
Math 259 - Spring 2019
Homework 4 Solutions

1. (a) The Hamming distance measures in how many entries two codewords are different.
By definition, this number must be nonnegative. In addition, two codewords differ
in zero entries if and only if they are the same codeword.

(b) c1 differs from c2 in as many entries as c2 differs from c1; in other words these
two values are equal since they count the number of entries where c1 and c2 are
different.

(c) Fix two codewords c1 and c2, and an entry where they differ, say the ith entry.
Now consider a third codeword c3. There are exactly three things that can happen:

• Maybe the pairs c1 and c3 and c2 and c3 are both different in that entry.
In that case the ith entry contributes to both the count d(c1, c3) and to the
count d(c3, c2).

• Maybe c1 and c3 differ in that entry, but c2 and c3 are the same in that entry.
In that case the ith entry contributes to the count d(c1, c3) but not to the
count d(c3, c2).

• Maybe c1 and c3 are the same in that entry, but c2 and c3 are different in that
entry. In that case the ith entry does not contribute to the count d(c1, c3)
but does contribute to the count d(c3, c2).

Note that it is impossible for both c1 and c3 and c3 and c2 to be the same in
that entry as that would imply that c1 and c2 are the same in that entry. But we
assumed that we picked an entry where c1 and c2 differ.

From this analysis, we see that whenever an entry contributes a count of 1 to
d(c1, c2), which is the left hand side of the inequality (because c1 and c2 differ in
that entry), then the same entry contributes either a count of 1 to both d(c1, c3)
and d(c3, c2), or a count of 1 only to d(c1, c3), or a count of 1 only to d(c3, c2). In
any case, that entry contributes at least a count of 1 to the right hand side of the
inequality. Therefore we conclude that d(c1, c2) ≤ d(c1, c3) + d(c3, c2).

(Note that of course, it is possible for c1 and c2 to be the same at an entry, but
different from c3 in that entry, which would make the right hand side even larger.
But for the purposes of our proof, we need not even consider these entries.)

2. (a) Suppose that d(C) ≥ s+ 1. Now if a codeword c is sent, and s or fewer errors are
made, then the received message v will satisfy d(c, v) ≤ s. Since d(C) ≤ d(c, c′)
for any codeword c′, the fact that d(c, v) ≤ s < d(C) implies that v is not a
codeword. Therefore when we receive this message, we know that an error was
made.

(b) Suppose that d(C) ≥ 2t+ 1. Now if a codeword c is sent and t or fewer errors are
made, then the received message v will satisfy d(c, t) ≤ t. Let c′ be any codeword
other than c. Then by the triangle inequality we have

d(c, c′) ≤ d(c, v) + d(v, c′).

1



The left hand side satisfies

2t + 1 ≤ d(C) ≤ d(c, c′),

by hypothesis, and the right hand side satisfies

d(c, v) + d(v, c′) ≤ t + d(v, c′).

Bringing these together, we have

2t + 1 ≤ d(C) ≤ d(c, v) + d(v, c′) ≤ t + d(v, c′).

or simply
2t + 1 ≤ t + d(v, c′).

From this it follows that d(v, c′) ≥ t+ 1. Recall that this is true for any codeword
c′ that is not c. Therefore, the nearest neighbor to v is c (since d(c, v) ≤ t and
d(v, c′) ≥ t + 1 for any other c′), and v successfully decodes to c by the nearest
neighbor algorithm. Therefore the t errors are corrected.

3. (a) There are many ways to show this. The quickest is to say that (0, 0, 0) does not
belong to C. (A linear code is a linear subspace and a subspace always contains 0.)
Perhaps the next quickest is to show that the code is not closed under addition:
For example (0, 0, 1) + (1, 1, 1) = (1, 1, 0) does not belong to C. In fact it looks
like maybe none of the sums of two codewords belong to C? So in any case there
are many ways in which C fails to be linear.

(b) Here we cannot use the minimum weight trick because the code is not linear.
Therefore sadly we must just compute the distances between any two pairs of
codewords and choose the smallest one. If we have

c1 = (0, 0, 1), c2 = (1, 1, 1), c3 = (1, 0, 0), and c4 = (0, 1, 0),

then we have

d(c1, c2) = 2, d(c1, c3) = 2, d(c1, c4) = 2, d(c2, c3) = 2,

d(c2, c4) = 2, d(c3, c4) = 2.

(If you are surprised by this, imagine that these are the coordinates of the vertices
of a 1×1×1 cube embedded in R3. Then the Hamming distance is just the distance
between the vertices if we can only walk along the edges of the cube (no cutting
through the cube) and here they have picked all of the four vertices that as “as
far apart from each other as possible,” which is a distance of 2 if we want to be
able to pick four vertices.) Anyway, d(C) = 2.

2



4. First, since C is linear we have that 0 ∈ C, so for any 0 6= c ∈ C, we have

wt(c) = d(0, c) ≥ d(C).

From this it follows that

d(C) ≤ min{wt(c) : 0 6= c ∈ C}.

For the other direction, let c1 and c2 be two different codewords. Then 0 6= c = c1−c2 ∈
C, since C is linear. We claim that

wt(c) = d(c1, c2).

Indeed, wt(c) counts the number of entries where c is nonzero. But these are exactly
the entries where c1 and c2 differ, and therefore this is exactly d(c1, c2).

Therefore we have that for any pair c1 6= c2,

d(c1, c2) = wt(c) ≥ min{wt(c) : 0 6= c ∈ C}.

From this it follows that

d(C) ≥ min{wt(c) : 0 6= c ∈ C}.

Since we have both d(C) ≥ min{wt(c) : 0 6= c ∈ C} and d(C) ≤ min{wt(c) : 0 6= c ∈
C}, it follows that

d(C) = min{wt(c) : 0 6= c ∈ C}.

5. (a) The generating matrix generates a code in the following way: If G is a k × n
matrix, take all possible vectors of length k and multiply them by G on the right.
This will give all vectors of C, and they will have length n. Here G is a 2 × 4
matrix, so it will generate codewords of length 4 when we start with vectors of
length 2. The codewords are

c1 = (0, 0)G = (0, 0, 0, 0)

c2 = (1, 0)G = (1, 0, 1, 1)

c3 = (0, 1)G = (0, 1, 0, 1)

c4 = (1, 1)G = (1, 1, 1, 0).

(b) We have n = 4 (the length of the code) and k = 2 (the dimension of the code).

(c) Here

P =

(
1 1
0 1

)
,

so

H =
(
−P T I

)
=

(
1 0 1 0
1 1 0 1

)
.

3



(d) Since this code is linear, we can use the minimum weight of a nonzero codeword to
compute the minimum distance. We have wt(c2) = 3, wt(c3) = 2 and wt(c4) = 3,
so the minimum weight of a nonzero codeword is 2 and d(C) = 2.

(e) We have that C can detect s errors for d(C) ≥ s + 1. Here 2 ≥ s + 1 means that
1 ≥ s, so this code can detect at most one error.

We have that C can correct t errors for d(C) ≥ 2t + 1. Here 2 ≥ 2t + 1 means
that 1

2
≥ t, so this code cannot correct any errors.

6. (a) i. To prove that a subset of a vector space is a subspace, it suffices to show that
it is closed under linear combinations. Therefore, it suffices to show that for
any a1 and a2 in F2, the linear combination

a1(0, 0, 0) + a2(1, 1, 1) = a2(1, 1, 1)

belongs to C3. Since a2 can only be 0 or 1, a2(1, 1, 1) is either (0, 0, 0) or
(1, 1, 1), and the result follows.

ii. Here n = 3 and k = 1.

iii. Since this code is linear we can use our minimum weight result. Since there
is only one nonzero codeword, we have that d(C3) = wt((1, 1, 1)) = 3.

iv. We solve d(C3) = 3 ≥ 2t+ 1 and get 1 ≥ t, so C3 can correct at most 1 error.

(b) i. Again it suffices to show that C4 is closed under linear combinations. This
time, it means that we must show that for any a1 and a2 in F2, the linear
combination

a1(0, 0, 0, 0) + a2(1, 1, 1.1) = a2(1, 1, 1, 1)

belongs to C4. Again, since a2 can only be 0 or 1, a2(1, 1, 1, 1) is either
(0, 0, 0, 0) or (1, 1, 1, 1), and the result follows.

ii. Here n = 4, but k = 1 still.

iii. Again this code is linear so we can use our minimum weight result. Again
there is only one nonzero codeword, we have that d(C4) = wt((1, 1, 1, 1)) = 4.

iv. We solve d(C4) = 4 ≥ 2t + 1 and get 3
2
≥ t, so C4 can also correct at most 1

error.

(c) i. We show that Cn is closed under linear combinations. Indeed, for any a1 and
a2 in F2, the linear combination

a1(0, 0, . . . , 0) + a2(1, 1, . . . , 1) = a2(1, 1, . . . , 1)

belongs to Cn, because a2 can only be 0 or 1, so a2(1, 1, . . . , 1) is either
(0, 0, . . . , 0) or (1, 1, . . . , 1), and the result follows.

ii. Here n = n (phew, no confusion there) but k = 1 still.

iii. We use our minimum weight result, which says that d(Cn) = wt((1, 1, . . . , 1)) =
n.

4



iv. We solve d(Cn) = n ≥ 2t + 1 and get n−1
2
≥ t, so Cn can correct at most

bn−1
2
c errors.

7. (a) A parity check matrix for this code is

H =



0 1 0 0 1 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0
0 1 1 1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 0 0 1


(b) i. The syndrome is [0, 1, 0, 0, 1, 1, 1, 1], this is not a codeword.

ii. The syndrome is [0, 0, 0, 0, 0, 0, 0, 0], this is a codeword.

iii. The syndrome is [0, 0, 0, 0, 0, 0, 0, 0], this is a codeword.

iv. The syndrome is [0, 1, 1, 1, 0, 0, 1, 1], this is not a codeword.

8. (a) For this received message, the syndrome v1H
T is [1, 0, 1], which is the second

column of H. Therefore we flip the second bit of v1 to obtain the codeword
c1 = [1, 0, 1, 0, 1, 0, 1].

(b) This time, the syndrome v2H
T is [1, 0, 0], which is the fifth column of H. Therefore

we flip the fifth bit of v2 to obtain the codeword c2 = [1, 0, 1, 0, 1, 0, 1].

(c) The syndrome v3H
T is [0, 0, 0] so in fact v3 is a codeword and does not need to

be corrected.

(d) Finally, the syndrome v4H
T is [1, 1, 0]. This is the first column of H, so we flip

the first bit of v4 to obtain the codeword c4 = [0, 0, 1, 0, 0, 1, 1].

9. There actually was an error in the statement of the problem. The minimum distance
of this code is 5, which means it can correct 2 errors, not 5 errors. If you put in more
than 2 errors in fact your message should not decrypt.

10. (a) The public key would be the “scrambled” generating matrix denoted G1 in the
book, which is

G1 = SGP =


1 0 1 0 0 1 0
1 0 0 0 1 1 1
0 0 1 1 0 1 1
1 1 0 0 1 0 0

 ,

as well as the information t = 1, to let people know that the code that you are
using can correct 1 error.

(b) In each case, given a ciphertext y, the decryption algorithm will go through the
following steps, because you are using a Hamming code:

5



• Compute y1 = yP−1. This is a codewords plus an error, so we must decode
this vector.

• Compute the syndrome y1H
T .

• This will give a column of H, we change the corresponding bit in y1 to obtain
the decoded vector x1.

• Get the “premessage” x0 by reading only the first 4 bits of x1. (In other
words, remove the extra check bits from x1 to get x0.

• Compute the message x = x0S
−1.

We see that this requires us to compute P−1, H (the parity check matrix), and
S−1, which we can do with the secret key that we have. We have:

P−1 =



0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0


, H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1



and

S−1 =


0 1 1 1
0 1 0 1
1 1 1 0
1 1 1 1

 .

Thus we decrypt!

i. We start with y = [0, 0, 1, 0, 0, 1, 0].

• We have y1 = [1, 0, 0, 0, 0, 0, 1]

• The syndrome is y1H
T = [1, 1, 1].

• This is the fourth column of H, so we flip the fourth bit of y1 to get the
decoded vector x1 = [1, 0, 0, 1, 0, 0, 1]

• The “premessage” x0 is just then [1, 0, 0, 1], the first four bits.

• The actual message was x = x0S
−1 = [1, 0, 0, 0].

ii. This time we start with y = [1, 0, 1, 0, 0, 1, 1].

• We have y1 = yP−1 = [1, 1, 0, 1, 0, 0, 1]

• The syndrome is y1H
T = [1, 0, 1].

• This is the second column of H, so we flip the second bit of y1 to get the
decoded vector x1 = [1, 0, 0, 1, 0, 0, 1]. This is the same as just before!

• The “premessage” x0 is again then [1, 0, 0, 1], the first four bits.

• The actual message was x = x0S
−1 = [1, 0, 0, 0]. So we see that because

of the random error, the same message doesn’t even get encrypted to the
same ciphertext twice!

6



iii. Now we start with y = [0, 0, 1, 1, 1, 0, 1].

• We have y1 = yP−1 = [1, 1, 1, 0, 0, 1, 0]

• The syndrome is y1H
T = [0, 1, 0].

• This is the sixth column of H, so we flip the sixth bit of y1 to get the
decoded vector x1 = [1, 1, 1, 0, 0, 0, 0].

• The “premessage” x0 is again then [1, 1, 1, 0], the first four bits.

• The actual message was x = x0S
−1 = [1, 1, 0, 0].

iv. Ok, one last one, I think we’re getting the hang of this. We start with
y = [0, 1, 1, 1, 1, 0, 0].

• We have y1 = yP−1 = [1, 0, 1, 0, 1, 1, 0]

• The syndrome is y1H
T = [0, 1, 1].

• This is the third column of H, so we flip the third bit of y1 to get the
decoded vector x1 = [1, 0, 0, 0, 1, 1, 0].

• The “premessage” x0 is again then [1, 0, 0, 0], the first four bits.

• The actual message was x = x0S
−1 = [0, 1, 1, 1].

7


