
Math 255 - Spring 2018
Solving x2 ≡ a (mod n) Solutions

1. (a) We have that 56 = 7 · 8, so we must solve x2 ≡ 1 (mod 7) and x2 ≡ 1 (mod 8).
Thankfully, these are both easy equations!

Since (1, 7) = 1 and 7 is a power of an odd prime, x2 ≡ 1 (mod 7) has two
solutions. What’s more, we know what they are by inspection: They are x ≡ 1
(mod 7) and x ≡ −1 ≡ 6 (mod 7).

The equation x2 ≡ 1 (mod 8) is one that should be familiar; it is the base case
for the problems x2 ≡ a (mod 2k). It has solutions x ≡ 1, 3, 5, 7 (mod 8).

Therefore we focus on the Chinese Remainder Theorem problem. In this case we
will have m1 = 7 and m2 = 8. Therefore we have M1 = 8 and x1 ≡ 8−1 ≡ 1−1 ≡ 1
(mod 7), and M2 = 7 and x2 ≡ 7−1 ≡ (−1)−1 ≡ −1 (mod 8). The general form
of the solution to the problem

x ≡ a1 (mod 7), x ≡ a2 (mod 8)

is therefore
x ≡ 8a1 − 7a2 (mod 56).

Forming all pairs (a1 (mod 7), a2 (mod 8)) from the solutions we got, we get that
we should solve the Chinese Remainder Theorem for

(1 (mod 7), 1 (mod 8)), (1 (mod 7), 3 (mod 8)), (1 (mod 7), 5 (mod 8)),

(1 (mod 7), 7 (mod 8)), (6 (mod 7), 1 (mod 8)), (6 (mod 7), 3 (mod 8)),

(6 (mod 7), 5 (mod 8)), (6 (mod 7), 7 (mod 8)).

Plugging into our formula we get the 8 solutions

x ≡ 8 − 7 ≡ 1 (mod 56)

x ≡ 8 − 21 ≡ −13 ≡ 43 (mod 56)

x ≡ 8 − 35 ≡ −27 ≡ 29 (mod 56)

x ≡ 8 − 49 ≡ −41 ≡ 15 (mod 56)

x ≡ 48 − 7 ≡ 41 (mod 56)

x ≡ 48 − 21 ≡ 27 (mod 56)

x ≡ 48 − 35 ≡ 13 (mod 56)

x ≡ 48 − 49 ≡ −1 ≡ 55 (mod 56).

Therefore the solutions to x2 ≡ 1 (mod 56) are

x ≡ 1, 13, 15, 27, 29, 41, 43, 55 (mod 56).
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We can note that all solutions come in pairs x,−x (mod 56); we didn’t need to
do anything about it, it just happened. We also note that all solutions come in
quadruplets x,−x, x + 28,−(x + 28) (mod 56). We could have figured that out
from the beginning to cut down on the Chinese Remainder Theorem step, but
I’m not sure that would have been worth it.

(b) We have that 105 = 3 · 5 · 7, so we must solve

x2 ≡ 70 ≡ 1 (mod 3),

x2 ≡ 70 ≡ 0 (mod 5),

x2 ≡ 70 ≡ 0 (mod 7).

Once again, thankfully these are all easy equations! The first one has solutions
x ≡ 1, 2 (mod 3), since (1, 3) = 1 and 3 is a power of an odd prime, the second
one has unique solution x ≡ 0 (mod 5), and the last one has unique solution
x ≡ 0 (mod 7).

Therefore the overall problem will have 2 solutions, which are the solutions to the
two Chinese Remainder Theorem problems

x ≡ 1 (mod 3), x ≡ 0 (mod 5), x ≡ 0 (mod 7),

and
x ≡ 2 (mod 3), x ≡ 0 (mod 5), x ≡ 0 (mod 7).

Here we have m1 = 3, m2 = 5 and m3 = 7; and for both solutions we have a2 = 0,
and a3 = 0. We also compute

M1 = 35, x1 ≡ 35−1 ≡ 2−1 ≡ 2 (mod 3),M2 = 21, x2 ≡ 21−1 ≡ 1−1 ≡ 1 (mod 5),M3 = 15, x3 ≡ 15−1 ≡ 1−1 ≡ 1 (mod 7).

(Although we note that since a2 = a3 = 0 for both solutions, we don’t actually
need to know M2, x2, M3, and x3; they are only included here in case someone
computed them and wants to check their work.)

Plugging this all in we have as a first solution, when a1 = 1,

x ≡ a1M1x1 + a2M2x2 + a3M3x3 (mod 105)

≡ 70 + 0 + 0 ≡ 70 (mod 105).

And the second solution is

x ≡ a1M1x1 + a2M2x2 + a3M3x3 (mod 105)

≡ 140 + 0 + 0 ≡ 35 (mod 105).

The two solutions are therefore

x ≡ 35, 70 (mod 105).
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We note that since we knew there would be two solutions, once we got x ≡ 70
(mod 105) as a solution we could have immediately concluded that the other
solution was x ≡ −70 ≡ 35 (mod 105). That is acceptable reasoning, but we see
that the Chinese Remainder Theorem step is not much longer to do.

(c) We have that 135 = 33 · 5, so we must solve the two equations

x2 ≡ 59 ≡ 5 (mod 27)

x2 ≡ 59 ≡ 4 (mod 5).

We solve the first equation, x2 ≡ 5 (mod 27). The base case is to solve x2 ≡ 5 ≡ 2
(mod 3). This does not have a solution, since 12 ≡ 22 ≡ 1 (mod 3). Therefore
the whole problem has no solution.

(d) Once again we have that 135 = 33 · 5, so we must solve the equations

x2 ≡ 34 ≡ 7 (mod 27)

x2 ≡ 34 ≡ 4 (mod 5).

We solve the first equation, x2 ≡ 7 (mod 27). The base case is to solve x2 ≡ 7 ≡ 1
(mod 3). This does have a solution, this time! One solution is x ≡ 1 (mod 3),
and this is the one we will lift.

Since 3 is odd, we do the p is odd lifting. This requires solving

x1 = 1 + 3y0 andx2
1 ≡ 7 (mod 9).

We have

(1 + 3y0)
2 ≡ 7 (mod 9)

1 + 6y0 + 9y20 ≡ 7 (mod 9)

6y0 ≡ 6 (mod 9)

2y0 ≡ 2 (mod 3)

y0 ≡ 1 (mod 3).

And therefore the lifted solution x1 ≡ 1 + 3 · 1 ≡ 4 (mod 9).

We lift again! This time we solve

x1 = 4 + 9y0 andx2
1 ≡ 7 (mod 27).

We have

(4 + 9y0)
2 ≡ 7 (mod 27)

16 + 72y0 + 81y20 ≡ 7 (mod 27)

18y0 ≡ −9 (mod 27)

2y0 ≡ −1 (mod 3)

y0 ≡ −2 ≡ 1 (mod 3).
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And therefore the lifted solution x1 ≡ 4 + 9 · 1 ≡ 13 (mod 27). Since p is odd,
there is one other solution and it is −x1 ≡ −13 ≡ 14 (mod 27).

We now solve the other equation, which is x2 ≡ 4 (mod 5). This has solutions
x ≡ 2, 3 (mod 5).

Since each of the two congruences have two solutions, in total we will get four
solutions. They correspond to the following pairs (a1 (mod 27), a2 (mod 5)):

(13 (mod 27), 2 (mod 5)), (13 (mod 27), 3 (mod 5)),

(14 (mod 27), 2 (mod 5)), (14 (mod 27), 3 (mod 5)).

We do the preparation steps of the Chinese Remainder Theorem: Here we will
have m1 = 27 and m2 = 5, and we compute

M1 = 5, x1 ≡ 5−1 ≡ −16 ≡ 11 (mod 27),

M2 = 27, x2 ≡ 27−2 ≡ 2−1 ≡ −2 (mod 5).

In general the solution to

x ≡ a1 (mod 27), and x ≡ a2 (mod 5)

is
x ≡ 55a1 − 54a2 (mod 135).

Therefore the four solutions are

x ≡ 55 · 13 − 54 · 2 ≡ 607 ≡ 67 (mod 135),

x ≡ 55 · 13 − 54 · 3 ≡ 607 ≡ 13 (mod 135),

x ≡ 55 · 14 − 54 · 2 ≡ 607 ≡ 122 (mod 135),

x ≡ 55 · 14 − 54 · 3 ≡ 607 ≡ 68 (mod 135).

The four solutions are therefore

x ≡ 13, 67, 68, 122 (mod 135).

(e) We have that 80 = 24 · 5. Therefore we must solve

x2 ≡ 25 ≡ 9 (mod 16)

x2 ≡ 25 ≡ 0 (mod 5).

We can tell from knowledge of the integers that x2 ≡ 9 (mod 16) has solution
x ≡ 3 (mod 16). Since 16 = 24, this congruence has three more solutions: x ≡
−3 ≡ 13 (mod 16), x ≡ 3 + 8 ≡ 11 (mod 16) and x ≡ −11 ≡ 5 (mod 16).

The congruence x2 ≡ 0 (mod 5) has unique solution x ≡ 0 (mod 5).
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Therefore, overall the problem will have four solutions. We note that since for
each of them a2 = 0, we don’t need to compute M2 and x2. So we compute
M1 = 5 and x1 ≡ 5−1 ≡ 13 (mod 16). The solution to the Chinese Remainder
Theorem problem will be

x ≡ 65a1 + 0 ≡ 65a1 (mod 80),

for a1 = 3, 5, 11 and 13. The solutions are therefore

x ≡ 65 · 3 ≡ 195 ≡ 35 (mod 80),

x ≡ 65 · 5 ≡ 325 ≡ 5 (mod 80),

x ≡ 65 · 11 ≡ 715 ≡ 75 (mod 80)

x ≡ 65 · 13 ≡ 845 ≡ 45 (mod 80).

Therefore the four solutions of this congruence are

x ≡ 5, 35, 45, 75 (mod 80).
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