Math 255 - Spring 2018 Homework 12

This homework is due on Monday, April 30.

- 1. Let m > 1 be an integer. Show that if there is a an integer with (a, m) = 1 and the order of a modulo m is m 1, then m is prime.
- 2. Let p be an odd prime and g and h be primitive roots of p. Show that $g \equiv h^k \pmod{p}$ for some k, and that in this case k is odd.
- 3. Let p be an odd prime. Show that if a has order 3 modulo p, then a+1 has order 6 modulo p.

Hint: You may use the following result without proof: If $a \not\equiv 1 \pmod{p}$ and a has order t modulo p, then

$$a^{t-1} + a^{t-2} + \ldots + a + 1 \equiv 0 \pmod{p}.$$

- 4. In this problem we will show that if n > 2, then $\phi(n)$ is even in two different ways.
 - (a) Show this directly, using the explicit formula we have for $\phi(n)$.
 - (b) Show this by first showing that if n > 2, then there is a with (a, n) = 1 and a has order 2 modulo n. Then apply Theorem 2 of Section 10 to conclude.

Extra problem for graduate credit:

5. Let m be any integer that has a primitive root. Show that in this case

$$\prod_{a \in (\mathbb{Z}/m\mathbb{Z})^{\times}} a \equiv -1 \pmod{m}.$$