
Math 255 - Spring 2018
Homework 2 Solutions

1. To simplify the notation, let d = (a, b). Therefore we must show that d = (d, b). For d
to be the greatest common divisor of d and b, it suffices to show that it satisfies both
conditions given in the definition of greatest common divisor.

We begin by showing that d|d and d|b. We have that d|d because d = d · 1, and 1 is
an integer. We also have that d|b, since d is the greatest common divisor of a and b.
Indeed, by definition d must be a common divisor of a and b, and therefore in particular
a divisor of b.

Now assume that c is any integer such that c|d and c|b. We must show that c ≤ d. As
shown in class, since d is a greatest divisor, d ≥ 1, and in particular d = |d|. We have
also shown in class that the divisors of d are bounded above by |d| = d. Therefore if c
is a divisor of d, then c ≤ d.

This completes the proof: d satisfies both conditions so that d = (d, b).

2. This is an “if and only if” statement, so we must show both implications.

We begin by assuming that (k, n + k) = 1. Let d = (k, n). Since d is a greatest
common divisor, d ≥ 1. We now show that d divides n + k. Indeed, since d is the
greatest common divisor of k and n, by definition there are integers s and t such that
k = sd and n = td. Therefore we have

n + k = td + sd = (t + s)d,

using the distributive property of integers. Since a sum of integers is an integer, d
divides n + k.

Now we are in the situation that d divides n + k and d divides k (recall that d is the
greatest common divisor of n and k and therefore certainly a divisor of k). By the
definition of the greatest common divisor, it follows that d must be less than or equal
to the greatest common divisor of n + k and k. This greatest common divisor is 1, so
we conclude that d ≤ 1.

We finally recall from above that since d is a greatest common divisor, d ≥ 1. Since
d ≥ 1 and d ≤ 1, it follows that d = 1, so (n, k) = 1.

We now do the other direction, and assume that (n, k) = 1. Let d = (k, n + k). Again
we note that d ≥ 1 since it is a greatest common divisor. We show that d divides n.
Indeed, since d is a common divisor of k and n + k, there are integers s and t1 such
that k = sd and n + k = dt. Therefore we have

n = (n + k)− k = dt− ds = d(t− s),

1Warning: This is not the same t as before! Whenever we say “there exist” or “there are” we might be
conjuring new quantities (or not).
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again using the distributive property of integers. Since a difference of integers is an
integer, d divides n.

We now conclude similarly as above: d is a common divisor of k and n, and therefore
d ≤ (k, n) = 1. Since at the same time d ≥ 1 since it is a greatest common divisor, we
conclude that again d = (k, n + k) = 1.

3. Suppose that a|b and a > 0. Then since a|a (because a = 1 · a and 1 is an integer),
certainly a is a common divisor of a and b.

Suppose now that c is any common divisor of a and b. Then in particular c is a divisor
of a. As was shown in class, then c is bounded above by |a|, i.e., c ≤ |a|. Since a > 0,
it follows that c ≤ a.

Since a is a common divisor of a and b and any other common divisor of a and b is less
than or equal to a, we may conclude that a is the greatest common divisor of a and b.

4. For simplicity, let d = (a, b), where here we use the greatest common divisor definition
from the book. By Theorem 4, there are integers x and y such that

d = ax + by.

Now let c be a common divisor of a and b. In other words, there exist integers r and
s such that a = rc and b = sc. Substituting this into the equation above, we obtain

d = (rc)x + (sc)y = c(rx + sy),

and since rx + sy ∈ Z because r, x, s and y are all integers, it follows that c|d.

2


