc)) on
which * = i we can say that the tangent space to the ^ c-orbit at A consists of vectors

dAa1+ *dAoc2 with a 1, a 2e i2°(Af, ad (P)).

In particular then formula (8.6) for grad 0shows that

(8.12) grad 0  is tangential to the ^ c- orbits.

In other words the ‘gradient flow’ of 0preserves the ^-orb its and hence also the strata S  of 
§ 7 since these are unions of orbits. Since the stratum contains a unique component of 
the critical set of 0it is then reasonable to expect ^  to be just the Morse stratum or stable 
manifold of 0associated with For this to be true it is of course necessary that on should
take its minimum on JT .̂ Now for any A e A ^  the conjugacy class of *F(A) is constant and is 
represented by the skew-hermitian diagonal matrix with entries — 2ni/ij = 1, Since 
the volume of As is normalized to be unity it follows that 0(A) takes the constant value <p(A ) 
and we shall write this simply as <f>(ji). For example, for the Yang-Mills functional, we have *

= H 2 = 2 / 4
Thus we might expect the following to hold.
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Proposition 8.13. For any and for any convex invariant function <J> on u(n), we have
0(A) >

We shall begin by proving (8.13) in the simple case when
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Fl — Fi — •“ ~ Fr > •••
so that the canonical filtration of the bundle E  has just two steps. This means that, for the holo- 
morphic structure defined by Awe have an exact sequence of vector bundles

0 Dx -> E  -> D2 -> 0,

where Djhas rank nip Ghern class kj (j — 1, 2) so that — k fm x and — k2/m2. For con­
venience we shall use the notation /F — kj/mj (j = 1, 2). The curvature F(A) can then be written 
in the form

where Fj is the curvature of the metric connection of Horn is its
transposed conjugate and dyis the covariant differential. Now letf p  ex,j be scalar ntj x matrices
such that

(8.15) trace — trace * Fp
trace oq — trace * (y Ay*) = — trace * (y* Ay) — — trace a 2.

Then some elementary inequalities concerning convex invariant functions (which will be 
treated in § 12) show that

*F(A)) 0 ' 
s i  ~ a 2.

The convexity of <j>, together with the fact that M  has normalized volume, then implies that 

(8.16) 0(A )-  f  4>(*F(A))^<t, \ °
J M V a 2

But the Ghern class of Dj is given by

k> =

Since fis a scalar matrix this means that \  si*s a scalar matrix whose diagonal entries are 
— 2nikj/mj — — 2ni/A.Also from (8.15) (since yeQ 0’1) it follows that —i trace is non-negative 
and so

[J M
27ticti

where aLis a non-negative scalar x matrix. Then

sJ M
2ni a«

where a2is the non-positive scalar m2 x m2 matrix such that trace a2 — — trace av Hence we have

(8.17) J J V  / , - J =
45-2
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where [ ] denotes the diagonal matrix defined by a vector, so that [a] denotes the matrix ^ j •
From (8.16) and the convention we have adopted for defining 0 on w-vectors (absorbing the 
factor — 2rci) we then obtain

(8.18) 0(A) ^ <f>

But since ax̂ 0, a2< 0 with trace ax = — trace a2 it follows easily that (i + a ^  si with respect to
the partial ordering defined in (7.7). As will be explained in §12 this implies, and in fact is 
equivalent to,

00 +st) > 00)
for all convex invariant 0. This completes the proof of proposition 8.13 for the two-step case. 
As can be seen the essence of the proof is the basic principle that * curvature decreases in holo- 
morphic sub-bundles and increases in quotients’ (Griffiths & Harris 1978, p. 79). The general 
case of (8.13) proceeds in the same manner and we simply have to keep track of the notation. 
The details are as follows.

We start with a holomorphic bundle E  with its canonical filtration of type si:

0 = £ 0 c  ^  c  ... a  Er = E,

where the quotients Dj — EjJEj-ihave normalized Chern classes frf with

/i1 > ji2 > ... >

The curvature F(A) can then be expressed in a block form generalizing (8.14). For every j  < k 
we have an element

Vjk 6 Q0,1 (M  Horn (Dk> Dj))

so that d 7jjkappears in the (j, A:)-block. The r\ik are the components of the element

7]keQ°'i(M, Horn ( D ^ E ^ ) )
related to the exact sequence

0 -> Ek_1 -> Ek-> Dk -> 0 . 

Now define scalar non-negative ntj x m;- matrices for by

trace ajk = trace(Vjk^vfk) > 0,
and define akk by

trace akk = ̂ J  t r a c e s  A 0,

so that trace ajk — 0. Then the convexity of 0 leads to the inequality

0(A) > 0 0  + fl],

where a stands for the vector (or diagonal matrix) whose 7 th block a? is the scalar (matrix)

a1 = 2  ajk.
k>j

Equivalently the vector a can be written as a sum

a = Zbk
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where bkis the vector corresponding to the diagonal matrix whose block is for < (and 
zero for J  > k). The fact that

trace ajk̂ 0 for j  < kand 2  trace = 0

implies that bk̂ 0 relative to the partial ordering (7.7). Hence a — ^ b k ^  0 and so ^
As before this then implies that <p(/i + a)> <p(/i)and so completes the general proof of pro­
position 8.13.

It will be noted that we have nowhere used the maximal nature of the canonical filtration, 
i.e. the fact that the quotients Dj are semi-stable. Once we use this we shall be able to strengthen 
(8.13). For this we shall need to use the Narasimhan-Seshadri result (8.1).

If, for any holomorphic vector bundle Eover M, and any convex invariant we define

0(E) = inf<Z>(v4),

where A runs over all metric connections on E ,then (8.1), together with proposition 8.13, implies 
that for stable bundles E  we have 0(E) = (J)(/ji). We shall now extend this to all bundles. First 
suppose we have a holomorphic exact sequence

0->D1- ^ E ^ D 2^ 0 .

Then a metric on Egives rise to a connection whose curvature is given by (8.14). The element 
7I e Q°>1(M ,Horn (Z>2, Dt)) defines a cohomology class Horn (Z>2, Z^)), which

classifies the extension. Replacing rj by trj with t a non-zero constant alters the extension class but 
does not alter the isomorphism class of E,since the new extension is isomorphic to the original 
by a diagram of the form

0 ---- > Dx----> E-> Z)2---> 0
t

0---- > D1---- > E ---- > D2---- > 0 .

Hence replacing rj by trjand then letting t-+ 0 shows that

0(E) < 0 ( D 1®
Similarly if Ehas a filtration of arbitrary length with quotients Dj we have 
(8.19) 0(E)<<Z>(©Z>,.).
Now an elementary argument (see Seshadri 1967) shows that any semi-stable bundle has a 
filtration with stable quotients all of which have the same normalized Chern class. From this, 
together with (8.13) and the result for stable bundles, it follows that we have the equality 
0(E) = (J>([i)for all semi-stable bundles. Finally using the canonical filtration of any (8.19) 
and (8.13) yield the equality in general. Thus we have now established

Proposition (8.20). I f  a holomorphic bundle E is o type si then for any convex invariant <p we have 
0(E) — <J>(fi)y where

0(E) = in fs
A  J M

and A runs over all metric connections on E.
Now in § 12 we shall see that if /i, v are any two vectors (with ^  ... ^  fin and rq > ... > 

then

(8 .21) <p(/i) — p ( v )  f o r  a l l  convex in varian t <fi =
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In view of this we see that (8.20) amounts to a differential-geometric characterization of the 
type, i.e. we have

( 8 .22) Eis of type [i i f  and only i f  0(E) — for all convex invariant <f>.

Since @(E) is defined by an infimum it follows that
#A in the closure of 0 (^A) < #>(^)

=>0(A)< by (8.20).
As will be shown in § 12

(8.23) ^(A) < $5(/t) for all ^ o A  <

where A < /t refers to the partial ordering (7.7). Hence we have established by differential- 
geometric means the result (7.8) of Shatz.

In §5 we computed the index of the Yang-Mills functional at any critical point, and we 
obtained in proposition 6.4 the formula

index A = 2 dimc H X(Mad-  (P)).

If  the critical point A is of type jti, so that the curvature is — 2ni times the diagonal matrix given 
by /t,then the holomorphic bundle Edetermined by the connection is a direct sum

E = @ Dp
where the Djare semi-stable and have as normalized Chern classes the distinct components of 
si. We see therefore that the bundle ad” (P)of §5 coincides with the bundle End" of §7, both 
being isomorphic (see (7.13)) to @^<JfcHom (Dp Dk). Hence the index of is equal to the co­
dimension of the stratum containing A.In fact the normal to at A actually coincides with
the negative eigenspace of the Hessian of Lat A, both being given by the appropriate space of 
harmonic forms. In view of (8.11) it follows that the codimension of is equal to the Morse 
index of any of our functionals 0.

To sum up we see that the play the role of the Morse strata not only for the Yang-Mills 
functional Lbut more generally for any functional defined by a strongly convex invariant 
function pon the Lie algebra of U (n).This statement is to be understood in the sense that our 
strata satisfy all the properties of (1.19) relative to which in good cases, as explained in 
§ 1, characterize the Morse strata. This suggests that each critical set should be an equi- 
variant deformation retract of the corresponding stratum the retraction being given by 
following the trajectories of grad 0.To prove this it would be enough to check it for the 
minimal stratum (for all U (n)).In the coprime case (n, = 1 this is a consequence of (8.2), but 
in general the singularities of give rise to difficulties and we shall not pursue this question 
further. Thus although we have shown that the stratification of V  by the is equivariantly 
perfect we have not actually proved that the Yang-Mills functional is an equivariantly perfect 
Morse function, although this seems very likely and would follow from sufficiently good pro­
perties about the Yang-Mills flow.

9. C ohom ology  of th e  m o duli spaces

We have now shown how to compute inductively the equivariant cohomology of the space 
of semi-stable bundles. In this section we shall show how to derive the integral cohomology of 
the moduli space N(n,k)in the coprime case (n, k) = 1, and also that of the moduli space
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N0(n,k) for bundles with fixed determinant. First, however, we shall need to extend theorem 7.14 
by replacing the group & with a subgroup of finite index. As explained in § 2, the group of 
components of & is / / 1(Af, Z) ^  Z2y, and so a subgroup of of finite index is specified by
giving a sublattice of maximal rank F 'c F .As shown in § 2 the classifying space which is
a finite covering of B &,has no torsion, it has the same Poincare series as and F /F ' acts 
trivially on its cohomology. We now consider our stratification relative to We proceed 
exactly as with A. The only point to comment on is that the space occurring in § 7 (namely 
the space of all C00 filiations of Eof type /t) is connected. In more concrete terms this means that 
any two filiations of E  of type /jl are homotopic. To see this we note first that, over the 1-skeleton 
of M yall bundles are trivial and all filiations homotopic (since the partial flag manifolds of (n) 
are all simply connected). We can therefore collapse the 1-skeleton to a point and reduce to the 
case M  — Æ2, but now d? becomes connected and so two filiations of the same type, being iso­
morphic, are necessarily homotopic. Hence 3?̂is equally a homogeneous space of and if
^  = <g j  JF = then <= is of finite index and corresponds to the same sublattice
r of f .

Thus our stratification of îs also perfect relative to In particular the d^'-equivariant 
cohomology of ffiss has no torsion and it is acted on trivially by so that the and
Poincare series of ̂ ss coincide.

We move on now to consider the coprime case («, 1. Then stable and semi-stable coincide,
so that — %aand Aut E  acts on with only the constant central scalars as isotropy group
(Narasimhan & Seshadri 1965). The moduli space N(n,k) is then the quotient of by this 
action. It is a compact complex manifold: it even inherits a natural Kahler structure as we shall 
see later. We want now to deduce what we can about the cohomology of N(n, k) from our general 
results about equivariant cohomology.

Let us denote by #  the quotient of S  by its constant central £7(1)-subgroup, and similarly 
# c will be the quotient of = Aut (E) by C*.Thus acts freely on with k) as quotient. 
Hence (for any coefficients)

(9.1) H*(N{n,k)) zH $ (V s)
where on the right we have replaced <8?c by @since they give the same cohomology. It remains to 
investigate the relation between ^-cohomology and -cohomology. This depends on the 
fibration
(9.2) BU{1)-+B&->B&
which is always trivial in rational cohomology. This is because restriction to a point of M  
followed by taking determinants defines a homomorphism ^->17(1) and the composition 
£7(1) -> 17(1) is of degree n.This implies that

H*{B&, Q)-+H*(
is surjective, which gives the triviality of the fibration over Hence for any S-space the 
^-Poincare series of Xis the product of the ^-Poincare series of and (1 — f2)-1. Together with
(9 .1) this then gives the formula for the Poincare series of N(n, k):
(9.3) Pt(Y(/z,A:)) = ( l - < 2)^ P t(^ )
where s)is given inductively by theorem 7.14. As noted in the Introduction, and will be 
elaborated in § 11, this formula coincides with that of Desale & Ramanan (19 7 5 )*  which rests on 
the Harder-Narasimhan approach.
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Taking determinants gives a natural map

(9.4) det: N (n ,  k ) ->
where Jkis the Jacobian of M,parametrizing line-bundles of degree Clearly acts on W(ra, k) 
by tensor product and the determinant becomes a J^-equivariant map if we make J Q act on J k 

via the rath power map

This shows that after lifting to a finite covering, with group Ker a n ^  Z n) ^  T n =  r / n T ,
(9.4) becomes a product. Thus if we denote by N 0(ny k ) the fibre of (9.4) then

(9.5) N ( n ,k )  = ( N „ ( n , k ) x J k) / r n .

The manifold Â (ra, k) is the moduli space of stable bundles w ith  f ix e d  determ inant. If  we now take 
c: corresponding to the lattice nT <= 71, so that = T/raT — Tro then the analogue of

(9.1) becomes

(9-6)

Since S  and give the same equivariant cohomology of (over Q) the same holds for & and 
and so comparing (9.1) and (9.6) we get

Proposition 9.7. F o r ra tio n a l cohom ology w e have

H * ( N { n , k ) )  ^ H * ( N 0( n ,k ) )

or in term s o f  Poincare p o lyn o m ia ls

Pt ( N ( n , k ) ) = P t (N 0( n , k ) ) ( l + t ) K

This proposition, which is equivalent to saying that acts trivially on the rational cohomology
of ̂ Vo(̂ > fc)i was the main result of Harder & Narasimhan (1975) where it was proved by number^ 
theoretic methods comparing GL{n)with SL{n).For us the triviality of the action of jTn is a
consequence of its triviality on the cohomology of

We turn next to the integral cohomology of the moduli space k). We want to prove that
it has no torsion. We already know by (7.17) that has no torsion and, in view of (9.1),
we want to deduce the same result for H§ (%). It will be sufficient to prove that the fibration (9 .2) 
is in fact a product so that

H9(%)~ H9(Va) 1)).

Now BU( 1) is an Eilenberg—Maclane space K(Z, 2) and so (9.2) has a characteristic class in 
H 3( B & ,Z )  whose vanishing will imply the triviality of the fibration. Equivalently we need to 
show that

(9-8) H\B<Zy Z) 1),

is surjective, but this was the content of proposition 2 .21. Thus we have now proved

T heorem 9.9. If(w, k) = \the moduli space N(n, k) of stable bundles has no torsion.
For the space N0(n,k)we use the commutative diagram of fibrations

BU (1) ---- >(%)S' -* N0 x J
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where N0xĴNis the finite f n-covering. Since the bottom row has now been shown to be a
product the same is true for the top row. Since we showed earlier that ^  has no torsion for its 
^'-cohomology it follows that N0 x J  has no torsion, and hence also has no torsion. Thus we
have

T heorem 9.10. I f  («, k) — 1 the moduli space N0(n of stable bundles with fixed determinant has no 
torsion.

The triviality of the fibration (9.2) when (n,k) = 1 is essentially equivalent to the existence of 
a (topological) universal or Poincare bundle over as we shall now explain. By definition
a universal bundle is a holomorphic vector bundle V over x so that for all w £ N the restriction
Vnof Vto M x {«} is in the isomorphism class represented by the point The projective bundle 
P(V) exists naturally. To see this we recall that we have an obvious holomorphic bundle over 
M x ^ 8S and acts holomorphically on W  with the constant scalars acting trivially on the
base and as scalars in the fibre of W .Thus — 3?c/C* acts freely on and the quotient
gives P{V)over M x  N.A universal vector bundle is therefore a Tift’ back from this natural
projective bundle over M x  N. If V is holomorphic on each but only continuous in we refer to 
it as a topological universal bundle.

Quite generally there is an obstruction to the extension of such a lift called the ‘Brauer class’. 
It arises from the sequence

GL{n) -* -> 1

and lies in H \M  x N, &*)where 0 *is the sheaf of multiplicative holomorphic functions. Taking
the coboundary of the exponential sequence

e2«i
0----- >Z-------  >0-----  --- >0

leads to the topological Brauer class, which is an torsion class in H 3(M x N ,Z). Explicitly in 
terms of transition matrices/^ for a PGL{n)-bundle we lift these locally to gy in ) and define
the scalar Xijkby the formula

iijSjk = ^ijkS ik '

This is a 2-cocycle for 0 *and taking determinants shows that is a coboundary.
In our case since M  and N(by (9.9)) are torsion-free it follows that the topological Brauer 

class must be zero and from this one can deduce that a topological universal vector bundle V does 
indeed exist. In fact our proof of (9.9) depended essentially on the triviality of (9.2) and this in 
slightly disguised form is equivalent to the vanishing of the topological Brauer class, as one 
might suspect from the fact that the characteristic class of (9.2) is an element of H 3(B&, Z). To 
explain this we note that the bundle Won M  ss gives rise naturally to a bundle on
Mx (^ss)#: this bundle is holomorphic only in the M-directions, since (^ss) is only a topological 

space. Passing to the projective bundles we see that lifts to P( Wf) under the natural map

n:Mx (̂ss )<$^Mx (̂ss)#.

Thus the Brauer class of P(W )#lifts under n *to the Brauer class of which is zero since
this bundle comes from the vector bundle W#.On the other hand the fibration is trivial, since
(9.2) is trivial, and so the Brauer class of P( W )$must itself vanish. More explicitly any section cr 
of 77 induced by a section of (9.2) defines a vector bundle cr*W that has as projective
bundle. Finally we have only to observe that, homotopically,
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and that P{W)$ corresponds (topologically) to the projective bundle P (W )9 while 
corresponds to a topological universal bundle F.This shows the tie-up between the different 
points of view.

In fact in this coprime case a more refined argument shows that the analytic Brauer class in 
H 2(M x N,@*) is zero, so that a holomorphic universal bundle exists. Let us recall briefly the 
essential point of the proof, which is to construct a holomorphic line-bundle over x ^ss on 
which S« acts such that C*c Ko acts via scalar multiplication in the fibres of Then acts
trivially on W®Ir1 and so this is acted on by the quotient group S« = We can now
descend the bundle W® Lrxto the quotient space

(M x ^ ss) / # c

to obtain the universal bundle. The bundle Lis constructed on Sgs (and then lifted to x ^ss),
by using the vector bundles given by the various More precisely if is sufficiently large (the 
precise values will be given later) then for any semi-stable bundle of rank n and Chern class k 
we have

H \M ,E )  --- 0

dim H Q(M,E) = k - n ( g - l ) .

This gives a holomorphic bundle of dimension 1) over Taking determinants (i.e.
the highest exterior power) gives a line bundle Akon ^s* The group of scalar automorphisms
of E acts on this with weight m = k — n(g — 1), i.e. A e acts by multiplication with Am. Tensoring
E  with a fixed line-bundle of Chern class 1 replaces by + so giving a line bundle Ak+n over 
Sgs on which C*acts with weight m + n.Since (k, = 1 we have (m, + ----- 1 and we can find
integers a, b such that

am + b(m + ri) — 1.

Hence L = A%® A \+n is acted on with weight 1 and leads to the universal bundle.
We note finally that the universal bundle is not unique and can be altered by tensoring with 

any holomorphic line-bundle Lon M  x N.On the universal property implies that L must 
have degree zero (and must moreover satisfy Ln — 1) but the Chern class on N  is arbitrary, as is 
the component in H X{M)(g) Jf/^jV).

We recall that in §2 we proved that the integral cohomology ring H*(B&) was generated 
multiplicatively by certain explicit classes constructed from the canonical bundle on 
This canonical bundle restricts to Wwhen we embed (^s)^  in ^  and since our stratifi­
cation of S  is equivariantly perfect (theorem 7.14) it follows that our generators for H*(B&) 
restrict to give generators for H*((^s) K) and hence generators for ) (after pulling back by 
a section <7of the fibration tt) . Since cr* W^ V (topologically), where Fis the universal bundle on 
M x  N  we see finally that the integral cohomology ring is multiplicatively generated by
explicit elements constructed (as in § 1) from the universal bundle F on These classes
are of three types.

(i) The Chern classes arof F restricted to N .

(ii) The odd-dimensional classes b{ (j  — 1,..., 2g), which occur in the ( l , 2r —1) Runneth
component of the rth Chern class of F on M x  N.

(iii) The Chern classes dr off(F) eK(N).
Note that in (i) and (ii) rruns from 1 to nwhile in (iii) it is unrestricted. Now since F is holo­

morphic its R-theory direct image fmay be computed directly. If  — 0 for all
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thenjj( V)is simply the vector bundle H on Nwhose fibre at is . Now by Serre duality 
H l { M ,V y ) — 0 provided every homomorphism Vy(where K  is the canonical line-bundle) is 
zero. By (7.5) this will hold provided k / n  > 2 g  — 2  in which case Riemann-Roch gives the 
dimension of H°(M,Vy)as k  — n { g — 1). Now by tensoring with line-bundles we can always 
arrange that kis of the form

k  — (2 g  — 2 ) n  +  k r with 0 <
(recall that (k, n) = 1), so that we then have

d im // — n { g — 1)

Finally then we have proved the following theorem (cf. Newstead 1972 for 2).

T heorem 9.11. Letk — (2g - 2) n -\-k fw ith  0 < a n d  ( ) — 1, a n d  le t V  be a  universa l

bundle over M x  N ( n ,k ) .  D efine in tegra l cohom ology classes ar) bJr, dr on N  b y

ar --- cr ( V \ N ) ,  1 < <
2,

£ o c j ® b }r =  cr ( V ) ,  1 < r < n a n d  0Cj a / /^ M ),
dr =  cr ( H ( V ) ) ,  1 ^ < n i g - t f + k ' ,

where H {  V ) is  the bundle over N  whose fib re  a t  y  is  H ° ( M ,  Vy) . Then the in teg ra l cohom ology r in g  o f  N  is  

gen era ted  b y  these classes.

The moduli spaces N  and Y0 are torsion-free when — 1, and theorem 9.11 provides us 
with a system of integral generators {arib3r, d r} while our Poincare series formulae determine the 
dimensions of their span. Hence these rings are in principle determined once a complete set of 
relations for their generators is written down over the rationals. Ideally one should be able to 
derive these from the Thom classes of the various strata of j/ ,  but we have been unable to make 
much headway in that direction, except for the computation of the fundamental group.

Note that the complex codimension /  of any stratum ^  other than the semi-stable stratum 
<rss, as given by (7.16), satisfies

l - b t e - l ) > S  if
This implies as in (1.12) that

On the other hand the triviality of (9.2) shows that

wi(0^ss)gr) = ^i((^8s)#) =  Tr^JV).
Hence

% ( N )  z  H J M ' Z ) ;

and this isomorphism is naturally induced by the determinant map to the Jacobian
det

N ---
Thus the fibre N0of this map is simply connected. We recall that is the moduli space for stable
bundles with fixed determinant. Thus we have proved

T h e o r e m  9.12. T h e m oduli space o f  s ta b le  bundles o f f ix e d  , a n d  w ith  (n, k) — 1, is  s im p ly

connected.

R em ark . This result can also be deduced from the fact that is at least uni-rational. Its 
rationality is conjectured but not yet proved.
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Returning to the general problem of computing the relations in the cohomology ring, a careful 
analysis of the implications of the Riemann—Roch theorem applied t o /  has a good chance of 
succeeding, as was already noted independently by D. Mumford long before our involvement. 
The hope is to derive all the necessary relations from the vanishing of the Chern classes of 
beyond their dimension.

To provide evidence for this conjecture we shall discuss the rank two case in some detail 
below and roughly compare our relations with those obtained by Ramanan (1973) f°r genus 
three. Mumford is investigating this question more generally with the aid of a computer and has 
verified it up to genus five. But first it is expedient to make some general remarks on the normal­
ization of the Vkand their relation to the tangent bundle T  of This material can also be found 
in Ramanan’s paper but is considerably simpler in our context because theorem 9.11 furnishes us 
with integral generators that are a  p r io r i Chern classes of holomorphic line bundles. For sim­
plicity we shall only treat the case k — 2n{g— 1) + 1, and write for — 1.

Recall now that Vkis not unique, though its projective class is. It follows that we may twist any 
Vkby the pullback/-1/, of any holomorphic line bundle on N  relative to the projection

M x N — > N .

Under such a twist our generators ax — r1( V)and ---- F) change by and +1) cx(L)
respectively. Hence g a x — d x changes by cx{ L ) . But — is the Chern class of the holomorphic
line-bundle L  — AXDXX where Ax — det(1 .̂|TV) and — d e t/(F ). It follows that the bundle

V  =  Vk ® f - ' L - '

is now determined up to isomorphism and is called the ‘normalized universal bundle over 
In what follows all our generators will be associated to this normalized F,so that in particular

g a x —
We next relate Tto F in  the K-theory of N . For each ye JV, the tangent space to at is 

canonically given by H l {M\End Vy ).Furthermore, as stable bundles admit only trivial auto­
morphisms, H ° ( M ;  End Vy) — C.Thus in the Æ-theory of

i — T  = /(E n d  V ) .

Next observe that if, as before, Q1 denotes the line bundle of holomorphic 1-forms along the fibre 
o f /  then by Serre duality

H\M;End Vy)* ~ HEnd
whence

T * - l  = s l ( E n d V ® Q 1)

so that subtracting these two expressions yields the relation

T +  T*-2-- / {End 1)}.

As a first corollary of these relations we prove the following proposition.

Proposition 9.13 (Ramanan). T h e cohom ology group H 2(N Q; Z )  is  infinite cyclic  a n d  is  g en era ted  

b y  h a l f  the f ir s t  Chern class o f  N 0.

P r o o f  Recall that the Riemann-Roch theorem in our present simple context is given by the 
formula

ch ( f  W )  = / ,{ c h ( ^ ) } { l - H ,

 on January 17, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


Y A N G -M IL L S  E Q U A T I O N S  O V E R  R I E M A N N  S U R F A C E S  683

where (ogH 2(M) is the orientation class on A/, Wis any holomorphic bundle on M  x N, an d /^
denotes integration over the fibre M.

Applied to End Vthis leads to the relation

— chx( T) = chit/i End = /* c h 2(End

while with IV = V it yields the formula:

dx -- c h f fV )  = -Z/'*{ch1(F)-(u}+/*(ch2 F).

Here of course clq denotes the part of the character of dimension 2 so that in terms of the Chern- 
classes

chx = cich2 = -  c2.

Now recall our definitions of the arand bras Runneth components relative to a fixed base
They imply the formulae

Cr  =  d r +  S  Uj

where cr — cr{V) and ar, f r, b}are classes on Nidentified with their pullback to x We also
write

for these relations, so that
Cr — dr + £r ®

Zr-

As a consequence note that the are nilpotent of order three: £r£s£t — 0, and that = 0, 
while £r£s is a multiple of co.We therefore set

g  =

and £4s = Ars(o, r ^  s.

In terms of the skew form given by the intersection pairing in that is

we have
- ^ r r  =  ^ 2  M'ij b r  b l ,  —  b f  bs

so that these are integral non-degenerate forms in the br. They are pertinent for our purposes 
because of the following easily proved result.

The push-forward f* c a of any monomial in the cit is given by a universal polynomial Pa(a, ) terms 
of the variables aafiand A ii}i — 1, n.

For example
/*  c\ =/*(<zf + 2a£ + + co)

= 2 (sli + J n ),
so that by our formula for dx

dx = -  gax + axf x + An ~ /2-

Now f x — 2 ng+ 1, as we are dealing with V,whence

d\ = {(2n — 1) £ + 1} % + An —

Together with the normalization dx — gax this yields the formula

/ 2 = {(2»- 1)^+ l}sli+An ,
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and at this stage we are ready to compute T).Recall first that for any ^-dimensional bundle

c2(End V) = ( n - i )

Hence ĉfEnd V) — ch^yjEnd

--- -/*{(”
= — {2 (»—1) cti/i + ̂ n )  ~ 2w/̂ }
= — 2(a1+ A 11)>

so that
c1{'T) — 2 (ti1+ An).

The first part of our proposition now follows by restriction to JVq. The second part also follows 
because axmust generate H 2(N0,Z) by theorem 9.11. Note also that dim/72(A0) — 1 from the
Poincare series for N0.

Before proceeding to a more detailed account of the case = 2, observe that if we define the 
total Pontryagin class ̂ (T) of T  as the product of the total Chern classes of T  and T*,

then our relation for T  + T*in K(N) implies the formula

p{T) -- c(EndJQ*,

This follows from the Riemann-Roch theorem, or also from the fact that the support of 1 
is at a point of M  and c^Q1 — 1) = 2  g.The formula is especially simple in the rank 2 case where 
(cf. Newstead 1972)

r(End V\N) — l + (ctf — 4æ2).

Thus the ring Pont ( T)generated by all the Pontryagin classes of T  is actually generated by the 
single element (a2 + 4<z2) — —pv

Newstead made two conjectures about the Pontryagin and Chern classes of first of all that 
Ci(T) = 0 for i > 2g,and secondly that Pont (T) = 0 in dim > 4 The first of these conjectures
has been recently proved by Gieseker (1982). The second conjecture remains open but, in view 
of our formula for p(T), is equivalent to the assertion that pi --- 0 .

We turn now finally to a more detailed examination of the relations we are after in the rank 2 
case. Here we have to deal with only two Chern classes for and they are given by

cx — ai +  £1 + ko>, 1-1,

C2 ~ a2 + ̂ 2 + {(2^ + 1) ^  +A 11}

where we have substituted for f 2the expression already found earlier. Applying the Riemann- 
Roch procedure one therefore obtains universal polynomials in
such that

Hence the relations take the form
Cq{f\ V) =

Qq(a ',A ) = 0 for q > 2gy

so that the ‘first’ of these asserts that
Qigfai ̂ 1) 0 .
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To analyse the implications of this relation further, recall the diagram

N /J q

which gave rise to the decomposition over Q,

H*(N)

of proposition 9.7. Note in particular that y *is an isomorphism over Q. I t follows that if we 
introduce the new rational classes

hi = n* (y*)-U*bl,j  = 1, ...,2F, 
ak = 7s*(t/*)*1**^ * = 1,2,

then these will generate 7t*H*(N/J0) so that as a A* (£j[)-module, is freely generated by
their span.

In terms of these variables, and the corresponding A , our polynomial Qff(a,A) is now trans­
formed into a polynomial Rg(a;A) and if this expression is expanded in terms of the basis

b\ — by}... bŷfiy < < ... <

for A * ( b {),then Rg(a,A) = 0 implies that each coefficient in this expansion must vanish. Equi­
valently one can multiply Rgby b{ and integrate over the fibre of tt, to obtain

7T* b{Rg(a; =  0,

yielding a large number of relations in ax, a 2 and b\.
To carry out this process one first of all has to determine the old generators in terms of the 

new bold-faced ones, and this is done quite easily by observing that End V descends to N /J0 
so that the characteristic classes of End Vcertainly are in the image of Thus + An  is in
the image of zr* and restricts to r* axon N0 whence

ax A-Xor = —

Similarlypx(T) is in this image. Hence

7r* (r)*)~l i*(a\ — 4ct2) — ax — 4a2.

On the other hand as z'*, y *and n *are ring-homomorphisms the expression on the left is also 
equal to a\ — 4a2. Eliminating one obtains:

a2 = a2 — |A 11o1 + JAfi.
Finally to determine b\consider r2(End V) = c\ whose Runneth components must again 

all be in the image of n *.Applied to the first mixed component this yields the result that
(2a, b\ -  4

is in the image of 77*, whence
b\ = b2 + A-f) b\.

Let us now expand our first relation Rg(a,A)in terms of An and A12, when = 3. Also, in 
part to avoid subscripts and in part to come closer to Ramanan’s notation, let us set

h = a l5 v = a2, = A 22
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and
to — A n , — A 12.

Then for dimensional reasons the possible monomials in and occurring in R3 are given by 
the following table:

Here the dimension of a term relative to the b{is indicated on the left and the total dimension 
below. The total dimension of R3is 12 so that the coefficient of one of these monomials (which is 
a polynomial in h,v and 6)must make up for the deficiency in the dimension. Note further that 
every element in the top row must be a multiple of A ... A — ĝ>6. Hence is also such a 
multiple and, as is easily checked, is in fact given by

A2o)2 — const, x

In short then, the expression R3takes the form

R3 — A g gj2 + B^Au)2 4- C*8(i>2 + D + EqA2 + + . . . .

The first two relations now follow immediately. We must have

A6 = 0 and R\b\ = 0, i — 1,.. . ,  n.

At the next level more care has to be taken as the two terms interfere. One procedure is to 
write down the implications n%(oRg ----- 0, and — 0 with mgA2(^, ...,5”), subject to 
u(o2 — 0 . The first of these leads to a relation of the form

C8 + const, x 62D2 — 0
while the second one implies that

D2x----- 0 for all x e A 2(b I,..., b2)of the form n*uA2, with — 0 .

In short then, in these and subsequent relations the decomposition of A*(b\) into primitive 
classes relative to (omakes its appearance, and as is really not too surprising this decomposition 
corresponds under tt* to the corresponding decomposition under in ..., . Thus the last
relation is equivalent to

D2 x — 0 for — 0 .

Similarly the EQA2 term produces the relation
EqX — 0 for x e A 3(bQwith — 0 .

We have traced the nature of these five relations so carefully because they correspond precisely 
to the complete set of relations actually found by Ramanan in this case using a quite different 
method. Here are his relations:

(1) 3 h2 — 10 hv —49 — 0,
(2) (h2 — 2v)V = 0{V = span of b{),
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( 3) (A2 —Sv)v= 0,
(4) hx = 0 , for xeA 2V, with xO2 ----- 0 ,
(5) y — 0, for y eA3F, with yd ----- 0.
This concludes our remarks on the relations among the generators of theorem 9 .11 . Clearly 

the computations involved in carrying out the programme laid out here are quite astronomical 
and therefore appropriately best left to a computer. Note that in the present case of genus 3 the 
single equation c20is\F) = 0 implied all the necessary relations. On the other hand it is dis­
appointing, and shows how deep Newstead’s conjectures lie, that even with all the relations 
before one, the formulae px{T)° — 0 and c{( T) = 0 for i ^ are by no means obvious.

Finally we revert to the geometry of the moduli space N(n, and show that it inherits a natural 
Kahler structure. The essential observation is that the space j/  of unitary connections has a 
natural symplectic structure: if a, pare two ad (P)-valued 1-forms on M  they have a skew product 
j  M a A P (we recall that this uses the inner product in the Lie algebra). This symplectic structure 
is preserved by the action of &.Moreover the curvature

-+Q2(M ;ad (P))

can be identified with the corresponding moment map. To see this we first note that , ad (P)) 
is canonically dual to Q°(M, ad (P)), which is the Lie algebra of Hence for any ad (P))
we have a real-valued function on s/,defined by i^(A) ----- To say that is the moment
map for the ^-action on $0means that the Hamiltonian vector field on j/  defined by F  ̂coincides 
with the vector field given by the Lie algebra action of Equivalently we have to show that, 
for any r/reQ1(MJ ad (P)),

(9 .14) (<& **)=  As.

But, as we saw in §3, the left-hand side is equal to J(d A <j>. Since d^ is a derivation and 
fd(^ A <p) — 0 we have the usual formula for integration by parts

J (dAf )  A<p=
which verifies (9 .14).

The constant central £7(1) subgroup of & acts trivially on corresponding to the fact that the
function ftrace FAis constant and equal to — 2nik(where is the Chern class).

The moment map is ^-equivariant and so to every orbit <= Q2(M, ad (P)) the inverse image 
F-1(C) c j/is  ^-invariant. The quotient F-1(C) is sometimes called the Marsden-Weinstein 
quotient. Under appropriate non-degeneracy conditions, it is a manifold and it inherits a natural 
symplectic structure from that of stf.In particular taking C to be the orbit given by the Yang- 
Mills minimum (i.e. the constant conjugacy class with all eigenvalues — 27ti we obtain the 
moduli space N(n, k). Thus N(n,k) inherits a natural symplectic structure.

The symplectic structure on stf together with its natural metric defines the complex structure 
of ^ .Similarly the induced symplectic structure and metric on N  define its complex structure.
Thus Yis a Kahler manifold.

Note that the tangent space to N  at Eis /^(M, End and it is easy to define the metric, 
complex structure and symplectic structure on this tangent space. What is not immediately clear 
is the global integrability condition of the complex and symplectic structures so defined on 
The complex structure becomes clear by expressing N  as the quotient ^S/Aut (E) while the 
symplectic structure is similarly transparent as the 6 Marsden-Weinstein quotient’.

4 6 Vol. 3 0 8 . A
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10. T he s t r a t if ic a t io n  for  g e n e r a l  6

In this section we shall indicate briefly how to extend the results of the previous sections from 
U (n)to general compact Lie groups G.We shall content ourselves now with the basic results about
ra tion a l cohomology, since the presence of torsion in G  makes it difficult to say much in general 
about in tegra l cohomology.

On the algebro-geometric side the work of Narasimhan-Seshadri has been extended to general 
reductive groups by Ramanathan (1975). We shall, however, adopt a slightly different, although 
equivalent, approach to stability and the canonical filtration, reducing everything to the vector 
bundle case by a systematic use of the adjoint representation.

The general set-up is much the same as before and we shall use the same notation. Thus we 
start with a given C°°principal 6-bundle P  over M  and we denote by the space of connections 
and the group of automorphisms. It is again true that a connection on defines a holomorphic 
structure on Pc, the associated bundle with group the complexification of Conversely a 
holomorphic 6c-bundle together with a reduction of structure group to determines a canonical 
6-connection (Singer 1959) so that we may identify j/  with the space of holomorphic structures 
on Pc.

To proceed further we need to introduce the appropriate stratification of by strata 
analogous to the Harder-Narasimhan stratification for the case of G L {n ) . We shall in fact define 
such a stratification by using the canonical filtration of the vector bundle ad (Pc) in an appropriate 
way. First of all, however, we need a few lemmas concerning vector bundles.

We have already noted in §8 that a semi-stable vector bundle of slope (or normalized Chern 
class) si has a filtration with stable quotients of slope /t. The converse is also true in view of lemma 
7 .5 . This enables us to extend results for stable bundles to semi-stable bundles by induction. In 
this way we shall prove

Lemma 10.1 . I f  E ^ F  are sem i-s ta b le  o f  slopes /jl, v  then E ®  F i s  sem i-s ta b le  o f  slope  / i  +  v .

P r o o f  Consider the first case when E,Fare both stable. According to the Narasimhan- 
Seshadri theorem 8.1 they then arise from unitary representations of the extended fundamental 
group r R (as in § 6) with slopes/t, v.The tensor product then arises from the tensor product
of the two unitary representations. This tensor product is not necessarily irreducible but, being 
unitary, it is a direct sum of irreducible pieces. Moreover the slope of a representation is given by 
the character of the centre of r Rand this therefore takes the same value on all the irreducible
pieces. Hence E®Fis a direct sum of stable bundles of slope and so is semi-stable and of 
the same slope. Now we move on to the general case and use nitrations of and with stable 
quotients D pG k respectively. The tensor product then inherits a filtration with quotients 
Dj ® G k, which as we have just proved are stable and of slope Hence semi-stable
and of slope p + v.

For our next lemmas, which concern general vector bundles it will be convenient to intro­
duce some additional notation. Let

0 = E0c  E x c  E2c  ... c  E r

be the canonical filtration of Ewith semi-stable quotients

l) slope (Dj) — j) Pi > >
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We shall write
in f#  — fir) sup is =

Thus Eis semi-stable if and only if inf is — sup J?.
The next lemma is then a straightforward consequence of lemma 7.5, with double induction 

on the steps of the canonical nitrations.

Lemma 10.2. inf is ^ ^ i f  a n d  on ly i f ,  f o r  every F w ith  sup < si, every hom om orphism  F-+E is  zero . 

Using (10.1) and (10.2) and again using double induction one obtains
Lemma 10.3. inf (is ® F) = inf is +  inf .F.
With these vector bundle lemmas out of the way we return to consider a holomorphic Un­

bundle £ over As.Let E = ad (£) be the vector bundle associated with the adjoint representation, 
so that Eis actually a holomorphic bundle o f  L ie  a lgebras. Since the Lie algebra of has a non­
degenerate invariant quadratic form so does the bundle In particular is self-dual so that its 
canonical filtration must be of the form

0 <= E_r c  E_r+1 c  ... c= E_x ... <= Er_x c

where E_jis the polar space (relative to the quadratic form) of We have indexed things in 
such a way that D0 — E0/E_xhas slope zero. Since is the polar space of£"0 we have an induced
non-degenerate quadratic form on D0.

Consider now the Lie bracket
<f>:E0(g) E0-+E/E0.

Since inf (E0 ® E0) = 0, by (10.3), and supE/E0 < 0, lemma 10.2 implies that 0  = 0. Hence
E0is  a  L ie  su b -a lg eb ra  bundle of E.For similar reasons

\E_p E_J c  E_j_± for ^ 0

so that E_xis a nilpotent ideal: it is the nilpotent radical and the reductive quotient of 
It now follows (see lemma below) that E 0is a p a ra b o lic  sub-algebra bundle, i.e. it contains (over 
every point of As) a maximal solvable (Borel) sub-algebra. Now a parabolic sub-algebra generates 
a parabolic subgroup and this is its own normalizer. Hence the sub-algebra bundle c  ad (£) 
determines a reduction of the structure group of £ to this parabolic subgroup We denote this 
new principal bundle by £Q and call it the canonical parabolic reduction of £.

For Gc =  G L (n , C)the parabolic subgroups are the stabilizers of partial flags and a parabolic
reduction of the principal bundle is equivalent to giving a filtration of the associated vector 
bundle. We shall now show that the canonical parabolic reduction defined above does indeed 
coincide with the canonical filtration of Harder-Narasimhan. So let F be a holomorphic vector 
bundle and let

0 = F0cF1c f 2c . , .c F r = F  

be its canonical filtration so that the associated quotients

W, =

are semi-stable and have slopes fî  strictly decreasing withj. The adjoint bundle E is now End 
The filtration of Vinduces a filtration

0  — E ~ rc  . . .  c  E _1 Ec i  c  . . .  c= E r~1,

4 6 -2
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where <p is in E*provided c: Vi+jfor all r. Thus consists precisely of endomorphisms 
preserving the filtration of V so that

E°/E~1 z  ©Ends*.
i

More generally
Ef/E*"1 z  ©Horn (h,

i

In view of (10.1) it follows that EQ/E~X is semi-stable of slope 0 while
inf is-1 > 0 supÆ’/jE'0 < 0.

Comparing the filtration Eiof E  with the canonical filtration and using (10.2) it easily follows 
that is0 coincides with E0and E~xwith E_vThus the two parabolic reductions do in fact agree.

Remark. Note that the filtration E j does not totally coincide with the canonical filtration 
it has to be further refined depending on the particular sequence of slopes before it does so. 

Next we shall prove
Proposition 10.4. The canonical parabolic reduction is functorial with respect to group homomorphisms. 
Thus let <f>: GC->HC be a homomorphism, £ a principal Gc-bundle, and = 0 (£) the associated 

/fc-bundle. Then we have a homomorphism of Lie-algebra bundles
^:ad (£) -> ad (-/).

Since Gcis reductive the homomorphism of Lie algebras induced by has Gc-invariant comple­
ments to the kernel and image. Hence putting (£), = ad we can decompose
<p:E->F into split exact sequences

0 —>  K  —> E  —$■ I  —>■ 0, 0 —> I  — jp1—> J  —> 0.

Now for any direct sum A ®  B of vector bundles it is easy to see, using 10.3, that the parts of the 
canonical filtration with slope ^ 0 are additive: ® = ® Applying this to our
situation we see that

Fq = Kq ® / q,

so that <p sends E0into F0. This proves that the canonical parabolic reduction of is induced 
by that of £.

For a vector bundle we defined its type si in terms of the Chern classes of the semi-stable 
quotients of its canonical filtration. We shall introduce the corresponding notion for a general 
group. Thus let £ be a principal Gc-bundle, £0 its canonical parabolic reduction. To every 
character xof Q(i-e. a homomorphism x-Q^C*) we have a line-bundle over and so
an integer Chern class ciX(£q)-In this way we obtain a homomorphism
(10.5) Q ^ Z ,

where Qis the abelian group of characters of Q. This will essentially be our type. To see more 
clearly what it involves let us pass to the reductive quotient of i.e. the quotient by its uni- 
potent radical R(maximal connected normal unipotent subgroup). For GL(n) we have

S = GL(ni)x ...x G L {n r)

where the njare the dimensions of the quotients in the canonical filtration. Clearly that
for GL(n) the homomorphism Q-+Z consists precisely of assigning the Chern classes kx, ...,kr to
appropriate semi-stable factors. The general case is similar in that is a lattice of rank equal to
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the dimension of the centre of Sand the type will then be a vector in the dual lattice. Now for 
GL(n) we found it convenient to replace the sequence of kj) by a single re-vector and we shall
reinterpret our type in a similar way for the general case.

The group Qis the semi-direct product RS.In fact can be identified with the complexifi- 
cation Kcof the maximal compact subgroup of K .If 7̂ , is the connected component of the centre 
then a character of Sdefines a (unitary) character of and the map is injective with finite
cokernel. Now we may assume Kc: Gand that the maximal torus of is contained in the
maximal torus T  of G.Passing to characters gives surjective maps

while taking Horn ( , Z) gives an inclusion of the corresponding dual lattices

Z/q - Lt ^

Each lattice here can be identified with the integral points in the Lie algebra of the corresponding 
torus (i.e. the kernel of exp 2izi).The lattice Horn Z) then contains as a sublattice of finite
index. In particular we may view Horn (£, Z) as a subgroup of the Lie algebra of In this way
the type of our O-bundle £ becomes an element of the Lie algebra of T.

For GL(n,C) our vector p  satisfied the inequalities

which describe a fundamental chamber for the action of the Weyl group The choice of this 
chamber derived from the parabolic subgroup determined by the complex structure. From the 
unitary point of view p, or rather its tV-orbit, corresponds naturally to a conjugacy class in the 
Lie algebra of U(re) and this (up to 2m) is the curvature of the Yang-Mills connection associated 
with p .In this way we saw that each stratum ^  contains a unique component of the Yang-Mills 
connection. For general groups the situation is now exactly the same: determines a conjugacy
class in the Lie algebra of Gand hence a component of the Yang-Mills connection. The group 
is the local holonomy group and this determines the integrality conditions on

The stratum consisting of all £ of given type has a conormal bundle whose fibre at £ is 
ad (£) /E 0)where E0is as above the canonical parabolic subalgebra of ad (£).

If  p: G->His a homomorphism and £ is a Gc-bundle of type then proposition 10.4 implies
that p(£) is an 7/c-bundle of type />(/*). Here p  and are best considered as conjugacy classes 
of the appropriate Lie algebras. Even if p is an embedding does not necessarily determine /t,
but the Peter-Weyl theorem implies that if p(ji) = for all unitary representations of 
then p — v. Thus we have

Proposition 10.6. A Gc-bundle £ is of type p if  and only if p(£) is of type p(p)for all unitary repre­
sentations p of G.

This proposition, together with (7.8), which describes the closure properties of the strata for 
£/(re), enables us to derive similar results for every Thus let be a stratum for G lying in the 
closure of ̂  Then (10.6) implies that p ^ )  — lies in the closure oT8^> for all Hence by 
(7.8) we have p{A) ^ p{p)for the partial ordering on conjugacy classes of tt(re). But by (12.18) 
this is equivalent to A ^  pwhere this is the partial ordering on conjugacy classes of g defined in 
§ 12 (and corresponds to inclusion of convex hulls). Thus (7.8) holds for all

As with the unitary case the conormal to the stratum ^  at £ can be identified with

/ f i ( M  ad (£)/% )
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where £ 0 gives the canonical parabolic reduction of §. Since inf (ad (£)/£<>) < 0 lt: follows tha* 
H°(M, ad (£) /E 0)--- 0 and by Riemann-Roch we can compute the complex codimension o
Vp,One finds the following generalization of (7.15):

(10.7) d = £  {aW + ^-1 } ,

where a runs over the positive roots of G, and si is the representative in the positive Weyl chamber 
(so that a{fi)̂  0). In particular we see that

(10.8) d„ — 0o /£  is in the centre.

In this case p  is uniquely determined by the topology of (there will be one Chern class for each 
circle factor in the centre). We define this stratum to be the semi-stable stratum. it is necessarily 
open and non-empty. Moreover pis central if and only if ad — Oso that we have in this case
the following strengthening of (10.6).

Proposition 10.9. A Gc-bundle £ is semi-stable if  and only if  ad is a semi-stable vector bundle.
As with the unitary case a general stratum ^  is equivariantly equivalent to a semi-stable 

stratum for the group K .Moreover the connected centre of acts on H l{Mi ad (£)/E0) with 
no trivial character: in fact the connected centralizer of 7  ̂in is just

We now have all the ingredients to deduce as in (7.14)

T heorem 10.10. For any G the stratification of ̂  by the ̂  equivariantly perfect over the rationals so 
that for Poincare series we have

=  s
/*

where d̂  is given by (10.8).
In principle this enables us to calculate the equivariant cohomology of the semi-stable stratum 

by induction on the dimension of G.The point is that, for any other stratum the equivariant
cohomology is equal to that of a semi-stable stratum for a proper subgroup of namely the 
maximal compact subgroup of the parabolic subgroup of Gc determined by When U{n) 
the group Kis always of the form U (nx) x ... x Z7 (nr) and so our induction in the unitary case did 
not use other groups. However, for general Gthe groups that occur are centralizers of tori and 
can be of many types.

To relate this to the Morse theory for the Yang-Mills functional we note first that, after 
suitable normalization Lis functorial for homomorphisms of Lie groups. Hence (10.6) together 
with (8.13) enables us to deduce, for any G,

(10.11) A of type p=> L(A)̂  --- |/t|2.

On the other hand our description of Yang-Mills connections shows that every stratum ^  does 
in fact contain a critical set jY'̂ so that, on achieves its minimum. To go further and 
establish the generalization of (8.20) we need the following lemma, in which denotes the 
central extension of tt1(M) by Rdefined in §6.

Lemma 10.12. A holomorphic Gc-bundle £ arises from a homomorphism p : r R-> G if  and only if  ad (£) 
arises from a unitary representation of PR.

Proof In one direction this is trivial. For the converse let ad arise from a unitary repre­
sentation of PR,and consider the Lie bracket homomorphism of vector bundles:

ad (0  ® ad (£)-> ad ( £ ) .

M. F. A T IY A H  AND R. B O T T
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Both sides are vector bundles arising from unitary representations of and, as proved by 
Narasimhan & Seshadri (1965), this implies the homomorphism is covariant constant. This means 
that ad (§) as an ad (G)-bundle comes from a homomorphism ad (G ).It is then easy,
using the theory of line-bundles, to lift this to a homomorphism : -> G, which will, on extension
to Gc, define £.

Arguing along the lines of §8 and using (10.12) one can then prove 

Proposition 10.13. I f  a holomorphic Gc-bundle £ is of type p then

m£L(A) =
A

where A runs over all compact connections on £.
Quite likely (10.11) and (10.13) hold for all convex invariant functions on the Lie algebra of 

G: they certainly do for any <pinduced from a representation.
To sum up therefore we see that the picture for general G is in practically all respects similar 

to the unitary case, with the notable difference that we have had to switch from integral to 
rational cohomology.

11. C o m pariso n  w it h  H a r d e r - N a r a sim h a n  a p p r o a c h

As mentioned in the Introduction the Poincare polynomials of the moduli spaces of stable 
bundles have been computed by number-theory methods in Harder & Narasimhan (1975) and 
Desale & Ramanan (1975). In this section we shall compare those methods with ours.

We begin with an example by spelling out in detail our results for the simplest interesting case, 
namely for n = 2 and k = 1. Our basic theorem 7.14 becomes

(11.1) &Pt{Vs) + i  t^ r̂ ^ p t{% =
r= 0

where ^P tstands for ^-equivariant Poincare series and is the stratum corresponding to 
unstable bundles of type (r+ 1, -r)(i.e. of the form (11.10)). As shown in§9 (see (9.3) and (9.7)), 
for the stable bundles we have

P A m mWFAW*) -  — t—  -  1_*2

For the unstable stratum ^  we apply (7.12) to see that

m m  =

Finally for the whole space we apply theorem 2.15, which, for = 2, gives

m m = p a b v ) =

Substituting these into (11.1) and cancelling a common factor (1 +Z)2/(1 — f2), we get

(11.2)

Summing the geometric series we see that this gives the formula
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It is true, though not entirely transparent, that this rational function is in fact a in
with non-negative integer coefficients (giving the Betti numbers). Moreover

dimiVr0(2, 1) = 6

and so Poincare duality requires that

(11.4) Pt(N0)-  t«°-«P1/t(N0).

We turn now to summarize the methods of Harder & Narasimhan.
We begin by taking a curve Mof genus gdefined over a finite field The ^-function of M

then has the form

(H-5) £m {s ) = {.rf (1 - <M~S)j ,

where the (oi are algebraic integers (depending on with — We now consider vector 
bundles Eover M  that are defined over Fqand have given rank n and fixed determinant of degree 
This means that we fix the isomorphism class of the line-bundle — detis. Then the Siegel 
formula is the following:

|  = F I  . . .m

where the sum is over all isomorphism classes (with det-E" fixed), and | Aut (E) | is the number of 
automorphisms of E.

Thus (11.6) counts the number of isomorphism classes of each being weighted inversely by 
its number of automorphisms. In particular stable bundles that admit only scalar automorphisms 
occur with weight (q— I) -1 and so contribute

(11.7) m n , k ) \ / ( q - l )
to the sum in (11.6), where the numerator denotes the number of classes of stable bundles of 
rank nand determinant L  (of degree k)defined over Fq. Now when (w, k) = 1 the moduli space 
NL(n, k) of stable bundles of rank n and determinant L isa  projective non-singular variety and we 
can suppose that it is also defined over Fq(if not replace Fq by a finite extension). Then, as the 
notation suggests, the numerator in (11.7) is just the number of points of the moduli space that 
are defined over Fq.By the Weil conjectures, as established by Grothendieck and Deligne, the 
numbers of rational points over Fqn,for all n, determine the Betti numbers of the ‘corresponding 
variety over C. In our case this means the moduli space for stable bundles of fixed determinant 
over a Riemann surface of genus g :the variety denoted in § 9 by N0(n, k) .

In this way (11.6) will lead to a formula for the Poincare polynomial Pt (W0(w, A;)) provided we 
can deal with all the terms arising from unstable bundles. This can be done inductively, but for 
this purpose we need to consider also the non-coprime case and so we introduce

(II*8) /?(w, k) = S  nr  i  / T?\ I summed over semi-stable E.| Aut (E)|

Using the canonical filtration of Harder-Narasimhan explained in § 7 we can collect together 
in (11.6) all terms of the same type. These can then be summed explicitly in terms of y?(nf, 
and the number of rational points Jqon the Jacobian of M. Now in terms of the v t occurring in
(11.5) this is given by

(“ •9) J ,=  ni = i
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Finally therefore (11.6) gives an explicit inductive formula for /?(«, in terms o with
< n. The formula is given rationally in q and the and is independent of the line-bundle 

(Desale & Ramanan 1975; proposition 1.7). To get the Poincare polynomial one
now makes the substitution
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For the purposes of comparison with our method let us now examine in detail the case 
and k = 1. In (1L6) we then have stable bundles, which contribute (11.7), and unstable bundles, 
which have a canonical filtration

(11.10) 0 ->Z1->£'->L2->0

where degZ^ = r + 1, degZ2 -- - r  for r = 0, 1, ... and Lj®  Z2 = L. To compute |Aut(2?)| 
consider separately the trivial and non-trivial extensions. For = © the automorphisms
consist of F*x F*together with the unipotents of the form 1 with

<j>e Horn (Z2, ZJ = L% ® Lx) .
Hence

|A ut(£)| = (? - l ) 2A„,

where h0 — L*® ZJ | . On the other hand for non-trivial extensions we have only one 
copy of F*and so

|A ut(£)| =

The non-trivial extensions correspond to non-zero elements L* ® Z1) and proportional
vectors give isomorphic bundles. Hence the number of isomorphism classes of bundles for 
which (11.10) is non-trivial is

(Ai-1 ) /(? -!)>
where hx — \H1(M,L* ® | .

Hence the contribution to the sum in (11.6) arising from a given (Z2 being then determined 
as L ® L*) is

1 hi — i _  
{ q - iV K *  ( q - l ) n a = I F W o '

Now by Riemann-Roch we have

dim Zf°(M, L*® Zx) — dim /^(Ads,L* ® Zx) —
and so

Thus (11.6) becomes
h jh i  —

(11.11) K ( 2 .1 ) l , J. f  1
? - l  ( q - tYr 2 ) .

Substituting for £3* (2) from (11.5) and for Jqfrom (11.9) we get
2 g 2 g  

qg-2  n  (1 -  «<) -bs-s H (1 -0 )t q~2)

If  we now make the substitution —t ,q ^ t 2 then the expression for \NL(2 ,1) | given by (11.12)
converts into the formula for the Poincare polynomial given in (11.3).

Comparing these two derivations of the formula for 1)), we see that they are formally
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very similar with (11.11) playing the role of (11.2). We note, however, that (11.11) involves a 
convergent power series in q_1 while (11.2) involves a formal power series in This makes it 
surprising that we should have made the substitution In fact it is better to make the
substitution

(11.13) q ^ t~ 2,<v4-> - r 1.

In view of the Poincare duality formula (11.4) we must now get

(11.14) \Nl (2, l)\^t*-«0Pt(No( 1)).

Making the substitution (11.13) in (11.11) we see that, after removing the factor I) -1 and 
multiplying by q6°~6,we get precisely (11.2), with a correspondence term by term.

If we were to compute for n = 2and k = 0, we could still compare (11.6) with (7.14) but we 
would not be dealing with the moduli space. Thus the leading term in (11.6) is the quantity 
/?(2, 0) defined in (11.8), while in (7.14) it would be the equivariant Poincare series of the semi­
stable stratum. Instead of (11.11) and (11.1) we then get

(i i . i6) y P ti^ B s )  +  i  t ^ r + o - i) --
r= 1

where the stratum ^  corresponds now to extensions (11.10) with deg Lx — r, deg L2 
Comparing these two formulae we see that the substitution (11.13) now leads to

(11-17) A(2> 0)

the denominator (1 arising only because on the right we did not fix the determinant.
We see therefore that, by making fi(n,k) in general correspond to the equivariant Poincare 

series of the semi-stable stratum, (11.6) and (7.14) lead to identical inductive procedures. It 
remains now to explain the origin of (11.6) and its relation to (7.14).

Just as the Jacobian arises classically as the group of divisor classes so moduli spaces of vector 
bundles can be viewed in terms of ‘ matrix divisor classes’ as originally described by Weil (1938). 
In modern terminology this is best formulated in the language of adeles. Thus let be the 
function field of M  over Fqand for any affine algebraic group let GA be the adele group of K, 
i.e. the restricted product of GKwherep runs over all valuations of and Kp is the corresponding 
local field. Then GAis a locally compact topological group and is a discrete subgroup. For 
G — GLnithe isomorphism classes of vector bundles of rank over M  (defined over Fq) are in
bijective correspondence with the double coset space

where K is a maximal compact subgroup of GA.To understand this correspondence one should 
think of ®\Ga as a (multiplicative) matrix divisor and dividing by GK as rational equivalence. 
In terms of bundles it corresponds to describing a bundle by a basis of meromorphic sections. 
If we take G ----- SLnthere are different maximal compact subgroups K for different choices of the 
line bundle L — detZi, and the corresponding double cosets are in bijective correspondence with 
classes of L-oriented bundles, i.e. bundles Etogether with a chosen isomorphism detZs ~ L. Now 
on Ga one introduces a special choice of Haar measure, the Tamagawa measure r. The total
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measure of GA/GK is finite and is called the Tamagawa number. For SLn it turns out to be 1. 
Decomposing GAjGK into K-orbits then leads to the formula

S t ( « / iy  =  t ( =  l ,

where a runs over the orbits and is the (finite) isotropy group of the orbit. Dividing by r(K) 
then gives
(11.18) s 1 1 

E T  W
If we denote by |£'| the number of inequivalent orientations on then for each orientation a 
on Eone has

|Aut (E)| _ |F*| _ £-1
i* . i i* i i* i '

Hence if we rewrite (11.18) as a sum over isomorphism classes of vector bundles with fixed 
determinant, by ignoring the orientation, we get

1 1
((7~ l j §|Aut(Æ)| “ r(ft)#

This is the same as (11.6) in view of the formula
(11.19) T(S)-1 =

The factor q — 1 = |F*| has arisen because of the passage from GLn to SLn.
In comparing the derivation of ( 1 1 .6 ) and (7.14) we see that in both cases we start from an 

infinite-dimensional space that describes all bundles, but in a redundant fashion. In one case this 
space is GA/GK while in the other it is the space As already noted the first description of 
algebraic bundles relies on the fact that every bundle is trivial over i.e. that it has a basis of 
rational or meromorphic sections. In the Riemann surface case we used instead the fact that all 
holomorphic bundles with the same degree (or Ghern class) are differentially equivalent.

In both cases we now stratify this infinite-dimensional space according to the type of the bundle, 
so that we have a unique open stratum given by semi-stable bundles. Moreover we have a group 
acting, preserving the strata, so that the equivalence classes represent isomorphism classes of 
bundles. In one case the group is K, the maximal compact subgroup of while in the other it 
is the group of C°°complex automorphisms. These equivariant stratifications can now be used 
to compute appropriate invariants. In the number-theory situation we compute Tamagawa 
measures to get (11.6) while in the geometric situation we compute equivariant cohomology to 
get (7.14). The parallel between these two procedures should be viewed as similar to that 
involved in the elementary computation with Pn(C) in the Introduction. There are two notable 
differences here. In the first place the spaces concerned are infinite-dimensional and in the 
second place we work with equivariant notions relative to the appropriate group.

In these parallel treatments we see that in both cases the infinite-dimensional space itself is, 
in the appropriate sense, trivial. Thus the space is contractible so that its ordinary Poincare series 
is identically 1, while the Tamagawa number of GA/GK is also equal to 1 (notably it is inde­
pendent of q). The next step is to ‘ divide' in the appropriate sense by the group action and to 
compute the result globally and locally and equate. On the global level we see therefore that the 
equivariant Poincare series of which is the same as the ordinary Poincare series of and was 
computed in (2.15), corresponds to the measure t(%)- 1 given by (11.19). Using the explicit
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formula (11.5) for £m (s)and applying the substitution —/-1, q-+t~2 we see that except
for trivial factors corresponding to the difference between and GLn and a power of t (related 
to the dimension of the moduli space)

( 11.20)

Thus the ‘global’ terms in (11.6) and (7.14) correspond. On the other hand each stratum or 
type /iproduces a ‘local' term in both cases and when due account is taken of the isotropy groups 
the resulting formulae in the two cases again correspond. Thus the ‘ weighted counting ’ process 
corresponds to the use of equivariant cohomology.

When we compare these two basic methods of computing Betti numbers, i.e. the number-theory 
method and the Morse-theory method, we see that in each case we need to be fortunate to get an 
explicit answer. Thus when counting up points with a stratification the answer is clearly additive 
but in general we may not know how to compute the number of points in each stratum. In the 
Morse theory method each stratum retracts onto its critical set but we have no guarantee that the 
exact sequences split, i.e. that we have a perfect Morse stratification. In our present case the 
reason why we can count points effectively is that each stratum is made up of affine spaces 
corresponding to extensions as illustrated above. On the topological side the perfect nature of the 
stratification arises from the isotropy group behaviour. This is presumably linked in some way 
with the affine space decomposition of the strata.

Another reason that sometimes simplifies the process of counting points is if all homology is 
represented by algebraic cycles. In that case Frobenius acts on by and so there are no 
mysterious eigenvalues. In our case this is nearly true in the sense that all rational cohomology 
of the moduli space Nor N0is generated, as shown in § 9, by the Runneth components of the 
Chern classes of the universal bundle on As x A. Thus the only eigenvalues other than powers of 
q arise from / f 1(Af) and these are the o)̂ that appeared above. This explains why the simple 
substitution -* _1, q-+t~2 is all that is required to convert the number-theory formulae 
into Poicare series formulae.

Now that we have described the detailed correspondence between our method and that of 
Harder-Narasimhan many questions arise. In the first place why is the Tamagawa number of 
SLn Equal to 1 ? This is not very well understood but analogy with our method suggests that it 
might have some cohomological significance. Why moreover do we have the remarkable 
correspondence (11.20) and the analogy exhibited in (11.6) and (2.9), between the separate 
factors of both sides, namely £M(k)and Pt(Map (As, K ? This and other aspects of the
comparison suggest that the basic relation between numbers of points and Betti numbers for 
algebraic varieties may have some extension to infinite dimensions in which counting of points 
is replaced by a suitable measure.

Speculating in another direction we recall that the Yang-Mills equations arise in physics and 
that to quantize them involves, at least heuristically, some process of integration over function 
spaces. Comparison with the number theory suggests that there might be a natural measure, 
depending perhaps on some real parameter t,so that what we have been computing as Poincare 
series actually turn out to be measures.
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12. C o n v e x it y  a n d  L ie g ro ups

This section is essentially an appendix concerned with the partial ordering that we have 
encountered in our stratification of the space ^ .We shall take this opportunity of giving a brief 
but essentially self-contained account, which emphasizes the role of convexity in Lie groups. 
The results are not essentially new, and can mainly be found in Horn (1954) for the unitary case 
and in Kostant (1973) for the general groups, but our presentation brings out those aspects that 
are of particular relevance to the theory of bundles and connections. In particular we stress the 
role of convex invariant functions on the Lie algebra. For an extensive account of some aspects 
see also Marshall & Olkin (1979).

For simplicity we shall begin with the partial ordering (7.7) for sequences (A1}. . ., An) of real 
numbers. Thus one defines si< A if, after arranging each sequence in decreasing order, we have

( 12. 1)

i i
2  ft j ̂  2  A, for i --- 1, — 1, 
i= 1 i=i

2  ft§ — 2  
V=1 i =1

This partial ordering occurs in Horn (1954) where it is shown to be equivalent to either of the 
following properties:
(12.2) 2  sift j)< 2 / (A,-) for every convex function f:R -+ R ;

j j
(12.3) [i — PA where A, /t e Rn and doubly stochastic matrix.
We recall that a real square matrix P — (pt]) is stochastic if ^  0 and 2jAy = * for all If in 
addition the transposed matrix is also stochastic then P  is called doubly stochastic. A theorem of 
G. D. Birkhoff identifies doubly stochastic matrices in terms of permutation matrices, namely

The doubly stochastic n x n  matrices are the convex hull of the permutation matrices.
In view of this (12.3) can be replaced by

(12.4)

where Znxdenotes the orbit of any x e R n under the permutation group and C denotes the 
convex hull of the set Cc: Rn.

Geometric notions of convexity can be dualized into statements about convex functions by 
virtue of the fact that, for C<=

xeC<xp(x)< s u p <J> for all convex 0 : -» 
c

Thus taking <J>to be a convex symmetric function on (i.e. invariant under we can see that
(12.4) implies
(12.5) 4s (ft) ^ 0(A) for all convex symmetric functions on Rn.
Since (12.2) is the special case of (12.5) for functions $(xlt ...,*n) of the form 2 ?= i/(#<) > it follows 
that (12.5) implies (12.2) and so is equivalent to all the other properties.

Schur showed that if (j — 1,..., n)are the diagonal elements of a hermitian matrix whose 
eigenvalues are Ay, then ju Â in the sense of (12.1). Horn (1954) proved the converse so that 
another equivalent of (12.1) is
(12.6) the Ay are the eigenvalues of a hermitian matrix with diagonal elements /q.

 on January 17, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


600 M. F. A T IY A H  AND R. B O T T

A hermitian matrix A is determined, up to conjugacy by U(n), by the unordered set of its 
eigenvalues, or equivalently by the orbit ZnA e Rn.If 27n/* corresponds to the conjugacy class 
C(B) of a hermitian matrix B then (12.4) clearly implies that lies in the convex hull of .
Conversely if a diagonal matrix B ,with eigenvalues fij, lies in the convex hull it must lie
in the convex hull of the diagonal parts of the matrices in ( ). But by Schur’s result this means 
that / ie R nis in the convex hull of 27nA, where the Ay are the eigenvalues of A. Hence (12.1) is
also equivalent to

(12.7) < S ) <= qX ),

where C(A) denotes the conjugacy class of hermitian matrices with the given eigenvalues A,.
As before (12.7) implies

(12.8) is(B) ^ ijs{A) for all convex invariant functions ijr on the space of hermitian ,

where BeC(/i) and AeC(X).Clearly such a convex invariant defines a convex symmetric 
function <f>on Rnby putting i/r(A) — ^(A). Thus (12.8) is also directly implied by (12.5). The
converse is not quite so clear because it is by no means obvious that convexity of on implies 
convexity of xjr on the space of hermitian matrices. We shall, however, prove that this is in fact 
true, so that (12.8) is equivalent to all the earlier properties. This proof is just as easily given in the 
more general context of a general compact Lie group, so we move on now to consider how one 
generalizes all the preceding ideas.

For a general compact Lie group G,the role of the hermitian (or rather skew-hermitian) 
matrices is played now by the Lie algebra g of G.The diagonal matrices are replaced by the Lie 
algebra t of a maximal torus Tof Gand En becomes the Weyl group Writing a set of A,, in
decreasing order corresponds to picking a (closed) positive Weyl chamber in t: this is a funda­
mental domain for the action of W .If we fix once and for all a bi-invariant inner product on g 
we get a IT-invariant inner product on t and we define C* to be the dual cone of C, namely

(12.9) x e C * o  (x ,y )^  0

In the semi-simple case C and C* are both of maximal dimension but if g has a non-trivial centre 
then C*lies in the subspace orthogonal to the centre, i.e. in the semi-simple part. The following 
lemma relating W,C and C* is then standard (Bourbaki 1968, ch. VI, prop. 18).

Lemma 12.10. x e C o ( l - c o ) x e C * fo r  all co eW .
The cone C*defines a natural partial ordering on t by

(12.11) x̂ y o x  — ysC

With this notation (12.10) can be rewritten as

(12.12) x e  C o  x̂  cox for all toe W.

For U(n) the cone Cas already mentioned is given by the conditions xx > > ... ^  the
standard inner product (x,y') — ^ lxiyi can be rewritten as

(12.13) (x,y)--- (x1- x 2)yl + (x2- x 3) (y1+y2) + ...

showing that the cone C* is given by +  ̂ ”_1 ^ + * + ^n-1  ̂+ + •••
i

2  yi >0 for 1 < z‘ < /z - 1  
i=*i
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Thus the partial ordering (12.11) reduces in this case to that given by (12.1).
The following lemma, which is an easy corollary of (12.10), generalizes the equivalence of 

(12.1) and (12.5).

Lemma 12.14. I f  x , y e C t h e n
A

y e  Wxoy<

Proof. Let us first illustrate the geometric meaning of this for ££7(3), in which case the diagram 
is as below.
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Figure 4.

The shaded region is the intersection Cwith the ‘ backward' cone centred at It therefore
describes the sety such that

yeC  and <
. . . .  AThe lemma asserts that this set is also the intersection of and the hexagon Wx. In one direction
A

this is easy because for y e Wx we have

so that
y = 2  a^cox, â 0, I X  = 1

ueW

x = ( IX ) § ^ 2 av(i)x = y

by (12.12). For the converse it will be enough by continuity to assume that is an interior point of 
C and that x — yis an interior point of C*. The directed line then meets the boundary of in a

point zand we must show that the whole finite interval of xz lies in Wx. Since the relation y e Wx 
is transitive, it will be enough to show that there is a constant z) so that, if — tz + (1 —t) x, 
with 0 ^ ^ 1, is any point in the interval zx,then

(i) c(y,z) > c(x,z),

(ii) yeW x  if t< c{xyz).
A finite number As of repetitions, where A-1 < z), will then prove that the whole interval

An
zxeWx.

 on January 17, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


602

Now let a*be the simple roots normalized to have length one, so that the a* are the unit normals 
to the faces of Cand form the basis for C*.Since * is assumed interior to we have

<#, <x*>> 0 for all r.

Since x — zis assumed interior to C*we have
i

X -Z  = 2  aiai>ai > 0- 
i = 1

Now let to* e Wbe the reflexion in the face (x, a*) = 0 so that
to* X = X 2 (x}

and define for 0 ^ t< 1 constants

bi — <a*/2(x, a*), = 1 — 2^r-
Then

bx + ^ lb̂ (oix — a. + x — x) — -V —22 
= X -t^ d id i  = *Z+( l - f )*  = y- 

Hence ye PYx provided bî  0 and 3 ^ 0 ,  and this will hold if
0 < / < 2(x,a i}/lai for all r.

It remains to examine the quantity
Z) =

when we vary # on the interval zx. Replacing a? by the variable point y = Pz + (1 — gets
replaced by (1 — t)st* and

<y, a*) = t<z, a*> + (1 -  t) (xa*> 
^ (1 — t) (x,a*) since ze C  and 0.

Hence c*(y,z) ^ c*(*,z) and the proof is completed by taking c(*,z) — min*r*(Af, z).

Remark. The partial ordering y ^ x for x e Cis the usual ordering for dominant weights of 
representations, when we consider not the Lie algebra of but its dual. The reinterpretation in 
terms of convex hulls of PY-orbits is given in Adams (1969). In our case we are interested not in 
representations but in conjugacy classes but the partial ordering is essentially the same.

Kostant (1973) proved the following generalization of the Schur-Horn theorem:

(1 2 .15) 7r(Gy) —

where yet ,  7r:g->t is orthogonal projection and Gy denotes the (7-orbit of y under the adjoint 
action. See also Atiyah (1982) for a different proof in a more general context. Using (1 2 .15), or 
rather the easier half that gives the inclusion 77 (Gy) c  PYy, we shall now prove the promised result 
about convex invariant functions:

Proposition 1 2 .1 6 . Let<j> be a W-invariant convex function on t and ijr the corresponding G-invariant 
function on g. Then xp is also convex.

Proof. For any function on Rnit will be convenient to define T (/)  to be the region above its 
graph’, i.e. all points ( x,y) with xeR n, yeR  such that y >f(x). Convexity of the function is 
then equivalent to convexity of T (/) . Recall also that T  is convex if every boundary point 
has a supporting hyperplane Ha(i.e. Tis contained in one of the two half-spaces complementary 
to Ha). Now consider the functions A \[rand the corresponding regions

T (</>)ct © Æ, <= g ©

M. F. A T IY A H  AND R. B O T T
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Because ft is G-invariant so is I '(ft) and it is therefore sufficient to prove the existence of a 
supporting hyperplane to ^ (ft)  at boundary points (A of T(^). By hypothesis T(0 ) is convex 
so we have a supporting hyperplane H <=■ t © R .Let H'  — where n is orthogonal
projection. We shall show that H'  is the required supporting hyperplane for Any point
(x,y) e T (ft)satisfies y > ft(x). From (1 2 .15) and the convexity of we see that

ft(x) >

Hence y > <p(nx) so that (nx, y)e s (^ )  and hence is on one side of This means precisely that 
(x,y) is on the corresponding side of / / ',  which completes the proof.

As with U ( n )  we can give several further equivalent definitions of the partial ordering and we 
summarize this in

Proposition 1 2 .1 7 . The following conditions x ,ye t  are all equivalent:

(1) W y ^ W x ;
(2) <j>(y)<: <j)(x)for all W-invariant convex functions t;

(3) Gyc= Gx-
(4) ft(y) < ft(x) for all G-invariant convex functions ft on g.

Proof(1) => (2), (2) =>- (4), (1) => (3 ) and (3 ) => (4 ) are all trivial. (3) (1) follows from (1 2 .15)
and (4) => (2) follows from (1 2 .16). It remains to see that (2) => (1). For this we take

<f)(x) — S  exp (ootx, e>) (t > 0),
<oeW

where the eiare a basis of C (the ‘edges’ of the cone) and let x,yeC.  In view of (12.11) and
(12.12) we have

(*, et)> (cox,et) for #  1 and all r,

I t will be sufficient by continuity to suppose that both and y are interior to then the above 
inequalities are strict so that for large tthe first term (for 1) in the sum defining is dominant.
Hence

<P(y)< <f>(x) => < # , >  <y, <?*> for all i
=> x —yeC*

=>y< xby (12.11).
Remark. Proposition 12 .17  remains true when ‘convex’ is interpreted as ‘smooth convex’ 

(or even analytic). This is clear from the proof because, for the essential implication (2)=> (1), 
we use only exponential functions.

If we take any irreducible representation p it has weights A1 ? An, which we 
may view as elements of t, so that any # e t gives rise to the hermitian matrix with eigenvalues 
Xj — (#, Â ). If Ax is the maximal weight then A and for all j  1, Ax > Ay, i.e. Ax —Ay g C * .

This means that, if xeC ,then xt> xffor j  ̂ 1, so that xx is the largest eigenvalue. Hence if
x,yeC  and we assume p(y)< p(x) then in particular < xlt i.e. Ax) < A^. If we let
run over all irreducible representations then Ax runs over all integral dominant weights and these 
span C:in fact there are / basic integral weights that lie in the edges of C and generate it. This 
proves (cf. Kostant 1973)

Proposition 1 2 .1 8 . For xfye$we have y < xop(y)  < for all unitary representations p.

47 Vol. 3 0 8 . A
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This completes our survey of convexity and essentially contains all the results we have used 
earlier. Thus in § 8 we used the inequality

*[i. a  > 4 ;  a
[A Bfor every convex invariant function <j>on u(-r), where I „ ^

block form and a, 8are the central components of D. This follows in fact from Horn’s theorem
oc 0 is in the convex hull of the En-orbit of the diagonal part of

is a skew-hermitian matrix in

and the observation that 0
A B 
C D

1. The same proof holds for the more general block decomposition also used in §8.
The result (8.21) (and its generalization to any is an easy consequence of (12.17). In fact if

A A
<j>(y) — (j){x) for all IT-invariant convex functions then Wy — and so the extreme points

/X
of these two convex polyhedra must coincide. But the extreme points of are certainly among
the finite set Wx.Hence Wx and Wy intersect and so coincide.

13. E q u iv a r ia n t  cohom ology

In this section we shall review some of the general facts about equivariant cohomology and 
establish some of the more particular results that we have had to use.

We recall first that for any topological group the classifying space BG is defined as the base 
of a principal (7-bundle whose total space is contractible. It is unique up to homotopy so that in 
particular H*(BG)depends only on G.More generally if acts on a space X  we define as
the associated bundle over BG with fibre Xand define the equivariant cohomology by

H0(X)=

so that H(BG) is now the equivariant cohomology of a point. If acts freely on X  so that X-+X/G  
is a principal (7-bundle then the map Xg->X/G has contractible fibres and so is a homotopy 
equivalence. Thus in this case

Hq{X) ~ H.
Suppose now that K is a closed normal subgroup of G, and that U s a (7-space on which K  acts 

freely (with XX/K a principal ̂ -bundle). Then the quotient group = acts on X/ K} 
and we have
(13.1) H0(X) s

To see this let Ely E2 be the total spaces of universal bundles of (7, respectively. Note that (7 acts 
on E2via Sso that E1 x E2is also a free contractible (7-space; we can thus take

X0 = X x  0 E2).
Projecting onto Xx GE2 with fibre Ex is a homotopy equivalence and

. X  x gE2 = Y x 8E2 = Y8
so that X G ~Ys  proving (13.1).

So far we have been rather imprecise about the class of topological groups to be considered 
and the reader might feel uneasy about the use of these ideas for the large infinite-dimensional 
groups <8of gauge transformations. In view of (13.1) we can effectively reduce all our application
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of equivariant cohomology to the case when Gis a compact Lie group. In fact if S is the group of 
gauge transformations of a principal G-bundle over a manifold M, it has a normal subgroup 
consisting of transformations that are the identity at some fixed base point of M  and the quotient 
group is isomorphic to G.Moreover acts freely on the space of connections so that by (13.1)

/ W )  -  H0(s*/% )

with a similar result for any ^-stable subspace of We could therefore always work in /^ 0 
and use G-equivariant cohomology if we wished.

If Kc Gand Y is a Æ-space we define its ‘ extension * to a G-space by putting — x
Note that X is just the bundle with fibre Yand base associated with the principal ŝ-bundle
G->G/K. If E is a free contractible G-space then

X0 = Ex  QX = E x gG x k Y = E x k Y — YK 
so that H0(X)s Hk (Y ).

We come now to some more specific results, which concern compact connected Lie groups G 
without torsion in their cohomology. The examples we need are just (n) and more generally 
products of the form U (/q) x ... x U (nr) .If Tis a maximal torus of G then it is well known that 
the fibration

G/T-+Bt ->B0

behaves like a product for integral cohomology and all the spaces involved have no torsion. It 
follows that, for any G-space X,the induced fibration

G / T ^ X t ->X0

is multiplicative for integral cohomology
H(X£

so that
(13.2) H0(X) is a direct summand of HT . 

or equivalently for all primes p
(13.3) Hg(X, Zp) -»Ht Zp) is injective.

Next let T  = T0 x Txbe the product of two subtori with T0 acting trivially on the connected 
T-space X.Then

XT = BT0x XTl 

so that for Zp coefficients (and any prime p)

HT{X )zH (B T * )® H Tl(X).
Now H(BTq) is a polynomial ring and so any a0eH(BT0) with a0 # 0 is not a zero-divisor in 
Ht{X). More generally if oceHt(X) restricts to such an a0, i.e. if

a = a0 (x) 1 + terms of positive degree in HTl(X),
the same holds. This follows on filtering by the degree in HTl(X) and noticing that acts via a0 
on the associated graded module.

In our application the element a0 above will occur as the Chern class of a vector bundle 
over BT0arising from a representation N of T0.For dim 1 the assignment

4 7 -2
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gives rise to an isomorphism
f 0 ~H*(BT0,Z ),

(where T0is the character group of 7 )̂ which we shall consider as an identification. The whole 
cohomology ring H*(BT0iZ) can then be viewed as the symmetric algebra of the lattice 
For an re-dimensional representation Ntherefore we decompose

n
N =  2  L,

/ - I
into one-dimensional representations, and n

cn(^T0) — sii=1
If each Ljis primitive, i.e. is not divisible in f 0 by any prime />,we shall say that is primitive. In 
this case cn(NTo) is clearly non-zero when reduced mod/> for any p.

We shall now put all these remarks together into the following.
Proposition 13.4. Let X  be a connected G-space on which some sub torus acts trivially and let N be

a G-vector bundle on X. Assume that the representation the fibre of N is primitive and that H{G) has
no torsion. Then multiplication by the top Chern class a — cn(N0) on H0(X, Zp) is injective for all primes p.

The proof follows from 13 .3, which allows us to restrict from to a maximal torus 7J>, so 
that we are in the situation just discussed.

14. S o bo lev  spaces

In this section we shall show, by introducing appropriate Sobolev spaces of functions, how to 
justify our heuristic use of infinite-dimensional manifolds. Much of this is standard and can be 
found in Narasimhan & Ramadas (1979), Uhlenbeck (1981) or Mitter & Viallet (1981) but some 
of the more detailed results related to the complex structure depend of course on the dimension­
ality of the base manifold being 2. For this reason we shall give a self-contained account tailored 
to our purposes.

For the convenience of the reader we shall now recall some of the basic facts about Sobolev 
spaces. For fuller details we refer to Palais (1965, ch. 9). On a compact smooth re-dimensional 
manifold M  the space (for 1 < p <00) denotes those functions /̂ all of whose derivatives up to 
and including order kare in the Lebesgue space Lp. The definition can be extended to non­
integral k and to sections f  of any smooth complex vector bundle over Each is a Banach 
space and for p — 2 is a Hilbert space also denoted by The Sobolev embedding theorems 
assert that

(14.1) L%<= LQ[if k> I and k — n/p > l — n/q and the inclusion is compact
if we have strict inequalities,

(14.2) c: Clif k — n / p > l ) and the inclusion is compact.

Here Cl(for integral I  ̂ 0) denotes as usual sections whose partial derivatives of order < I are 
continuous. In particular
(14.3) r\ Hk = O .

L---1
Recall now the Holder inequality

II M r  < ll/UWI*
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where || ||p denotes the Zp-norm and r-1 = p~x + q~x.This implies the continuity of the multi­
plication map
(14.4)
Applying this together with (14.1) one deduces

(14.5) Z,j[? is a Banach algebra for k> n/p and L is a topological Z,&-module for 0 <

In the good range k > n/p one can also define nonlinear generalizations of the spaces 
Thus one can define the space Z,f(M, N )of m aps/: M ^ N  where is another C00 manifold. 
More generally one can define the L%-sections of a C00 fibre bundle over with as fibre. These
spaces are dense in the space of continuous sections. In particular on taking A to be a Lie group 
and using (14.5) the L%automorphisms of a vector bundle (or a unitary bundle) form Lie groups.

We come now to the special case that interests us, namely — dim As ----- 2. For a complex C00 
vector bundle Eover Mwith hermitian metric we then have for ^ 2 the real Lie group of 
unitary automorphisms of class Hk — Ff, which we shall denote by Its ‘ complexification ’
(6?c)fc is the (complex) Lie group of all automorphisms of of class Since automorphisms act
on connections by affine transformations it follows from (14.5) that we can define the space of 
unitary connections s / k~x of class Hk~xand that @acts smoothly on For the same reasons, 
when we view srfas the space ôf (almost) complex structures (or d"-operators) we see that the 
complex Lie group (&c)k also acts smoothly on $

For k > 2the space srfk~x consists of continuous connections. However, the most natural space 
for our purposes is in fact ja/1, so the reader should remember that this includes discontinuous 
connections. A little more care will be necessary in various places but there is no fundamental 
difficulty. As an indication of this we shall establish the following regularity results.

Lemma 14.6. For k̂  2 and any A es#k~x let F: (&c)k->s>/k- 1 be the map given by the action on A 
i.e. F{g) — g(A). Then the differential d F at the identity is a Fredholm operator.

Proof. The differential dF at the identity is just the operator dj[ acting from //^-sections of 
End Eto i / fc-1-sections of^°'1(End E). If we fix a standard C00 connection on then 
and

di<t> = d ;>+ [£ ,/].
Since B eHk_1 and <p e Hkthe mapping 0 -> [F, 0] can by (14.5) be factored through the compact
inclusion Hk-+Hk~%and so is compact. Since, for the smooth connection the operator dy
is elliptic of order 1 and so Fredholm, it follows that dj[ is also a Fredholm operator.

Applying the smooth group action it follows that d is a Fredholm operator at all points of 
the orbit of A .The implicit function theorem for Banach manifolds then implies (for ^ 2)

(14.7) for neighbourhoods U of the identity in {f§c)k and V of Ain j/* -1, the image U [A) is a closed Banach 
submanifold ofVof  finite codimension.

From this we shall deduce

Lemma 14.8. For k  ̂ 2, every-orbit in stfk~x contains a

Proof. Let A be a finite-dimensional subspace of transversal to the orbit at i.e. A is a 
complement to the image of dF. Then (14.7) implies that for a suitably small neighbourhood 
of Aes /k~x we have a continuous map tt: V ^  Nwith — U{A). Now for any 1 points 

Bv..., Br+1 g V(where r — dim N ) l e t
f s  '.<Tr
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be the affine linear map sending the vertices of to the Composing with we then get a 
continuous map

7TfB :<rr-+N,

which depends continuously on the Bi.Start now with any set of that span a maximal­
dimensional simplex having A as barycentre. For this choice of restricts to give a map

d d r - »  N — A ,

which generates H ^ f N —A)£  Z. By continuity it follows that this will be true for nfc with 
\Ci — Bt\< e. Hence nfcmust take the value A on some point of err, intersects U [A).

Finally since s4 — s / œ is dense in ja/* _1 we can find such for any Then every point of the
linear span of Clf . . . ,Cr+1 is in s /  and so the intersection/c (crr) n is in V , proving that the
orbit of A contains a ^-connection.

Conversely we shall prove

Lemma 14.9. For k̂  2 let A , B e s /  andg6 (3?c)* with B — g ( A ) g e  i.e. g is C00.

Proof. The two connections B,A differ by a C00 1-form B — A. The condition — g(A) is more 
explicitly written

g - ^ g m { B - A ) %

where w"is the (0, l)-part of the 1-form Hence

&lg = g ( B -A y .

Since (B — A)"eC00 and g ^H k the product lies also in (by (14.5)). The standard regularity
theorem for the smooth elliptic operator dj[ then implies that gEH k+1. By iteration this proves 
that gis C00.

We have now established all the local regularity properties that we need concerning the action 
of the group on the space sis. In particular the orbit through any point has, as local trans­
versal, the harmonic space / f 0,1(End E),which is isomorphic to the sheaf cohomology group 
H l(M ,End is). The structure of nearby orbits is then entirely determined by their intersection 
with this (or any other) transversal slice N .More precisely the union of all nearby orbits in 
is (^ c)fc-equivariantly homeomorphic to the fibre bundle over the orbit of A with fibre and 
group the stabilizer of A (which is finite-dimensional and consists of the automorphisms of the 
holomorphic bundle E{A) defined by A).

In the next section we shall use standard algebro-geometric methods to establish the global 
properties of our stratification. For the present we note simply that the stratification of j/ ,  which 
has been defined so far only for smooth connections, extends naturally to for any 1 by 
our regularity results. The discussion in § 7 can then all be made rigorous in terms of Sobolev 
spaces and Banach Lie groups. Thus the groups Aut Aut (£),) will be replaced by the Banach
Lie groups Aut* (is), Aut* (E )̂and the space by which can be identified with the
homogeneous space

Aut* [E)/Aut* ( j y .

Similarly replacing 38̂̂  by A* 1, ̂ * 1 we have a continuous map

Aut k (E )x38k- 1^ k~1.

This map is constant on the orbits of Aut* (Zy and so induces a map
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where J f*-1 denotes the total space of the homogeneous fibre bundle over with fibre 
Our regularity results tell us that this map is continuous and bijective. To establish that it is 
actually a homeomorphism we need finally to prove that the map

(14.10)

refining (7.9) is continuous. In other words we have to show that the canonical filtration varies 
continuously along <€ with a ‘gain of one derivative’.

Since the group Autfc (E)acts continuously on both and and commutes with
it will be sufficient by (14.8) to prove continuity o f a t  C00 points of ̂  Moreover by our 
regularity theorems it will then be sufficient to prove continuity in the harmonic space 1 (End
at A (or any other smooth transversal N) . On such a finite-dimensional space all the Sobolev 
norms are now equivalent and the problem can be reduced to one of algebraic geometry, which 
will be dealt with in the next section.

Once the continuity o f f k is proved it follows that our strata are locally closed submanifolds of 
finite codimension. Moreover the homotopy properties of the various function spaces are all 
independent of A; by standard approximation theorems (Palais 1965, th..13.14). This then justifies 
our heuristic arguments in §7.

Finally we note the continuity properties of the Yang-Mills functional.

(14.11) The curvature F(A) extends by continuity to a quadratic function stf1 -> H° — so that the 
Yang-Mills functional L gives a smooth function

The proof (given under more general conditions by Uhlenbeck (1982)) is a straightforward 
consequence of the multiplicative properties of Sobolev spaces. In fact, writing in the
form A = A0 + Bwith A0a fixed Cœconnection, we see that

Since BeH1 we have d0£ g//°  and [£, 2?] eH°(using the inclusion from (14.1) and the 
multiplication (14.4)).

This result explains why is the most natural Sobolev space for the Yang-Mills functional, 
although for our purposes any s / k with k  ̂ 1 would do equally well.

As we have seen in earlier sections the strata should be seen as the Morse strata of the Yang- 
Mills functional. A more careful analysis of the gradient flow or some alternative differential- 
geometric argument might be able to show this directly and in particular to establish that 
is a locally closed submanifold of j / fc for all /i.We have not found an argument on these lines, 
which is why we have to resort in the next section to algebraic geometry.

15. T he s t r a t i f i c a t i o n  i n  a l g e b r a i c  g e o m e t r y

In this section M  will denote a complete non-singular algebraic curve defined over a ground 
field kof characteristic zero. As observed by Harder & Narasimhan (1975) the definition of semi­
stability and the canonical filtration of vector bundles over M  does not require k to be algebraically 
closed. In fact the uniqueness of the canonical filtration over implies that it is already defined 
over k. Moreover if Ek is a vector bundle defined over EK its extension to any larger (finitely- 
generated) field K, t h e n

(15.1) Ek is semi-stableo is semi-stable.
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To see this we may first replace k by its algebraic closure in K so that K is purely transcendental 
over k. Assume now that is not semi-stable so that there exists a sub-vector bundle with 
ju>(Fk ) > /^{Ek ) where /i denotes as usual the normalized Chern class. If  = k(x1} the
bundles EK, FK can be represented by vector bundles 3F over As x where U is some Zariski 
open set ofA:n. Moreover $  can be taken to be the pull-back of under the projection As x As. 
Now restrict to any point of U algebraic over and we find a sub-bundle of with 
/ i(Fk) > /i(Ek) so that Ekis not semi-stable. The opposite implication is trivial so that (15.1) is 
proved.

Now let k be algebraically closed, San irreducible algebraic variety over and let be a 
vector bundle over M  x S, which we interpret as an algebraic family of vector bundles over 
As parametrized by s eS .A fairly elementary result proved by Narasimhan & Seshadri (1965) is 
that the set of points sfor which Esis semi-stable is a constructible sub-set of We recall that a
constructible set is a finite disjoint union of locally closed subsets in the Zariski topology, and 
is locally closed if it is open in the closure X .Constructibility is preserved under finite unions, 
intersections, complements, direct and inverse images. Since we shall need to refine this result of 
Narsimhan & Seshadri we recall the essentials of the proof. First one shows that any inde­
composable bundle Fof smaller rank such that

(i) fi(F) > /i = /i(Es),
(ii) Horn (F,Es) #= 0 for some se S

must belong to one of a finite number of irreducible families. Let T  be the parameter space of 
one of these families. Then the subset Z <= T  xSconsisting of all points such that

Hom(Ft, #  0

is a closed subset. Its projection onto Sis not necessarily closed but it is constructible. This shows 
that the set of s e Sfor which Es is not semi-stable is constructible and so therefore is the comple­
mentary set.

We want to prove the following

L e m m a  15.2. Let K — k(S)be thefunction field of S, EK the bundle over M  defined over K arising from <£. 

Assume EK is semi-stable, then there exists an open set U ^ S such that Es is semi-stable for all sel f .
Proof Assume the conclusion false. Then for at least one of the parameter spaces T  occurring 

above the corresponding sub-set Z TxSmust project onto a dense set of (i.e. containing an 
open set). Replace Z by an irreducible component with the same property and it follows that 
K' — k(Z) is an extension of K = k(S). The definition of Z, together with the coherence of direct
images, shows that we have a non-zero homomorphism

Fk >->Ek >.
Since /i (Fk >) > fi{EKr) this means EK.is not semi-stable. By (15.1) this means is not semi-stable
and gives the required contradiction.

We return now to consider a general family Esparametrized by S. Passing to the quotient field 
K  — k(S)we consider the canonical filtration of This filtration can be represented by a
filtration for the family €  restricted to some open set The associated quotient bundles
being semi-stable over Kwill, by (15.2), remain semi-stable over suitable open subsets of 
Hence there is an open set V<= Sso that our filtration is canonical at all points of In particular
the type of Esis constant for all se  V. Removing V from S we get a variety (possibly reducible) of 
smaller dimension. Applying induction therefore we have proved the following

 on January 17, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


Proposition 15.3. Let Ea be a family of bundles over M  parametrized by S, and stratify S according to 
the type of Es. Then each stratum is a constructible set.

Note. This result is proved by Shatz (1977) in a different way. Our proof, using the approach 
of Narasimhan & Seshadri (1965)5 is more in line with the rest of our paper.

When k = C, the field of complex numbers, we have shown in § 8 that, with respect to the 
partial ordering studied in § 12, the subset Ua>/4*^a dosed in . This implies in particular 
that in any algebraic family, as in (15.3), the corresponding set Ua> ^ a is dosed in the usual 
complex numbers topology. Since it is also constructible it follows (Narasimhan & Seshadri 
1965, lemma 12.2) that it is Zariski closed. Hence each stratum must be locally closed in the 
Zariski topology (cf. Shatz 1977). This is nearly but not quite enough to show that the 
themselves are locally closed. For this we need to examine further the continuity properties of 
the canonical filtration.

The proof of 15.3 shows that over a Zariski dense open set V of each stratum the canonical 
filtration varies algebraically. If we introduce the appropriate flag-bundle over this means 
we have a regular section of F ôver V\ in particular this section is continuous (for the C-top- 
ology). In fact continuity holds everywhere:

Proposition 15.4. Let Es be a family of bundles over M parametrized by an irreducible variety S and 
assume all Es are of the same type si. Then there is a continuous filtration of the bundle $  over M. x that 
induces the canonical filtration on each E8.

Proof. As we have observed above there will be a Zariski open set V c  with the required 
property. Also we can proceed by induction on the length of the filtration so we can restrict 
essentially to filtrations of length two. Such a filtration is determined by a section £ of the 
appropriate Grassmann bundle, and it will be sufficient to show that the Zariski closure of £ over 
M  x V coincides everywhere with the canonical section (because £ -* is then proper and In­
fective, hence a homeomorphism). Since every point in the Zariski closure can be approached 
along a curve we can suppose that dim S — 1. Moreover there is no essential change in replacing 
S by its desingularization so we may suppose Snon-singular. Our section £ over M x  Vis then a 
surface and its Zariski closure intersects the Grassmann bundle over M x {s'}, for sg S — V, in 
some algebraic curve £s. We have to show that £s is just the canonical section £s. Consider the 
irreducible curves that make up £s. We claim there is just one of these, say C, giving a section of 
Gs over M  and any others, say Dp must lie entirely in the fibres (over points of . The reason is
purely homological: since £ is a section genetically the intersection number of £s with a fibre over

G8->Mmust be one. Now we shall use the assumption that E8 is of constant type to deduce that 
there are no Dp To do this let F8be the universal vector bundle over i.e. the fibre of at a
point y  e G8is the vector space represented by y.Hence the bundle £* over M  is by definition
the canonical sub-bundle of E8and so has Chern class Aq say (independent of §). On the other 
hand it is well known (cf. §8) that on the Grassmannian itself the universal bundle has negative 
Chern class. Hence

cfFslDfi < 0
for any component Djof £ lying in the fibres. On the other hand the intersection number

Cx(FsHs
must be independent of sand hence is equal to kBut since £s = C + ^D j  we have

*1 -- ĉFJ-C+XcfFg) <
i
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and the inequality is strict unless the Dj do not occur. Now C defines a section of and so
a sub-bundle Fof Ea with Chern class

H(Fa) -C > k

if the Dj occur. But the assumption about constancy of type of the means that no such 
can exist. Hence £s = Cand the proof is complete.

Remark. The continuous filtration £ in 15.4 defines a continuous section £(z, of the flag bundle 
over MxS.  Now, for each s e S,£ is holomorphic in zand hence its z-derivatives can be estimated
in terms of its sup norm. This shows that £ is actually continuous from to the space (the 
smooth filtrations of E over As of type si).

Proposition 15.4 shows that, for an algebraic family of bundles over As, the canonical stratifi­
cation is continuous. To prove the continuity of the map (14.10) it remains now to show that we 
can always construct ‘ sufficiently large ’ algebraic families. More precisely we need to show that 
for any we can find a smooth transversal N  to the ^ c-orbit through A that represents 
(locally) an algebraic family. This means we have to prove the following lemma.

Lemma 15.5. LetE0 be an algebraic vector bundle over the algebraic curve As. Then there exists an algebraic 
family of bundles Es parametrized by a non-singular variety S such that

(i) Eq £  ESo for some j0 e S,
(ii) the infinitesimal deformation map

^ : r so(AT)->/si(M,End£0)
is an isomorphism.

Before giving the proof we make a few comments on (ii). Here TSo(S) denotes the tangent 
space to Sat j0. The map <J> is defined quite generally in such circumstances as follows. Consider 
the sheaf 6^(As) — 0{M  xS)/m2 where m is the ideal sheaf of As x in As x ►S'. We then have an 
exact sequence of sheaves

0 -> 0(M)<g> T *-* 0 \M )  -> -> 0,

where T  — T8JJS). For the bundle $  on As x Srepresenting the family Es we have correspondingly 
an exact sequence

0 ^ (E n d £ 0) ® 0  (End -> End -» 0.

From the cohomology of this sequence we obtain the coboundary

S : H\M,End E0)-> H ^ M ,End E0)® T*.

The image of the identity endomorphism gives therefore an element of

Horn ( T} As, End E0))

and this is the infinitesimal deformation map (j>.
From the Riemann surface point of view this map can also be defined as follows. First we 

restrict to a small neighbourhood U of in Sover which the family Es is a product family, so 
that we can identify all Eswith ESo — E0differentiably. Next fix a hermitian metric on so that
we get a family of unitary connections on E0parametrized by This gives a map

xjf: U

with i/r(s0) = A representing the bundle E0.The differential of at is then a map of Tinto the
tangent space to stfat A .Projecting onto the normal to the ^ c-orbit then gives the infinitesimal
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map. Thus the condition (ii) precisely guarantees that = ^[U ) will be a smooth transversal to 
the 3?c-orbit ofvi. As we observed in § 14 continuity of the map (14.10) is equivalent to continuity 
of the canonical filtration along the corresponding stratum in But A is (locally) diffeomorphic
to U and so the continuity follows from proposition 15.4 (and the subsequent remark).

We return now to give the proof of lemma 15.5. Observe first that it is sufficient to find an 
with (j) surjective, because we can then always pick a submanifold of transversal to the kernel of 
0 to get an isomorphism. We now proceed by induction on the rank of £0.Let — q. Then
we can always represent £0as an extension of the form

0 ->/n_i( — m) £0 -> £0 ->0,

where / n-1 is a trivial bundle of rank n — 1 and mis a suitably large integer (depending on . 
For the proof see Atiyah (1957) where a stronger result is proved, namely that for indecomposable 
£"0 the integer mdepends only on n,q and the genus of M. Moreover we can assume chosen so 
that

q + mn> 2,
which will imply that
, 1561 cHa(M ,L*  ® In- i( -m ))  -  0,

' \H '(M ,L ® In_1(m)) = 0 .
Now consider bundles Egiven by extensions of the form

(15.7) 0 -> £ ( — m) -> £->  Z, -> 0,

where £  is a bundle of rank n — 1 and cy{F) — 0 while is a line-bundle with

Ci(L) = cx(L,) = q + m(n— 1).

Applying our inductive hypothesis to the trivial bundle Zn-1 we obtain a family Fr parametrized 
by reR  having properties (i) and (ii). We then take for our family all extensions of the form
(15.7) with F  = Frparametrized by R, and Lparametrized by the Jacobian J  of M. Now ex­
tensions of this type are classified by elements of
(15.8) /Z1(M ,L * ® £ (-m )).

By (15.6) the corresponding H °vanishes when F  — and hence for all Fr with re R x, some
Zariski neighbourhood of r0in R .Then H 1 will have constant dimension and so our parameter
space Sis fibred over Ryx J  with fibre the vector space (15.8).

We must now investigate End£) for any in our family. Denote by End £  the sub­
space of endomorphisms preserving the exact sequence (15.7), and by End"£  the quotient:

(15.9) 0 -> End' £ End £-> End" 0.
Clearly End"£ — Horn (£( — m),L).By (15.6) H of this vanishes when £ — / n-1 and so it will 
vanish for all Frwith r eR2c Ry,some new Zariski neighbourhood of r0 in Rv This then implies,
from (15.9), that
(15.10) End' E)End 
is surjective.

On the other hand we have the exact sequence
0 ->L*® £ (— m)->End'£->End£© <P->0,
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which gives the exact cohomology sequence

®F{ - m) )  End' E) EndF) © 0) ->0.

If we now compute the infinitesimal deformation map for our family S at the point j0, and recall 
that S is fibred over R2x J  with fibre H 1(M ,L*  )) we see that the surjectivity for
follows from that of R2and J.For R2this is our induction assumption and for it is of course 
classical. Together with the surjectivity of (15.10) this completes the proof of lemma 15.5.

We have had the benefit of discussions with many colleagues on the topics in this paper 
and we are in particular grateful to N. Ekedahl, G. Harder, N. J. Hitchin, D. Mumford, 
M. S. Narasimhan, T. R. Ramadas and J.-P. Serre for helpful observations.
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