
Math 259 Class Notes
Spring 2019

Christelle Vincent

April 3, 2019

Contents

1 Introduction 1

1.1 Important note . 1

2 Classical public-key cryptography 2

2.1 RSA . 2
2.1.1 Required skills/knowledge . 2
2.1.2 Hard and easy things . 3
2.1.3 Notation we will use . 3

2.2 DLP . 3
2.2.1 Required skills/knowledge . 4
2.2.2 Hard and easy things . 4
2.2.3 Notation we will use . 4

3 Shor’s algorithm 5

3.1 Quantum computing basics . 5

3.2 Discrete Fourier Transform . 5
3.2.1 Required skills/knowledge . 5
3.2.2 Roots of unity . 5
3.2.3 The Discrete Fourier Transform . 6
3.2.4 Examples when the frequency is an integer 7
3.2.5 Examples when the frequency is not an integer 11

3.3 Continued fractions . 14

3.4 Shor’s algorithm . 15
3.4.1 Classical steps . 15
3.4.2 Quantum steps . 16
3.4.3 Explanation of step 6 . 18

4 Learning with Errors 22

4.1 Classical LWE . 22
4.1.1 Sage commands . 24
4.1.2 Brakerski-Vaikuntanathan (BV) LWE 26

4.2 Hardness of the problems . 26
4.2.1 Lattice problems . 26

ii

4.2.2 Decision implies search . 28
4.2.3 SIS implies decision . 29

4.3 Ring-LWE . 30
4.3.1 Fully Homomorphic Encryption . 31

iii

Chapter 1

Introduction

These notes will be updated as the course progresses; you can always see if you have the
most up-to-date version of the notes by checking the date on the first page. I will also try as
much as possible to keep a changelog so you can see how your version differs from the latest
version (so you don’t miss any updates).

These notes will not be complete. Whenever a topic is covered adequately in the litera-
ture, I will give references rather than write anything down. In particular, I will refer to our
two recommended course books:

• Simon Rubinstein-Salzedo’s Cryptography, which I will call SRS’s Cryptography for
short, and

• Wade Trappe and Lawrence C. Washington’s Introduction to Cryptography with Coding
Theory, which I will call TW’s Coding Theory for short and contrast with the other
book.

1.1 Important note

Throughout the course, we will simply assume that all messages we want to send are numbers
(where here by “number” we mean an element of Z/NZ for some N , or a finite field, or...)
Depending on the source, some authors make a big deal of how to translate English/letters
into numbers. While this is of considerable interest to some, this will not come up in this
class. In the kind of cryptography we will be interested in, we can assume that there is one
publicly known way to translate between English and any number system we are using. This
assumption does not compromise the security of the cryptography we are using.

1

Chapter 2

Classical public-key cryptography

In this Chapter we will cover only RSA and DLP over finite fields.

2.1 RSA

RSA stands for Rivest-Shamir-Adleman, who are the people who came up with it. The
references to learn about RSA are:

• SRS’s Cryptography, Section 12.1

• TW’s Coding Theory, Section 6.1

• Wikipedia’s article on RSA

2.1.1 Required skills/knowledge

1. Definition of the Euler-totient function, although in the case we care about (and this
does require for some assumptions to be satisfied!) we have that ϕ(pq) = (p−1)(q−1).

2. Euler’s Theorem, which says that if a and N are two integers with gcd(a,N) = 1, then

aϕ(N) ≡ 1 (mod N).

3. Given two integers a, b with gcd(a, b) = 1, be able to compute c ≡ a−1 (mod b). When
we do this by hand we would usually use the Extended Euclidean Algorithm. For this
class, it will be sufficient to be able to do this with a computer (for your homework)
or be able to look it up in a table (for the quiz).

For graduate students:

4. The Chinese Remainder Theorem

2

2.1.2 Hard and easy things

For the purposes of problems, you may assume that the following operations are “easy” and
can be performed quickly and efficiently by all:

• Addition, subtraction, multiplication modulo N for any N

• Exponentiation modulo N for any N , i.e. computing ae (mod N) for any integers a
and e

• Computing the modular inverse e−1 (mod n) for any pair (e, n) such that gcd(e, n) = 1

• Using the Chinese Remainder Theorem

• Computing the greatest common divisor (gcd) of any two integers

However, the following operations are “hard” and given numbers that are suitably chosen,
they cannot be performed quickly or efficiently:

• Factoring, and by extension computing ϕ(N)

2.1.3 Notation we will use

Alice chooses two primes p and q, and obtains a modulus N = pq. The Euler-totient function
is either φ(N) or ϕ(N), depending on taste (I personally like ϕ(N) so that is what I will use
but there shouldn’t be confusion). She also chooses a positive integer e which is relatively
prime to ϕ(N) and which is called her encryption exponent. Then d ≡ e−1 (mod ϕ(N)) is
her decryption exponent.

The public key is (N, e) and ϕ(N) and d are kept secret.

2.2 DLP

DLP stands for “discrete log problem,” because the security of this scheme has to do with
how difficult it is to compute logarithms in discrete groups. Another name for this scheme is
ElGamal with underlying group (Z/pZ)× (ElGamal considers a general group, but we only
consider this specific group).

The references to learn about DLP are:

• SRS’s Cryptography, Chapters 11.2 and 11.3

• TW’s Coding Theory, Chapters 7.1 and 7.5

3

2.2.1 Required skills/knowledge

1. Roughly what a primitive root is (mostly just that g should be a primitive root modulo
p, but you do not need to know how to find a primitive root modulo p)

2. We will quickly practice how to compute with discrete logarithms

For graduate students:

3. What a primitive root modulo N is

2.2.2 Hard and easy things

For the purposes of problems, you may assume that the following operations are “easy” and
can be performed quickly and efficiently by all:

• Addition, subtraction, multiplication modulo N for any N

• Exponentiation modulo N for any N , i.e. computing ae (mod N) for any integers a
and e

• Computing the modular inverse e−1 (mod n) for any pair (e, n) such that gcd(e, n) = 1

However, the following operations are “hard” and given numbers that are suitably chosen,
they cannot be performed quickly or efficiently:

• Computing the discrete logarithm, i.e. given h ≡ ga (mod p), with both h and g
known, computing the exponent a

2.2.3 Notation we will use

Alice chooses a prime p and a primitive root g modulo p. She also chooses a secret exponent
a, and computes and publishes h ≡ ga (mod p). To encrypt his message, Bob will also need
a random secret exponent b, and he will compute and send the ciphertext pair (c1, c2), where

c1 ≡ gb (mod p) and c2 ≡ mhb (mod p), (2.1)

where m is his secret message.
The public key is (p, g, h), and both exponents a and bmust be kept secret. The ciphertext

pair c1 and c2 is public.

4

Chapter 3

Shor’s algorithm

In this part of the class we will study how one can factor an integer N is (probabilistic)
polynomial time in logN using a quantum computer. What this means in practice is that
with a quantum computer, the “hard”/time-consuming problem of factoring is in fact an
“easy”/quick-to-solve problem.

If a quantum computer could be built at scale, this would thus render RSA unacceptably
insecure according to the current standards to which we hold cryptographic algorithms. Al-
though we will only study the algorithm that factors numbers, a variation of Shor’s algorithm
can also be used to solve DLP (for any group, including ECDLP) in probabilistic polynomial
time.

3.1 Quantum computing basics

Coming soon (?)

3.2 Discrete Fourier Transform

3.2.1 Required skills/knowledge

3.2.2 Roots of unity

We have the following:

Proposition 3.2.1. Let n ≥ 1 be an integer. Then there are n distinct nth roots of unity,
given by

1, e2πi
1
n , e2πi

2
n , e2πi

3
n , . . . , e2πi

n−2
n , e2πi

n−1
n . (3.1)

Furthermore, there are ϕ(n) distinct primitive nth roots of unity, which are of the form

e2πi
k
n (3.2)

above, but with gcd(k, n) = 1.

5

About the primitive nth roots of unity we have the following result:

Proposition 3.2.2. Let ζn 6= 1 be any other nth root of unity. Then

n−1∑
k=0

ζkn = 1 + ζn + ζ2n + · · ·+ ζn−2n + ζn−1n = 0.

3.2.3 The Discrete Fourier Transform

Definition 3.2.3. Let a0, a1, a2, . . . , am−1 be a sequence of complex numbers of length
m. Then the Discrete Fourier Transform (DFT) of this sequence is another sequence
b0, b1, . . . , bm−1, also of length m, such that the jth term of the sequence is

bj =
1√
m

m−1∑
k=0

ake
2πi
m
jk. (3.3)

Note that in fact any other primitive mth root of unity could be used in place of e
2πi
m , but

we choose this one to keep things concrete.

To compute the DFT of a sequence in Sage, you can use the following code. First enter

J = list(range(9))

A = [1,2,3,1,2,3,1,2,3]

s = IndexedSequence(A,J)

In the first line, you should replace 9 with the length of your own sequence, and then in the
second line you can put any sequence you want for A. Then s is the object that Sage can
actually interact with; you must tell Sage that the elements of the sequence A are indexed
by the elements of the list J .

Once you have an indexed sequence, you can ask Sage to compute the DFT:

DFT = s.dft()

That’s it!
Now you might want to see the DFT you just computed. To see the terms one-by-one as

exact terms, with roots of unity, you can type

for a in DFT.list():

print a

To print floating point approximations of the terms, in the form x + y * I:

for a in DFT.list():

print CC(a)

And finally, to print the absolute values of the terms, to see which terms are large and which
terms are small:

6

for a in DFT.list():

print CC(a).abs()

Let’s define one more term:

Definition 3.2.4. Let {ak} be a periodic sequence with period p and length m. Then the
frequency of this sequence is the expression

f =
m

p
.

Note that the frequency need not in general be an integer.

Then after computing some examples, you might notice the following:

Proposition 3.2.5. Let {ak} be a periodic sequence of complex numbers, and suppose that
its frequency is an integer. In that case, if the jth term of the DFT, bj, is nonzero, then j
is a multiple of the frequency of the sequence {ak}.

Another way to say this is that if j is not a multiple of the frequency of the sequence
{ak}, then bj = 0. (This is the converse of the statement, which is always true!) Note that
the converse in not true in general in this case: It is possible for j to be a multiple of the
frequency but bj to be zero anyway (although certainly it requires some work to arrange the
sequence {ak} for that to happen).

3.2.4 Examples when the frequency is an integer

To illustrate and understand Proposition 3.2.5, we work out some examples:

Example 3.2.6. Consider the sequence

c0, c1, c0, c1, c0, c1.

It has length 6, period 2 and frequency 3. According to (3.3), the jth term of the DFT of
this sequence is

bj =
1√
6

(
c0e

2πi
6
j·0 + c1e

2πi
6
j·1 + c0e

2πi
6
j·2 + c1e

2πi
6
j·3 + c0e

2πi
6
j·4 + c1e

2πi
6
j·5
)
.

To see what is going on, let’s first rearrange the terms so all of the c0s are together and
all of the c1s are together:

bj =
1√
6

(
c0(e

2πi
6
j·0 + e

2πi
6
j·2 + e

2πi
6
j·4) + c1(e

2πi
6
j·1 + e

2πi
6
j·3 + e

2πi
6
j·5)
)
.

In the sum with the c1, I can factor out e
2πij
6 from each term. Working out each expo-

nential beforehand, this is what I get:

e
2πi
6
j·1 = (e

2πij
6)1 = e

2πij
6 · (e

2πij
6)0 = e

2πij
6 · e

2πi
6
j·0

7

(this looks a bit weird, I know, but I want it to look like the other term with c0!)

e
2πi
6
j·3 = (e

2πij
6)3 = e

2πij
6 · (e

2πij
6)2 = e

2πij
6 · e

2πi
6
j·2

and
e

2πi
6
j·5 = (e

2πij
6)5 = e

2πij
6 · (e

2πij
6)4 = e

2πij
6 · e

2πi
6
j·4.

So now I have

bj =
1√
6

(
c0(e

2πi
6
j·0 + e

2πi
6
j·2 + e

2πi
6
j·4) + c1e

2πij
6 (e

2πi
6
j·0 + e

2πi
6
j·2 + e

2πi
6
j·4)
)
.

Now I am going to make another decision, and let zj = e2πi
2j
6 . Let’s work out each

exponential beforehand again:

e
2πi
6
j·0 = e2πi

j·0
6 = e2πi

2j·0
6 = (e2πi

2j
6)0 = z0j

for the first exponential,

e
2πi
6
j·2 = e2πi

j·2
6 = e2πi

2j·1
6 = (e2πi

2j
6)1 = zj

for the second exponential, and

e
2πi
6
j·4 = e2πi

j·4
6 = e2πi

2j·2
6 = (e2πi

2j
6)2 = z2j

for the last exponential. Note also that zj = e2πi
2j
6 = e2πi

j
3 is a third root of unity, no matter

what j is.
Now my jth term of the DFT looks like this:

bj =
1√
6

(
c0(z

0
j + zj + z2j) + c1e

2πij
6 (z0j + zj + z2j)

)
,

with zj some third root of unity which depends on j. This doesn’t look too bad!
At this point, to see what happens to the value of bj, I can apply Proposition 3.2.2: If

zj 6= 1, then the sum
z0j + zj + z2j

will be zero. This will make bj = 0 automatically. So when is zj = e2πi
j
3 6= 1? Exactly when

j is not a multiple of 3.
What about when zj = 1 (or in other words, when j

3
is an integer)? In that case, the

sum z0j + zj + z2j = 3 then, which is relatively large! (But exactly what happens depends on
the values of c0 and c1, which could still show some cancelation.)

Let’s turn our attention to another example where the frequency is 3 to make sure that
this wasn’t a coincidence.

8

Example 3.2.7. Consider the sequence

c0, c1, c2, c3, c0, c1, c2, c3, c0, c1, c2, c3.

It has length 12, period 4 and frequency 3. According to (3.3), the jth term of the DFT of
this sequence is

bj =
1√
12

(
c0e

2πi
12
j·0 + c1e

2πi
12
j·1 + c2e

2πi
12
j·2 + c3e

2πi
12
j·3+

c0e
2πi
12
j·4 + c1e

2πi
12
j·5 + c2e

2πi
12
j·6 + c3e

2πi
12
j·7+

c0e
2πi
12
j·8 + c1e

2πi
12
j·9 + c2e

2πi
12
j·10 + c3e

2πi
12
j·11
)
.

We do the same manipulations again, this time a bit faster:

bj =
1√
12

(
c0(e

2πi
12
j·0 + e

2πi
12
j·4 + e

2πi
12
j·8)+

c1e
2πij
12 (e

2πi
12
j·0 + e

2πi
12
j·4 + e

2πi
12
j·8)+

c2e
4πij
12 (e

2πi
12
j·0 + e

2πi
12
j·4 + e

2πi
12
j·8)+

c3e
6πij
12 (e

2πi
12
j·0 + e

2πi
12
j·4 + e

2πi
12
j·8)
)

This time we let zj = e
2πi
12
j·4. But this is zj = e2πi

j
3 again, just like in the previous

example! So the same thing will happen again:

bj =
1√
12

(
c0(z

0
j + zj + z2j) + c1e

2πij
12 (z0j + zj + z2j)+

c2e
4πij
12 (z0j + zj + z2j) + c3e

6πij
12 (z0j + zj + z2j)

)
,

and bj = 0 when zj 6= 1 (i.e. if j is not a multiple of 3). When j is a multiple of 3 (i.e. when
j
3

is an integer), the sum z0j + zj + z2j = 3 again, but once again exactly what happens to bj
depends on the values of c0, c1, c2 and c3, which could still show some cancelation.

We could continue working out more examples with frequency f = 3, and each time we
would see the same thing happen: For each coefficient ck, there would be a sum z0j + zj + z2j .

Furthermore we can show that in each case zj = e2πi
j
3 , no matter what the length/period

is! Indeed suppose that the sequence is of length m and period p, so that m
p

= 3 (remember

that we assume that the frequency is 3 right now). Then we will have, as part of the sum
defining bj, the expression

c0(e
2πi
m
j·0 + e

2πi
m
j·p + e

2πi
m
j·2p),

since c0 will appear again as the pth term of the sequence. Then zj = e
2πi
m
j·p = e2πi

j
3 .

This gives us a good idea of what will happen in general, so let’s test our idea by working
out an example where the frequency is 6.

9

Example 3.2.8. Consider the sequence

c0, c1, c0, c1, c0, c1, c0, c1, c0, c1, c0, c1.

It has length 12, period 2 and frequency 6. According to (3.3), the jth term of the DFT of
this sequence is

bj =
1√
12

(
c0e

2πi
12
j·0 + c1e

2πi
12
j·1 + c0e

2πi
12
j·2 + c1e

2πi
12
j·3+

c0e
2πi
12
j·4 + c1e

2πi
12
j·5 + c0e

2πi
12
j·6 + c1e

2πi
12
j·7+

c0e
2πi
12
j·8 + c1e

2πi
12
j·9 + c0e

2πi
12
j·10 + c1e

2πi
12
j·11
)
.

We do the same manipulations again, this time it looks a bit different of course, but it’s
the same idea:

bj =
1√
12

(
c0(e

2πi
12
j·0 + e

2πi
12
j·2 + e

2πi
12
j·4 + e

2πi
12
j·6 + e

2πi
12
j·8 + e

2πi
12
j·10)+

c1e
2πij
12 (e

2πi
12
j·0 + e

2πi
12
j·2 + e

2πi
12
j·4 + e

2πi
12
j·6 + e

2πi
12
j·8 + e

2πi
12
j·10)

)
So we let zj = e

2πi
12
j·2. This simplifies to zj = e2πi

j
6 , which is a sixth root of unity, no

matter what j is. Then we can write

bj =
1√
12

(
c0(z

0
j + zj + z2j + z3j + z4j + z5j) + c1e

2πij
12 (z0j + zj + z2j + z3j + z4j + z5j)

)
and bj = 0 when zj 6= 1 once again, since by Proposition 3.2.2, any sixth root of unity, as
long as it’s not 1, when plugged into 1 + ζ6 + ζ26 + ζ36 + ζ46 + ζ56 , will give zero.

Again we see that when j is a multiple of 6, or equivalently when j
6

is an integer, then
zj = 1, and the sum z0j + zj + z2j + z3j + z4j + z5j = 6. The value of bj then depends on the
value of c0 and c1.

What we have seen here is what will happen in general: Given a sequence with frequency
f ∈ Z, the sum for bj can be rearranged so that each term contains a sum

z0j + zj + z2j + · · ·+ zf−1j ,

and zj is an fth root root of unity, zj = e2πi
j
f . Then whenever j is not a multiple of f , we

get that the sum is zero, so bj = 0, and when j is a multiple of f (or j
f

is an integer, which is

how we will think of this soon), then zj = 1 and in general the sum bj will be large, although
it depends on the exact values of the cks.

10

3.2.5 Examples when the frequency is not an integer

Unfortunately for us, most of the time when we use the DFT the frequency will not be an
integer. In that case, the results aren’t quite as clear and pleasing, but we will see that
the DFT can still give us quite a bit of information about the approximate frequency of the
sequence.

Example 3.2.9. Consider the sequence

c0, c1, c2, c0, c1, c2, c0.

It has length 7 and period 3, so its frequency is 7
3
.

We can still write the jth coefficient of the DFT and rearrange as we did in the previous
Section:

bj =
1√
7

(
c0e

2πi
7
j·0 + c1e

2πi
7
j·1 + c2e

2πi
7
j·2 + c0e

2πi
7
j·3 + c1e

2πi
7
j·4 + c2e

2πi
7
j·5 + c0e

2πi
7
j·6
)

=
1√
7

(
c0(e

2πi
7
j·0 + e

2πi
7
j·3 + e

2πi
7
j·6) + c1e

2πij
7 (e

2πi
7
j·0 + e

2πi
7
j·3) + c2e

4πij
7 (e

2πi
7
j·0 + e

2πi
7
j·3)
)
.

This time we let zj = e
2πi
7
j·3 = e2πi

3j
7 . This is a seventh root of unity, no matter what j

is. Then our jth DFT coefficient is

bj =
1√
7

(
c0(z

0
j + zj + z2j) + c1e

2πij
7 (z0j + zj) + c2e

4πij
7 (z0j + zj)

)
.

Now we have a mismatch: There is no value of j that will make zj a third root of unity, and
that will make

z0j + zj + z2j = 0.

There is also no value of j that will make zj a second root of unity, and therefore that will
make

z0j + zj = 0.

Because of this, we don’t see as nice of results in this case as we did earlier.
However, if we run some computations, we still see some patterns:
For the sequence

1, 2, 3, 1, 2, 3, 1,

we have

j 0 1 2 3 4 5 6
|bj| 13 1.21 3.65 1.47 1.47 3.65 1.21

.

For the sequence
1, 2,−1, 1, 2,−1, 1,

we have

11

j 0 1 2 3 4 5 6
|bj| 5 0.70 4.37 3.65 3.65 4.37 0.70

.

Finally for the sequence
−1, 2, 1,−1, 2, 1,−1,

we have

j 0 1 2 3 4 5 6
|bj| 3 2.01 5.79 1.84 1.84 5.79 2.01

.

We see a definite tendency towards having b0 be very large, and b2 and b5 be somewhat
large. The values b1, b3, b4 and b6 seem smaller. (It depends a little bit on the example, the
exact value of the cks can make more or less cancelation happen.)

Let’s go back to our expression for bj:

bj =
1√
7

(
c0(z

0
j + zj + z2j) + c1e

2πij
7 (z0j + zj) + c2e

4πij
7 (z0j + zj)

)
,

where we remember that zj = e2πi
3j
7 .

We see that bj takes its largest value when j = 0. In that case, z0 = 1, and b0 =
1√
7
(3c0 + 2c1 + 22). If there isn’t much cancellation between c0, c1 and c2, b0 will be large.

(This is also what we have observed when the frequency was an integer. b0 is always really
large because z0 = 1.)

If j = 2, then z2 = e2πi
6
7 . 6

7
is very close to being 1, which means that z2 is very close

to being 1 as well. This makes b2 large in all of our examples. If j = 5, then z5 = e2πi
15
7 .

Because 15
7

is very close to being an integer (the integer 2), it means that z5 is also very close
to being 1. This makes b5 large.

Indeed we can see that zj being near 1 (or 3j
7

being near an integer, which is the same),
makes bj large by making the sums z0j + zj + z2j and z0j + zj large.

j 3j
7

|z0j + zj + z2j | |z0j + zj|
0 0 3 2
2 0.85 . . . 2.24 . . . 1.80 . . .
5 2.14 . . . 2.24 . . . 1.80 . . .

On the other hand, if j = 1, 3, 4 or 6, we have that z1 = e2πi
3
7 , z3 = e2πi

9
7 = e2πi

2
7 ,

z4 = e2πi
12
7 = e2πi

5
7 and z6 = e2πi

18
7 = e2πi

4
7 . The fractions 3

7
, 9

7
, 12

7
, and 18

7
are all not very

close to integers. For example, since 3
7
≈ 0.42 . . ., this means that z1 is somewhere between

a second and a third root of unity, and therefore it makes both z0j + zj + z2j and z0j + zj kind
of small. (In fact, |z0j + zj + z2j | ≈ 0.80 . . ., which is not so small but much small than 3, and
|z0j + zj| ≈ 0.44) Arranging the relevant values in a table, we have that

j 3j
7

|z0j + zj + z2j | |z0j + zj|
1 0.42 . . . 0.80 . . . 0.44 . . .
3 1.28 . . . 0.55 . . . 1.24 . . .
4 1.71 . . . 0.55 . . . 1.24 . . .
6 2.57 . . . 0.80 . . . 0.44 . . .

12

We now have an explanation why the coefficients b1, b3, b4 and b6 are relatively smaller: There
is a lot of cancelation in the sum z0j + zj + z2j and z0j + zj.

Let’s do one last example quickly:

Example 3.2.10. Consider the sequence

c0, c1, c2, c0, c1, c2, c0, c1, c2, c0, c1.

The length is m = 11, the period is 3 and so the frequency is 11
3

. If we write out bj and
rearrange the terms like we usually do, we get

bj =
1√
11

(
c0(z

0
j + zj + z2j + z3j) + c1e

2πi j
11 (z0j + zj + z2j + z3j) + c2e

2πi 2j
11 (z0j + zj + z2j)

)
,

with zj = e2πi
3j
11 . (Make sure you can get this yourself!)

We have that 3j
11

is an integer when j = 0, as usual. That should be the largest Fourier
coefficient. After that, it is nearest an integer when j = 4 or j = 7, so we expect those to be
the next largest. Then j = 3 and j = 8 make 3j

11
the numbers 9

11
and 24

11
= 2 2

11
, respectively,

so b3 and b8 should be next largest. And so on.
Looking at it the other way, when j = 1 or j = 10, we have 3j

11
be 3

11
and 30

11
= 2 8

11
, which

are close to the fractions 1
4

and 23
4
. This makes zj very close to a fourth root of unity, so b1

and b10 should be small. If j = 5 or j = 6, then 3j
11

is respectively 15
11

= 1 4
11

, which is near 11
3
,

and 18
11

= 1 7
11

, which is near 12
3

Therefore z5 and z6 are close to being third roots of unity,
and we expect b5 and b6 to be small too.

We work out a few sequences to show these results hold up: For the sequence

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2

we have

j 0 1 2 3 4 5 6 7 8 9 10
|bj| 21 1.07 1.40 2.94 4.98 1.17 1.17 4.98 2.94 1.40 1.07

.

Our predictions worked out pretty well! Let’s just work out one more example:
Consider the sequence

−1,−2, 3,−1,−2, 3,−1,−2, 3,−1,−2,

then we have

j 0 1 2 3 4 5 6 7 8 9 10
|bj| 3 3.22 4.14 8.30 12.42 1.76 1.76 12.42 8.30 4.14 3.22

.

In this particular example, because c0, c1 and c2 cancel each other perfectly, b0 is actually
not very large at all. However, |b3|, |b4|, |b7| and |b8| are all very large, as we expect, and
|b1|, |b5|, |b6| and |b10| are small.

13

3.3 Continued fractions

The notation we are using in class is the following: A simple continued fraction is an expres-
sion of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .
+

1

an +
1

. . .

,

where a0 ∈ Z and for i ≥ 1, ai ∈ Z and ai ≥ 1. For compactness of notation, we usually
write [a0; a1, a2, a3, . . . , an, . . .] for this expression.

There are many fun things to say about continued fractions, but for now we will state
the two facts we will need. These notes might be expanded in the future to contain more
information.

One important quantity will be the so-called convergents of a continued fraction:

Definition 3.3.1. Given a continued fraction [a0; a1, a2, a3, . . . , an, . . .], its kth convergent
is the number given by

pk
qk

= [a0; a1, a2, a3, . . . , ak].

As one might expect, when pk
qk

is written in lowest terms, the number pk is called the nu-

merator of the kth convergent of [a0; a1, a2, a3, . . . , an, . . .] and qk is called the denominator
of the kth convergent of [a0; a1, a2, a3, . . . , an, . . .].

With this notation in place, we have

Proposition 3.3.2. The numerator pk and the denominator qk of the kth convergent of
[a0; a1, a2, a3, . . . , an, . . .] are given recursively by the following formulae:

p−2 = 0, p−1 = 1

q−2 = 1, q−1 = 0,

and for k ≥ 0,

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.

Remark 3.3.3. Note that in the definition, the fraction pk
qk

is in lowest terms. Accordingly,
the proposition gives pk

qk
also in lowest terms! This can help you spot a mistake in your

calculations if you get any factors in common between pk and qk for some k.

14

The significance of convergents and continued fraction expansions, to us, is the following:

Theorem 3.3.4. Let α be an arbitrary real number. If the rational number a
b
, where b ≥ 1

and gcd(a, b) = 1 satisfies ∣∣∣α− a

b

∣∣∣ < 1

2b2
,

then a
b

is one of the convergents pk
qk

of the continued fraction expansion of α.

As a kind of converse to this theorem, one might wonder if its convergents ever get this
close to α, and they do:

Proposition 3.3.5. Let α be an irrational number. Then for any two consecutive conver-
gents, at least one of them, which we will denote p

q
, satisfies the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

So at least half of the convergents of an irrational number give excellent approximations
to this number.

3.4 Shor’s algorithm

For this section we will assume that we wish to factor a positive integer N , which is odd
and is not a power of a prime. By “factor” here, explicitly we mean “to give a divisor d,
1 < d < N , of N .” The reason we do not consider even integers is that it is easy to spot an
even integer, and to give in that case the nontrivial factor d = 2.

The reason we do not consider powers of (odd) primes here is because our algorithm will
not work.

3.4.1 Classical steps

We reduce the problem of factoring N to the problem of, given a with 1 < a < N with
gcd(a,N) = 1, finding the multiplicative order of a modulo N . We do this in the following
manner:

We first suppose that we can input an integer a with 1 < a < N with gcd(a,N) = 1, and
output quickly its multiplicative order r. One upshot of the fact that we can do this quickly
is that we can further assume that we can find a with 1 < a < N with gcd(a,N) = 1, of
course, but also such that

• r is even; and

• ar/2 6≡ −1 (mod N).

15

The reason we may assume these two further properties of a is that such as exist because
N is the product of at least two distinct odd primes, by our assumption on N . Therefore,
were we to randomly choose a not satisfying these two extra conditions, we can just throw
it out and start over with a new random a which hopefully does satisfy the two extra
conditions. Furthermore, according to Rubinstein-Salzedo’s Cryptography, page 213, the
odds of a satisfying all the conditions we want are larger than 2

3
, so we may keep choosing

random values of a and hope to find one that works reasonably quickly.
Accordingly, here is the classical part of the algorithm:

1. Choose an integer a, 1 < a < N at random.

2. Compute gcd(a,N). If gcd(a,N) > 1, this produces a non-trivial divisor of N and we
are done. Otherwise, proceed, a satisfies now two of the four conditions we need.

3. Use the quantum computer to compute the multiplicative order r of a modulo N (see
next section).

4. If r is odd, throw away a and start over with a different a. Otherwise, proceed, a
satisfies now three of the four conditions we need.

5. Compute ar/2 (mod N). If ar/2 ≡ −1 (mod N), throw away a and start over with a
different a. Otherwise, proceed, a satisfies all four conditions we need.

6. Since ar/2 6≡ 1 (mod N) either (why?), we have that x ≡ ar/2 (mod N) is a solution
to x2 ≡ 1 (mod N), but x 6≡ ±1 (mod N).

7. Compute gcd(x− 1, N) and gcd(x+ 1, N), these are two non-trivial factors of N .

The reason why step 7 works is the following: Since x2 ≡ 1 (mod N), we have

x2 − 1 ≡ (x− 1)(x+ 1) ≡ 0 (mod N).

In this case, there are three options: Either x− 1 ≡ 0 (mod N), but since x 6≡ 1 (mod N),
that is not the case, or x+ 1 ≡ 0 (mod N), but since x 6≡ −1 (mod N), that is not the case
either, or each of x− 1 and x+ 1 share some factors with N , in such a way that N divides
neither x − 1 nor x + 1, but N divides their product. This is the situation we must be in,
and that is what the gcd computes, therefore giving us some nontrivial factors of N .

3.4.2 Quantum steps

We thus now turn our attention to the problem of computing the multiplicative order of an
integer a modulo N .

We begin by fixing q such that

N2 ≤ 2q < 2N2.

16

(This always exists and can be taken to be

q = dlog2(N
2)e.)

Then the quantum steps of Shor’s algorithm are:

1. Start with a 2q-qbit register |0〉. Throughout we will think of this as two q-qbit
registers, one next to the other.

2. Apply the q-qbit Hadamard gate to the first q-qbits of the register:

1√
2q

2q−1∑
k=0

| k 0 〉.

3. In the second q-qbits of the register, for each k compute and store the value ak

(mod N):

1√
2q

2q−1∑
k=0

| k ak 〉.

4. Apply the quantum Fourier transform to the first q-qbits, which sends

|k〉 7→ 1√
2q

2q−1∑
j=0

e
2πi
2q
jk|j〉.

This gives us the superposition

1

2q

2q−1∑
k=0

2q−1∑
j=0

e
2πi
2q
jk| j ak 〉. (3.4)

5. We observe this superposition, and record j, the value of the first q-qbits we observe.

6. With high probability, we have observed j such that

jr

2q

is very near an integer M . In other words, there is an integer M such that the value∣∣∣∣ j2q − M

r

∣∣∣∣
is very small. This value is in fact so small, compared to r, that it is likely that M

r
is a

convergent of j
2q

. Therefore we compute the convergents of j
2q

until we reach the last
convergent pk

qk
with qk < N . qk is very likely to be r, the multiplicative order of a.

7. Verify if qk is the multiplicative order of a by computing aqk and seeing if it is 1 modulo
N . If not, try some small multiples of qk, such as 2qk, 3qk, etc. (in case there was
cancelation with M , remember that pk

qk
is in lowest terms!). If not, try perhaps some

nearby convergents. If nothing works very quickly, repeat the algorithm, either with
the same value of a or a new value of a.

17

3.4.3 Explanation of step 6

There are two “mathematical mysteries” in Step 6 of the quantum algorithm. The first is
why we will observe j such that jr

2q
is near an integer. This relates directly to the properties

of the Quantum/Discrete Fourier transform, and hopefully should feel familiar from the
examples we worked out there. The second is why computing convergents will help guess a
fraction whose numerator and denominator we don’t know.

First mystery: Why is rj
2q

near an integer?

We first investigate the first mystery, which is that when we observe the superposition we
have created in equation (3.4), we are very likely to observe a number whose first q-bits are
a number j such that

jr

2q
≈M,

where r is the (unknown) multiplicative order of a modulo N , M is an unknown integer, j
is (part of) the output we observe, and 2q is a known quantity. For now we leave the symbol
≈ to be vague and simply say that jr

2q
is “near” the integer M ; we will say more about this

soon.
To see this, we need to manipulate equation (3.4) to “collect like terms.” We will first do

this abstractly, and then with relatively small values.
We begin by observing that we have

1

2q

2q−1∑
k=0

2q−1∑
j=0

e
2πi
2q
jk| j ak 〉 =

1

2q

2q−1∑
j=0

2q−1∑
k=0

e
2πi
2q
jk| j ak 〉.

This is because rather than organizing our sum by thinking of k first, fixing it and letting j
range over all the values, we can think of organizing our sum by the value of j that appears.

The next step is the tricky one: As k ranges from 0 to 2q−1, there will be several different
values of k for which ak takes the same value. We wish to collect those. We first notice that
by definition of the multiplicative order of a modulo N , the expression ak takes exactly the
values

1, a, a2, a3, a4, . . . , ar−2, ar−1,

these values are all different, and ak takes no other values than those. In fact, the sequence
of values of ak modulo N is exactly

1, a, a2, . . . , ar−2, ar−1, 1, a, a2, . . . , ar−2, ar−1, 1, a, a2, . . .

This tells us furthermore that for a fixed k with 0 ≤ k ≤ r − 1, we have

ak ≡ ak+r ≡ ak+2r ≡ ak+3r ≡ . . . ≡ ak+mr ≡ . . . (mod N),

18

or in other words that the sequence repeats with period r. Therefore instead of letting k go
from 0 to 2q − 1, we can group up the values of k that give the same values of ak and write

1

2q

2q−1∑
k=0

2q−1∑
j=0

e
2πi
2q
jk| j ak 〉 =

1

2q

2q−1∑
j=0

2q−1∑
k=0

e
2πi
2q
jk| j ak 〉

=
1

2q

2q−1∑
j=0

r−1∑
k=0

??∑
m=0

e
2πi
2q
j(k+mr)| j ak 〉

We stop for a second to contemplate this number ?? atop the third summation. This
number is simply whatever it needs to be so that the last value k + mr ≤ 2q − 1, which is
after all where the original k sum was supposed to end. If we solve for m we get

m ≤ 2q − k − 1

r
,

and since m must be an integer but 2q−k−1
r

is almost certainly not an integer, it is customary
to write this with a floor function: For each 0 ≤ k ≤ r−1, the largest value that m will take
is ⌊

2q − k − 1

r

⌋
.

So we have

1

2q

2q−1∑
k=0

2q−1∑
j=0

e
2πi
2q
jk| j ak 〉 =

1

2q

2q−1∑
j=0

2q−1∑
k=0

e
2πi
2q
jk| j ak 〉

=
1

2q

2q−1∑
j=0

r−1∑
k=0

b 2q−k−1
r c∑

m=0

e
2πi
2q
j(k+mr)| j ak 〉.

Therefore the probability of observing a certain pair | j ak 〉 is∣∣∣∣∣∣∣
b 2q−k−1

r c∑
m=0

e
2πi
2q
j(k+mr)

∣∣∣∣∣∣∣
2

.

This is just a sum of roots of unity and we’ve looked at many of those. We will do our usual
tricks: ∣∣∣∣∣∣∣

b 2q−k−1
r c∑

m=0

e
2πi
2q
j(k+mr)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
b 2q−k−1

r c∑
m=0

e
2πi
2q
jke

2πi
2q
jmr

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣e
2πi
2q
jk

b 2q−k−1
r c∑

m=0

(
e

2πirj
2q

)m∣∣∣∣∣∣∣
2

.

19

Now we let zj = e
2πirj
2q = e2πi

rj
2q as usual. We know that a sum∑

zmj

is largest when zj is closest to being 1. This happens when rj
2q

is close to being an integer.
M is just what we’ve been calling this integer.

Our conclusion is that we are most likely to observe an output | j ` 〉 such that rj
2q

is near
an integer M , because it makes the sum∣∣∣∣∣∣∣e

2πi
2q
jk

b 2q−k−1
r c∑

m=0

(
e

2πirj
2q

)m∣∣∣∣∣∣∣
2

,

which is the probability of observing | j ` 〉 if ` ≡ ak (mod N), the largest.

Second mystery: How to recover r from j?

We say above that the fraction rj
2q

is near an integer M . What’s more is that from our
experiments we also saw that the largest values happen when in fact∣∣∣∣rj2q −M

∣∣∣∣ ≤ 1

2q
,

or when we are just 1
2q

away from an integer, which is as close as we can get without actually
being an integer. Dividing through by r, we get∣∣∣∣ j2q − M

r

∣∣∣∣ ≤ 1

r2q
.

Now recall that N2 ≤ 2q, and N ≥ 2, so certainly 2N ≤ 2q. Furthermore, r is the order of a
modulo N , so r ≤ N (the sequence must repeat before it’s gone through more than the total
number of values that exist modulo N). Therefore, 2r ≤ 2N ≤ 2q, from which it follows
that ∣∣∣∣ j2q − M

r

∣∣∣∣ ≤ 1

r2q
≤ 1

2r2
.

Now, recall that 2q is very large compared to r. By Theorem 3.3.4, the only very good
approximations of j

2q
with small denominators such as r are convergents of j

2q
. Therefore the

fraction M
r

must be among the convergents of j
2q

.
The last piece of information we have about M

r
is that its denominator is less than N .

So we start computing the convergents of j
2q

, which we stress here is a known number: j is
the value we observed in the first q-bits of our output, and 2q is a number we chose at the
beginning of the algorithm. At some point, we will get a convergent whose denominator is
greater than N . If we take the convergent right before that one, the denominator of that
convergent is very likely to be r.

20

We might be a little bit unlucky and there might have been some canceling: Perhaps r is
even and M is even too, but of course the convergents will give us M

r
in lowest terms. This

is why, when we check if the denominator qk of the convergent is r, we also check if maybe
2qk or 3qk is r, just in case there is a small amount of cancelation. This doesn’t take much
more time.

21

Chapter 4

Learning with Errors

4.1 Classical LWE

In his 2005 paper, Regev suggests the following cryptographic scheme, which relies on the
difficult of the LWE (Learning With Errors) problem. Please see the remark below about
the values belonging to the integers versus their belonging to Z/qZ, as is usually prescribed.

1. Setting up:

• Choose a positive integer n (the size), and suitable positive integers q (the mod-
ulus) and m (the number of equations; exact specifications for q and m are in the
paper, and other authors suggest different choices)

• Choose a probability distribution χ with value in the integers from which to
draw errors (the exact properties necessary for this probability distribution should
become clear, but for now we will say that it should give “small” error values)

• Generate a secret integer vector of length n ~s ∈ Zn

• Generate m integer vectors of length n ~ai ∈ Zn

• Generate m integer error values ei ∈ Z drawn from the probability distribution χ

• Compute the m integers
bi = ~ai · ~s+ ei,

where · denotes the usual dot product.

Then the public key is
(q, {(~ai, bi)}mi=1) ,

i.e., consists in the prime number q and the m pairs (~ai, bi).

2. Encryption: This scheme allows one to send a 1-bit message, consisting either of the
bit 0 or the bit 1.

• The sender first chooses a random set T ⊆ {1, 2, . . . ,m}.

22

• – To send the bit 0, the sender then sends the pair (~a, b), where

~a =
∑
i∈T

~ai, and b =
∑
i∈T

bi.

– To send the bit 1, the sender then sends the pair (~a, b), where again

~a =
∑
i∈T

~ai,

but this time
b =

⌊q
2

⌋
+
∑
i∈T

bi,

where b·c denotes the floor function as usual.

3. Decryption: To decrypt, the receiver computes

b− ~a · ~s,

and computes the remainder of this quantity upon division by q. The receiver decrypts
the message to be 0 if this remainder falls in the interval[

0,
q

4

)
∪
(

3q

4
, q − 1

]
and the message to be 1 if the remainder falls in the interval(

q

4
,
3q

4

)
.

In other words, the message is decrypted to be 0 if the remainder is “closer to 0 than
to
⌊
q
2

⌋
modulo q,” and decrypts the message to be 1 otherwise.

The rationale for the decryption algorithm is the following: We have that

b− ~a · ~s =


∑
i∈T

ei, if the sent bit is 0;⌊q
2

⌋
+
∑
i∈T

ei, if the sent bit is 1.

Therefore, there will be a decryption error (the process will decrypt 0 to be 1 or vice-versa)
only in the event where ∣∣∣∣∣∑

i∈T

ei

∣∣∣∣∣ > q

4
.

We can control the probability of this happening by choosing the probability distribution
χ carefully. For example, if χ is a discrete normal distribution with mean 0 and standard
distribution suitably small, then the probability of this sum being large can be made very
small. In turn, this makes the probability of a decryption error very small.

23

Remark 4.1.1. When q = 2, the LWE problem is called the LPN problem, Learning Parity
with Noise.

As promised, we now discuss the issue of working over Z versus working over the ring
Z/qZ. it is customary to set up the algorithm with ~s,~ai ∈ (Z/qZ)n and for χ to be a
distribution taking values in Z/qZ (which also results in bi ∈ Z/qZ of course). However, this
leads to some mathematical issues at the decryption stage, where one would like to say that
some classes in Z/qZ are “closer” to each other than to other classes (which can be defined
with some care) or worse, that some classes in Z/qZ are “smaller” than some others (which
is mathematically nonsensical without choosing representatives for these classes).

We avoid this issue here by keeping all quantities in Z, and instead ending the algorithm
with taking the remainder upon division by q, which is a well-defined unique integer in the
interval [0, q − 1]. We note first that from an implementation point of view this is certainly
inefficient; carrying around the potentially large values that ~ai · ~s can take in the integers
is unnecessary when one will only want the remainder upon division by q in the end. For
an implementation therefore, it makes sense to compute everything in Z/qZ, and to only
consider representatives of these classes in the integers at the end, at the decryption stage.
One can show that this is mathematically sound and will not lead to inconsistencies.

Secondly we note that if one will be picking representatives for the classes, it is even
more advantageous to pick representatives in the interval [−b q

2
c, b q

2
c] if q is odd and in the

interval [− q
2

+ 1, q
2
] if q is even (so called “balanced” representatives). This leads to the less

awkward decryption condition that the message decrypts to be 0 if the representative r of
b− ~a · ~s (mod q) satisfies

−q
4
< r <

q

4
,

and decrypts to be 1 otherwise.

4.1.1 Sage commands

Sage already has some code which can be used to play with Regev’s version of LWE (or any
version, it can be customized).

First, I mentioned in class that in his paper Regev gives suggestions for what q and χ
should be given a choice of parameter n. To find out his suggestion, we can ask Sage to
create a Regev-LWE oracle and see what parameters Sage chooses:

from sage.crypto.lwe import Regev

my_lwe = Regev(7); my_lwe

This should prompt Sage to respond

LWE(7, 53, Discrete Gaussian sampler over the Integers with sigma =

1.014010 and c = 53, ’uniform’, None).

Let’s dissect what this means:

• The first parameter is n, so this tells us that n = 7.

24

• The next parameter is q, so we learn that with n = 7, Regev suggests we use q =
53. Looking at the original paper, we see that Regev suggests that q be prime and
n2 < q < 2n2. Sage sensibly chooses the prime number immediately following n2 in its
implementation.

• Then we see the discrete normal distribution used for the errors; here the discrete
normal has σ = 1.014010 and mean µ = 53 (Sage uses c for “center” but in mathematics
it’s more common to use µ for the mean of a distribution). We note that Regev
recommends a discrete normal with σ = q√

2πn(lnn)2
, which is what 1.014010 is. We

also note that while the mean should “technically” be 0, since Sage does all of the
computations modulo q choosing the mean to be q does not affect the final answer.

• The next parameter is ’uniform,’ which says that the secret will be chosen uniformly
at random from Z/qZn.

• Finally, the last parameter is ’none,’ which says that we are not putting any upper
bound on m, the number of LWE pairs that can be sampled by a user.

If we want to actually see some LWE pairs generated with these parameters, we can type
either

my_lwe()

to get one pair, or if we want many pairs quickly, we can type

my_pairs = [my_lwe() for _ in range(10)]; my_pairs

which will give 10 LWE pairs. One can also use a different syntax that doesn’t explicitly
create a LWE object:

from sage.crypto.lwe import samples

samples(7,10,'Regev')

which will give 10 LWE pairs with n = 7 and other parameters as specified by Regev.
Finally, if we need access to the secret ~s to decrypt, we can get it by typing

s = my_lwe._LWE__s; s

For example, if we want to see all of the errors from our sample, we can list them:

my_errors = [a.dot_product(s) - b for (a,b) in my_pairs]; my_errors

25

4.1.2 Brakerski-Vaikuntanathan (BV) LWE

We present now a slight variation on Regev’s LWE cryptographic scheme. We note that the
original BV scheme was for R-LWE, which we will cover later, but there doesn’t seem to be
any harm in introducing their ideas as an LWE scheme.

The set up is essentially the same: One chooses a size n, a modulus q, a number m of
equations, and a probability distribution χ for the errors. Then one generates a secret vector
~s and m vectors ~ai. However, to complete the LWE pairs, we use the formula

bi = ~ai · ~s+ 2ei.

The public key is again (q, {(~ai, bi)}mi=1).
The encryption then is also slightly different: To send a 1-bit message x ∈ {0, 1}, the

sender chooses a random set T ⊆ {1, 2, . . . ,m}, and sends the pair (~a, b), where as before
~a =

∑
i∈T ~ai, but this time

b = x+
∑
i∈T

bi

(this is instead of b = xb q
2
c+

∑
i∈T bi in the classical Regev scheme).

To decrypt, it then suffices to compute

b− ~a · ~s (mod 2),

as this will give the value x. Indeed, we have

b− ~a · ~s = x+
∑
i∈T

bi − ~a · ~s

= x+
∑
i∈T

bi −

(∑
i∈T

~ai

)
· ~s

= x+
∑
i∈T

bi −
∑
i∈T

(~ai · ~s)

= x+
∑
i∈T

(bi − ~ai · ~s)

= x+
∑
i∈T

2ei

≡ x (mod 2).

4.2 Hardness of the problems

4.2.1 Lattice problems

Throughout, we will refer to a set of pairs (~ai, bi) as a set of LWE pairs if there is a common
vector ~s such that

bi = ~ai · ~s+ ei,

26

for ei drawn from some error distribution χ. (Here we leave the meaning of “error distribu-
tion” vague to mean any probability distribution that outputs “small values” for a definition
of small that we leave to be established as needed in context.)

Throughout, we will need a notion of size for a vector. For ~z = (z1, . . . zn) ∈ Zn, we will
write

‖~z‖ =
√
z21 + z22 + · · ·+ z2n,

for the Euclidean norm of ~z. Note that if in fact ~z ∈ (Z/qZ)n, then the norm is not well-
defined, although ‖~z‖2 ∈ Z/qZ is well-defined.

We begin with the two problems most closely related to LWE:

Problem 4.2.1 (Search-LWE, or just LWE). Given a set of LWE pairs {(~ai, bi)}, compute
the secret ~s.

Problem 4.2.2 (Decision-LWE). Given a set of pairs {(~ai, bi)}, decide if these pairs are
LWE, or if for each i, bi was just chosen uniformly randomly from the set Z/qZ (and randomly
lifted to an integer if we are working with bi ∈ Z as we are).

These are related to a whole host of so-called “lattice problems.” We highlight here a
selection of them:

Problem 4.2.3 (Short Integer Solution (SIS)). Fix β > 0. Given an n×m matrix A with
entries in Z/qZ find a nonzero vector ~z ∈ Zm such that

1. ‖~z‖ ≤ β, and

2. A~z ≡ 0 (mod q).

Note that to guarantee that there exists such a ~z, one can require β ≥
√
n log q (but at the

same time, so the problem is not trivial, one should require β < q so that ~z = (q, 0, 0, . . . , 0)
is not a solution), and m ≥ n log q.

Problem 4.2.4 (Shortest Vector (SVP)). Given a basis ~v1, ~v2, . . . , ~vn for a lattice L, give
the shortest nonzero vector ~v belonging to the lattice. In other words, let

λ(L) = min
06=~v∈L

‖~v‖ . (4.1)

Then give a vector ~v ∈ L with ‖~v‖ = λ(L).

A variation on this problem is this:

Problem 4.2.5 (GapSVP). Fix a constant β > 0. Given a basis ~v1, ~v2, . . . , ~vn for a lattice
L, decide if the shortest vector of L has length less than or equal to 1, or strictly greater
than β. In other words, with λ(L) as in equation (4.1), decide if λ(L) ≤ 1 or β < λ(L).

27

Note that in the GapSVP problem, we promise that the case of 1 < λ(L) ≤ β will not
be asked. Or if it is asked, we allow our oracle to give the wrong answer or refuse to answer
in this case. In other words, we pretend as much as possible that only those two options
(λ(L) ≤ 1 or β < λ(L)) are possible, and simply ask to decide which of the two options is
the case to consider the problem solved.

In his paper, Regev shows that there is quantum reduction (i.e. one that requires a
quantum computer) from the LWE problem to the GapSVP problem for certain parameters.
This means that if one has an oracle that can solve the LWE problem using only a polynomial
number of LWE pairs, as long as certain requirements are satisfied by q and χ, then this
same oracle can solve the GapSVP problem for a value of β which depends on q and χ. This
establishes that LWE should be a hard problem. The author notes that there probably is a
nonquantum reduction, but none is known currently as far as we know.

4.2.2 Decision implies search

Instead of wading into the difficult hardness proofs, we instead now present some easier
reduction results to give a taste of the subject. We begin with a counter-intuitive result. It
seems clear that if one can solve the Search-LWE problem, then one can solve the Decision-
LWE problem. (One could apply the Search-LWE oracle to the Decision-LWE sample, see
what vector ~s comes out and see if for each i bi − ~ai · ~s is distributed according to χ.)
However, it turns out that the other way works too! If one can only tell apart LWE pairs
from non-LWE pairs, then one can recover ~s, as long as q is polynomial in n.

Proposition 4.2.6. If one has an oracle that can solve the Decision-LWE problem, then
one can solve the Search-LWE problem, as long as q is polynomial in n.

Proof. Let k ∈ Z/qZ. We show how to determine if sj, the jth coordinate of the vector ~s,
is equal to k. By repeating this process for different values of k for each j = 1, . . . , n, since
q is polynomial in n, one can recover ~s by applying this process a number of times that is
polynomial in n.

To determine if sj = k, we generate m random integers ri and replace the pairs {(~ai, bi)}
with the pairs

{(~a′i = ~ai + (0, . . . , 0, ri, 0, . . . 0), b′i = bi + rik)},

where ri is in the jth coordinate of the vector.
If sj = k, then this new set of pairs will be an LWE pair according to the oracle. If

sj 6= k, then the oracle will reject this set as being random.
The reason why the new pairs are LWE if sj = k is the following. For each i, we have:

b′i − ~a′i · ~s = (bi + rik)− (~ai + (0, . . . , 0, ri, 0, . . . 0)) · ~s
= bi + rik − ~ai · ~s− (0, . . . , 0, ri, 0, . . . 0) · ~s
= (bi − ~ai · ~s) + rik − risj
= ei + ri(k − sj).

28

We see that if sj = k, then we are left only with ei, and so the pairs are LWE. Otherwise,
the number ri(k − sj) behaves like a random number, since ri is random, so the pairs are
seen as random by the oracle.

4.2.3 SIS implies decision

We also present another nice result: If one has an SIS oracle, then one can solve Decision-
LWE:

Proposition 4.2.7. If one has an oracle that can solve the SIS problem, then one can solve
the Decision-LWE problem with high probability.

Proof. Suppose that we have a list of m pairs {(~ai, bi)} and want to determine if they are
LWE. Suppose further that for any matrix we can solve the Short Integer Solution problem
efficiently. Then we can solve the Decision-LWE problem as follows.

We begin by forming a large number of subsets Tj ⊂ {1, 2, . . . ,m}, j = 1, 2, . . . , N , say.
For each j, we form the matrix

Aj =


~ak1
~ak2
. . .
~ak`

 ,

whose rows are the elements ~ak for k ∈ Tj, and then use the SIS solver to give a short integer
solution ~zj to the equation ATj ~zj ≡ 0 (mod q).

Then for each j we form the vector

~Bj =


bk1
bk2
. . .
bk`

 ,

and compute ~BT
j ~zj. If the values ~BT

j ~zj are “small” consistently, then we conclude that the

pairs were LWE. If the values ~BT
j ~zj are uniformly distributed in Z/qZ, then we conclude

that the pairs were not LWE.
The reason why this works is the following: If the pairs were LWE all along, then we

have that for each j
~Bj = Aj~s+ ~Ej,

where ~Ej is the vector of errors. In that case then, we have that

~BT
j ~zj = (Aj~s+ ~Ej)

T~zj

= (~sTATj + ~ET
j)~zj

= ~sTATj ~zj + ~ET
j ~zj

= ~ET
j ~zj,

29

since ATj ~zj ≡ 0 (mod q). Recall that we have that

~Ej · ~zj ≤
∥∥∥ ~Ej∥∥∥ ‖~zj‖ ,

and
∥∥∥ ~Ej∥∥∥ is smaller in absolute value than q

4
with high probability. Then if ‖~zj‖ is small

enough (which we can control with the oracle), we will see a small value of ~Ej · ~zj with high
probability and therefore very often.

If the pairs are not LWE, then ~BT
j ~zj is just a uniformly chosen random vector whose dot

product is taken with a short vector. This will not be as short, and should sometimes be big
even, so with high probability we will see larger values.

4.3 Ring-LWE

Warning: This section is still under construction and will require some edits
before being understandable. Read at your own risk!

The Ring Learning with Error problem (R-LWE) is pretty much identical to the LWE
problem, except with polynomials instead of vectors. There are several set ups, we present
here the Brakersky-Vaikuntanathan set up as it is one of the early homomorphic ones.

To be precise, here is the encryption/decryption scheme, including the set up:

1. Setting up:

• Choose a prime q, a polynomial Φ(x) that is irreducible over Fq[x] (the ring of
polynomials with coefficients in the finite field with q elements) of degree n, and
a positive integer m.

• Choose a probability distribution χ with values in the quotient ring Fq[x]/Φ(x)
from which to draw errors. We will not dwell on the exact properties that χ
should have, but the polynomials that it outputs should have “small” coefficients.

• Generate a secret polynomial s(x) ∈ Fq[x]/Φ(x).

• Generate m polynomials ai(x) ∈ Fq[x]/Φ(x).

• Generate m error polynomials ei(x) ∈ Fq[x]/Φ(x), drawn from the distribution χ.

• Compute the m polynomials

bi(x) = ai(x)s(x) + 2ei(x),

where here the operations are the usual polynomial multiplication and addition
in Fq[x]/Φ(x).

Then the public key is the data of the ring Fq[x]/Φ(x), and the m pairs (ai(x), bi(x)).

2. Encryption: This scheme allows one to send a polynomial y ∈ Fq[x]/Φ(x) all of whose
coefficients are 0 or 1. This essentially allows one to send deg(Φ(x)) different 1-bit
messages at once.

30

• The sender chooses a random set T ⊆ {1, . . . ,m}.
• They form, and send, the pair (a(x), b(x)), where

a(x) =
∑
i∈T

ai(x), and b(x) = y(x) +
∑
i∈T

bi(x).

3. Decryption: To decrypt, the receiver computes

b(x)− a(x)s(x) (mod 2).

This will give the value y(x). The reason for this is the following; we have

b(x)− a(x)s(x) = y(x) +
∑
i∈T

bi(x)−

(∑
i∈T

ai(x)

)
s(x)

= y(x) +
∑
i∈T

(ai(x)s(x) + 2ei(x))−
∑
i∈T

ai(x)s(x)

= y(x) +
∑
i∈T

(ai(x)s(x) + 2ei(x)− ai(x)s(x))

= y(x) +
∑
i∈T

2ei(x)

≡ y(x) (mod 2).

Here we used that the coefficients of y(x) are all 0 or 1 to conclude that y(x) ≡ y(x)
(mod 2). (This is a weird statement to make, as it is trivially true mathematically, but
we mean here that y(x) did not have “more information” before reducing modulo 2.)

4.3.1 Fully Homomorphic Encryption

One reason to use R-LWE rather than LWE is that it requires small key sizes. Another is
that it allows one to define fully homomorphic encryption schemes. By this we mean an
encryption scheme where if m is the message and Encr is the encryption method, then we
have that

Encr(m1) + Encr(m2) = Encr(m1 +m2)

and
Encr(m1) · Encr(m2) = Encr(m1 ·m2).

In other words, one can perform operations on the encrypted information, and obtain an
encryption of the result of the operation on the original information. This is useful for
computations in the cloud, where one might want to keep the information secure (encrypted)
while having a third party perform operations on the information.

Let us consider the R-LWE scheme presented here. Suppose that one has two message
polynomials y1 and y2. Suppose further that (a, b) is a pair encrypting y1 and (c, d) is pair

31

encrypting y2. For simplicity, we will further suppose that in each case the sets T contained
only one element; this is not necessary but will lighten the notation considerably. We also
drop the variable x from the notation to similarly lighten the notation.

Then to be clear we have
b = y1 + as+ 2e1,

where e1 is an error polynomial (really a sum of them, but a sum of error polynomials should
remain an error polynomial) and

d = y2 + cs+ 2e2,

and again e2 is an error polynomial.
We have that

b+ d = (y1 + y2) + (a+ c)s+ 2(e1 + e2),

so the pair (a+ c, b+ d) is an encryption of y1 + y2, at the cost of the error having grown a
little bit more. (We can see this by computing

(b+ d)− (a+ c)s ≡ y1 + y2 (mod 2).)

Therefore the additivity of the encryption scheme is easily obtained.
Let us consider now the trickier case of the multiplication. We have

bd = (y1 + as+ 2e1)(y2 + cs+ 2e2)

= y1y2 + (y1c+ y2a+ 2e2a+ 2e1c)s+ acs2 + 2y1e2 + 2e1y2 + 4e1e2

= y1y2 + (y1c+ y2a)s+ acs2 + 2e1(cs+ y2) + 2e2(as+ y1) + 4e1e2

If we compute
bd− acs (mod 2),

we do not get y1y2. So without modification the BV scheme is not fully homomorphic.
Therefore the authors generalize their scheme in the following way:

1. Setting up: The set up remains the same, but one computes a secret vector

~s = (1, s, s2, s3, . . . , sD)

for some value D which will determine how many multiplications can be done on the
ciphertexts.

2. Encryption remains mostly the same, except that to encrypt the polynomial y(x), we
will output the pair (b,−a), where, as before,

a(x) =
∑
i∈T

ai(x), and b(x) = y(x) +
∑
i∈T

bi(x).

We also note that in general now a ciphertext will not necessarily be a pair, but instead
a tuple ~c = (c0, c1, c2, . . . , cD). The length of the tuple will depend on how many

32

multiplications the ciphertext has gone through: A ‘freshly encrypted” message will
be a pair (c0, c1) with c0 = b and c1 = −a, but the ciphertext coming from multiplying
two “fresh” ciphertexts will be a triple (c0, c1, c2), for example, and in general the
ciphertext coming from multiplying a ciphertext of length D1 + 1 with a ciphertext of
length D2 + 1 will be of length D1 +D2 + 1.

3. Ciphertext addition and multiplication: This is a new category! Since the scheme is
fully homomorphic, we must also provide an addition and a multiplication, not just an
encryption and a decryption.

The addition will be component-wise; if ~c1 = (c10, c11, c12, . . . , c1D) and ~c2 = (c20, c21, c22, . . . , c2D)
(where we might have padded ~c1 and ~c2 with zeroes at the end to get them both to be
length D) then

~c1 + ~c2 = (c10 + c20, c11 + c21, . . . , c1D + c2D).

The multiplication is slightly more complicated. If ~c1 = (c10, c11, c12, . . . , c1D1) and
~c2 = (c20, c21, c22, . . . , c2D2) (here there is no need to pad for both vectors to be the
same length), let U be a variable and consider the two polynomials

c1(U) = c10+c11U+c12U
2+· · ·+c1D1U

D1 and c2(U) = c20+c21U+c22U
2+· · ·+c2D2U

D2 .

Then their product ĉ(U) = c1(U)c2(U) is also a polynomial and we can just compute
what it is using normal polynomial multiplication. It has some coefficients:

ĉ(U) =

D1+D2∑
j=0

ĉiU
i = ĉ0 + ĉ1U + . . .+ ĉD1+D2U

D1+D2 .

Then we define the multiplication of the two ciphertexts ~c1~c2 to be

~c1~c2 = (ĉ0, ĉ1, . . . , ĉD1+D2).

4. The decryption algorithm for a general ciphertext ~c = (c0, c1, . . . , cD) is just

~c · ~s (mod 2).

We see now how the choice of D at the beginning affects how many multiplication we can
perform: Every multiplication makes the ciphertext longer, but we can only decrypt vectors
~c that have D + 1 or fewer entries.

Let us now verify that this scheme is fully homomorphic. Throughout, let ~c1 be an
encryption of y1, by which we mean that

~c1 · ~s ≡ y1 (mod 2),

and let let ~c2 be an encryption of y2, by which we mean that

~c2 · ~s ≡ y2 (mod 2).

33

To show that this new scheme preserves addition, we must then show that ~c1 + ~c2 is an
encryption of y1+y2, or equivalently that (~c1+~c2) ·~s ≡ y1+y2 (mod 2). Indeed, we compute:

(~c1 + ~c2) · ~s = ~c1 · ~s+ ~c2 · ~s ≡ y1 + y2 (mod 2).

Finally we get to the multiplication: For simplicity and concreteness, let us consider the
multiplication of two “fresh” ciphertexts. The general proof is not much more difficult but
perhaps less illuminating. To keep the notation from before, let ~c1 = (b,−a), which is still
an encryption of y1, and let ~c2 = (d,−c), which is still an encryption of y2, per our earlier
assumption. Then the ciphertext product of ~c1 and ~c2 is (bd,−(ad+ bc), ac), because of the
product

because
(b− aU)(d− cU) = bd− (ad+ bc)U + acU2.

We verify that this indeed decrypts to y1y2:

(bd,−(ad+ bc), ac) · (1, s, s2) = bd− (ad+ bc)s+ acs2

= (b− as)(d− cs)
= ((b,−a) · (1, s)) ((d,−c) · (1, s))
= (~c1 · ~s) (~c2 · ~s)
≡ y1y2 (mod 2).

34

	Introduction
	Important note

	Classical public-key cryptography
	RSA
	Required skills/knowledge
	Hard and easy things
	Notation we will use

	DLP
	Required skills/knowledge
	Hard and easy things
	Notation we will use

	Shor's algorithm
	Quantum computing basics
	Discrete Fourier Transform
	Required skills/knowledge
	Roots of unity
	The Discrete Fourier Transform
	Examples when the frequency is an integer
	Examples when the frequency is not an integer

	Continued fractions
	Shor's algorithm
	Classical steps
	Quantum steps
	Explanation of step 6

	Learning with Errors
	Classical LWE
	Sage commands
	Brakerski-Vaikuntanathan (BV) LWE

	Hardness of the problems
	Lattice problems
	Decision implies search
	SIS implies decision

	Ring-LWE
	Fully Homomorphic Encryption

