Math 255 - Spring 2018 Solving
$$x^2 \equiv a \pmod{p^k}$$
 Solutions

1. (a) Note that $125 = 5^3$, and (71, 125) = 1. We begin by solving $x^2 \equiv 71 \pmod{5}$, which is the same equation as $x^2 \equiv 1 \pmod{5}$. This has two solutions, $x \equiv 1 \pmod{5}$ and $x \equiv -1 \equiv 4 \pmod{5}$, and we can lift either solution. We'll lift $x \equiv 1 \pmod{5}$.

Now we lift from $x_0 \equiv 1 \pmod{5}$ to a solution $x_1 \pmod{25}$. This solution will satisfy both the lifting equation:

$$x_1 = 1 + 5y_0$$

(i.e. it is a lift of 1 (mod 5)) and the congruence we are trying to solve, which is

$$x_1^2 \equiv 71 \pmod{25}.$$

Plugging the lifting equation into the congruence and simplifying, we get:

$$(1+5y_0)^2 \equiv 71 \pmod{25}$$

 $1+10y_0+25y_0^2 \equiv 21 \pmod{25}$
 $1+10y_0 \equiv 21 \pmod{25}$
 $10y_0 \equiv 20 \pmod{25}$
 $2y_0 \equiv 4 \pmod{5}$
 $y_0 \equiv 2 \pmod{5}$.

Therefore we have that $x_1 \equiv 1 + 5 \cdot 2 \equiv 11 \pmod{25}$ is a solution to $x^2 \equiv 71 \pmod{25}$. (We can check that and it is true!)

Now we lift from $x_0 \equiv 11 \pmod{25}$ to a solution $x_1 \pmod{125}$. This solution will satisfy both the lifting equation:

$$x_1 = 11 + 25y_0$$

(i.e. it is a lift of 11 (mod 25)) and the congruence we are trying to solve, which is

$$x_1^2 \equiv 71 \pmod{125}.$$

Plugging the lifting equation into the congruence and simplifying, we get:

$$(11 + 25y_0)^2 \equiv 71 \pmod{125}$$

$$121 + 550y_0 + 25^2y_0^2 \equiv 71 \pmod{125}$$

$$121 + 50y_0 \equiv 71 \pmod{125}$$

$$50y_0 \equiv -50 \pmod{125}$$

$$2y_0 \equiv -2 \pmod{5}$$

$$y_0 \equiv -1 \equiv 4 \pmod{5}.$$

Therefore we have that $x_1 \equiv 11 + 25 \cdot 4 \equiv 111 \pmod{125}$ is a solution to $x^2 \equiv 71 \pmod{125}$. (We can check that and it is true!)

Now to find all solutions, we use the theorem which says that if (a, 125) = 1, $x^2 \equiv a \pmod{125}$ has exactly two solutions, given by x_1 and $-x_1$. Therefore this congruence has exactly two solutions, $x \equiv 111 \pmod{125}$ and $x \equiv -111 \equiv 14 \pmod{125}$.

(b) Here we have that $81 = 3^4$ and (58, 81) = 1, so we apply our algorithm. We first solve $x^2 \equiv 58 \equiv 1 \pmod{3}$, which has solution $x \equiv 1 \pmod{3}$.

We now lift to $\mathbb{Z}/9\mathbb{Z}$. The lifted solution x_1 will satisfy the lifting equation

$$x_1 = 1 + 3y_0$$

and the congruence

$$x_1^2 \equiv 58 \pmod{9}.$$

Plugging in, we get

$$(1+3y_0)^2 \equiv 58 \pmod{9}$$

 $1+6y_0+9y_0^2 \equiv 58 \pmod{9}$
 $1+6y_0 \equiv 4 \pmod{9}$
 $6y_0 \equiv 3 \pmod{9}$
 $2y_0 \equiv 1 \pmod{3}$
 $y_0 \equiv 2 \pmod{3}$.

So $x_1 \equiv 1 + 3 \cdot 2 \equiv 7 \pmod{9}$ is a solution to $x^2 \equiv 58 \pmod{9}$. Next we lift to $\mathbb{Z}/27\mathbb{Z}$. The lifted solution x_1 will satisfy the lifting equation

$$x_1 = 7 + 9y_0$$

and the congruence

$$x_1^2 \equiv 58 \pmod{27}.$$

Plugging in, we get

$$(7 + 9y_0)^2 \equiv 58 \pmod{27}$$

 $49 + 126y_0 + 81y_0^2 \equiv 58 \pmod{27}$
 $22 + 18y_0 \equiv 4 \pmod{27}$
 $18y_0 \equiv -18 \pmod{27}$
 $2y_0 \equiv -2 \pmod{3}$
 $y_0 \equiv -1 \equiv 2 \pmod{3}$.

So $x_1 \equiv 7 + 9 \cdot 2 \equiv 25 \pmod{27}$ is a solution to $x^2 \equiv 58 \pmod{27}$.

Finally we lift to $\mathbb{Z}/81\mathbb{Z}$. The lifted solution x_1 will satisfy the lifting equation

$$x_1 = 25 + 27y_0$$

and the congruence

$$x_1^2 \equiv 58 \pmod{81}$$
.

Plugging in, we get

$$(25 + 27y_0)^2 \equiv 58 \pmod{81}$$

$$625 + 1350y_0 + 27^2y_0^2 \equiv 58 \pmod{81}$$

$$58 + 54y_0 \equiv 58 \pmod{81}$$

$$54y_0 \equiv 0 \pmod{81}$$

$$2y_0 \equiv 0 \pmod{3}$$

$$y_0 \equiv 0 \pmod{3}.$$

So $x_1 \equiv 25 \pmod{81}$ is a solution to $x^2 \equiv 58 \pmod{81}$.

Now that we have one solution we can find all solutions; they are $x \equiv 25 \pmod{81}$ and $x \equiv -25 \equiv 56 \pmod{81}$.

(c) We have that $343 = 7^3$ and (39, 343) = 1. So we begin by solving $x^2 \equiv 39 \equiv 4 \pmod{7}$. This has solution $x \equiv 2 \pmod{7}$.

We lift $x_0 \equiv 2 \pmod{7}$ to $\mathbb{Z}/49\mathbb{Z}$ by solving the equations:

$$x_1 = 2 + 7y_0$$
 and $x_1^2 \equiv 39 \pmod{49}$.

We have

$$(2+7y_0)^2 \equiv 39 \pmod{49}$$

 $4+28y_0+49y_0^2 \equiv 39 \pmod{49}$
 $4+28y_0 \equiv 39 \pmod{49}$
 $28y_0 \equiv 35 \pmod{49}$
 $4y_0 \equiv 5 \pmod{7}$
 $y_0 \equiv 10 \equiv 3 \pmod{7}$.

And therefore $x_1 \equiv 2 + 7 \cdot 3 \equiv 23 \pmod{49}$ is a solution of $x^2 \equiv 39 \pmod{49}$. Then, we lift $x_0 \equiv 23 \pmod{49}$ to $\mathbb{Z}/343\mathbb{Z}$ by solving the equations:

$$x_1 = 23 + 49y_0$$
 and $x_1^2 \equiv 39 \pmod{343}$.

We have

$$(23 + 49y_0)^2 \equiv 39 \pmod{343}$$

$$529 + 2254y_0 + 49^2y_0^2 \equiv 39 \pmod{343}$$

$$186 + 196y_0 \equiv 39 \pmod{343}$$

$$196y_0 \equiv -147 \pmod{343}$$

$$4y_0 \equiv -3 \equiv 4 \pmod{7}$$

$$y_0 \equiv 1 \pmod{7}.$$

And therefore $x_1 \equiv 23 + 49 \cdot 1 \equiv 72 \pmod{343}$ is a solution of $x^2 \equiv 39 \pmod{343}$. The other solution is $x \equiv -72 \equiv 271 \pmod{343}$.

(d) We have that $121 = 11^2$ and (89, 121) = 1, so we can do our thing. We first solve $x^2 \equiv 89 \equiv 1 \pmod{11}$, which has solution $x \equiv 1 \pmod{11}$.

We lift this solution to $\mathbb{Z}/121\mathbb{Z}$: The lifted solution will satisfy

$$x_1 = 1 + 11y_0$$
 and $x_1^2 \equiv 89 \pmod{121}$.

Therefore we must solve

$$(1+11y_0)^2 \equiv 89 \pmod{121}$$

 $1+22y_0+121y_0^2 \equiv 89 \pmod{121}$
 $1+22y_0 \equiv 89 \pmod{121}$
 $22y_0 \equiv 88 \pmod{121}$
 $2y_0 \equiv 8 \pmod{11}$
 $y_0 \equiv 4 \pmod{11}$.

Therefore $x \equiv 1 + 11 \cdot 4 \equiv 45 \pmod{121}$ is one solution and the other is $x \equiv -45 \equiv 76 \pmod{121}$.