
Math 259 - Spring 2019
Homework 4

This homework is due on Friday, March 22.

1. Let C be a code over a field and d its Hamming distance. Prove that d is a metric.
In other words, prove that if c1, c2 and c3 are code words, then

(a) d(c1, c2) ≥ 0, with d(c1, c2) = 0 if and only if c1 = c2;

(b) d(c1, c2) = d(c2, c1); and

(c) d(c1, c2) ≤ d(c1, c3) + d(c3, c2).

2. Let C be a code with minimum distance d(C). Show that

(a) C can detect up to s errors if d(C) ≥ s + 1; and

(b) C can correct up to t errors if d(C) ≥ 2t + 1.

3. (adapted from TW Section 18.12, problem 5) Let C = {(0, 0, 1), (1, 1, 1), (1, 0, 0), (0, 1, 0)}
be a code over F2.

(a) Show that C is not a linear code.

(b) Compute d(C), the minimum distance of C.

4. Let C be a linear code. Prove that d(C), the minimum distance of C, is equal to the
smallest Hamming weight of nonzero code words:

d(C) = min{wt(c) : 0 6= c ∈ C}.

5. Consider the linear binary code C given by the generating matrix

G =

(
1 0 1 1
0 1 0 1

)
.

(a) Please enumerate all of the elements of C.

(b) Using the notation from the book, what are n and k for this code?

(c) Give the parity check matrix H of this code.

(d) What is d(C), the minimal distance?

(e) How many errors can C detect? How many errors can C correct? You can use
the results from problem 2 to answer this question.

6. Consider the n-repetition code Cn over F2, which encodes the 1-bit message m = 0 with
the n-bit codeword 0000 . . . 0 and the 1-bit message m = 1 with the n-bit codeword
1111 . . . 1.



(a) For this part of the problem, let n = 3, so that the code is given by C3 =
{000, 111}.

i. Prove that C3 is a linear code.

ii. Using the notation from the book, what are n and k for this code?

iii. What is d(C3), the minimal distance?

iv. How many errors can C3 correct?

(b) For this part of the problem, let now n = 4, so that the code is given by C4 =
{0000, 1111}. Please answer the same questions, but about C4:

i. Prove that C4 is a linear code.

ii. Using the notation from the book, what are n and k for this code?

iii. What is d(C4), the minimal distance?

iv. How many errors can C4 correct?

(c) Finally, generalize your results to any n: Consider Cn the n-repetition code over
F2.

i. Prove that Cn is a linear code.

ii. Using the notation from the book, what are n and k for this code?

iii. What is d(C4), the minimal distance?

iv. How many errors can Cn correct?

7. Consider the linear binary code C given by the generating matrix

G =


1 0 0 0 0 1 1 1 0 1 1 0
0 1 0 0 1 1 0 0 1 0 1 1
0 0 1 0 0 1 1 0 1 1 1 1
0 0 0 1 0 0 1 1 1 1 0 0


(This is not important to this question, but it is an example of a Goppa code.)

(a) Compute the parity check matrix H of this code.

(b) For each of the following vectors, compute the syndrome. Which vectors below
are codewords?

i. v1 = [0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0]

ii. v2 = [1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0]

iii. v3 = [0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0]

iv. v4 = [0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0]

8. Please read Example 4 of Section 18.1 of Trappe and Washington’s book, on the
Hamming [7, 4] code. (You can find a scan of it on Blackboard.) The “mysterious”
decoding algorithm is simply this: Given a received message v, the vector vHT will
always be a row of HT , or zero. Since H is a parity matrix, if vHT is zero then v is



a codeword and does not need to be corrected (it is already decoded). Otherwise, if
vHT is the ith row of HT , then v is a codeword c but with an error in the ith entry.
To correct v to a codeword it suffices then to flip the ith entry of v.

For this problem, please use the Hamming [7, 4] code to decode the following received
messages:

(a) v1 = [1, 1, 1, 0, 1, 0, 1]

(b) v2 = [1, 0, 1, 0, 0, 0, 1]

(c) v3 = [0, 0, 1, 1, 1, 0, 0]

(d) v4 = [1, 0, 1, 0, 0, 1, 1]

9. Suppose that Alice publishes the “scrambled” generating matrix

G1 =


1 0 1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 0 1 0 0 0 1 1
1 0 0 1 1 0 0 1 0 0 1 1
0 1 0 1 0 1 1 1 1 1 0 0


based on a code that can correct t = 5 errors. Encrypt the following messages to send
to her. Don’t forget to introduce a random error! You will be graded on whether your
messages can be correctly decrypted.

(a) m1 = [1, 0, 1, 1]

(b) m2 = [0, 0, 1, 1]

10. Now suppose that you are Alice, and you have set up a McEliece cryptosystem based on
the following data: You are using the Hamming [7, 4] code from above, with generating
matrix

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .

You have chosen the invertible matrix

S =


1 0 0 1
0 1 1 1
1 1 0 0
0 0 1 1





and the permutation matrix

P =



0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0


.

(a) Given that this Hamming code can correct 1 error, what would be your public
key (the information that you publish)?

(b) Decrypt the following ciphertexts:

i. c1 = [0, 0, 1, 0, 0, 1, 0]

ii. c2 = [1, 0, 1, 0, 0, 1, 1]

iii. c3 = [0, 0, 1, 1, 1, 0, 1]

iv. c4 = [0, 1, 1, 1, 1, 0, 0]

No extra problems for graduate credit this time.


