
Math 255 - Spring 2018
Homework 10 Solutions

1. Here 26 is not a prime, so we may not use Fermat’s Little Theorem directly. However,
if we can compute the least residue of 20182018 (mod 2) and 20182018 (mod 13) (and
those are primes so maybe we’ll get to use Fermat’s Little Theorem), then using the
Chinese Remainder Theorem we will be able to obtain the least residue of 20182018

(mod 26).

First we notice that 2018 ≡ 0 (mod 2), so 20182018 ≡ 02018 ≡ 0 (mod 2).

Next, we consider 20182018 (mod 13). We can apply Fermat’s Little Theorem since
(2018, 13) = 1. We first note that 2018 = 12 × 168 + 2 and 2018 = 13 × 155 + 3, so
that 2018 ≡ 3 (mod 13). Therefore we have

20182018 ≡ 312×168+2 (mod 13)

≡ (312)168 · 32 (mod 13)

≡ 1168 · 9 (mod 13)

≡ 9 (mod 13)

Therefore, 20182018 ≡ 0 (mod 2) and 20182018 ≡ 9 (mod 13). It might be clear that
22 (mod 26) satisfies both these congruences, and therefore 20182018 ≡ 22 (mod 26),
but if that is not clear, we can use the Chinese Remainder Theorem algorithm.

Here M1 and x1 don’t matter since a1 = 0, and M2 = 2 and x2 ≡ 2−1 ≡ 7 (mod 13).
Therefore

20182018 ≡ 0 + 9 · 2 · 7 (mod 26)

≡ 126 (mod 26)

≡ 22 (mod 26).

2. Here we begin by noting that the last digit of 20182018 is the least residue of 20182018

modulo 10. Sadly, once again 10 is not a prime, so we cannot use Fermat’s Little
Theorem. But as in problem 1, if we can figure out 20182018 (mod 2) and 20182018

(mod 5), then using the Chinese Remainder Theorem we will obtain 20182018 (mod 10),
and therefore the last digit.

Again we have 2018 ≡ 0 (mod 2), so 20182018 ≡ 02018 ≡ 0 (mod 2).

Next, we consider 20182018 (mod 5). We can apply Fermat’s Little Theorem since
(2018, 5) = 1. We have 2018 ≡ 3 (mod 5) and 2018 = 4× 504 + 2, so

20182018 ≡ 34×504+2 (mod 5)

≡ (34)504 · 32 (mod 13)

≡ 1504 · 9 (mod 13)

≡ 4 (mod 5)
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Therefore, 20182018 ≡ 0 (mod 2) and 20182018 ≡ 4 (mod 5). It might be clear that 4
(mod 10) satisfies both these congruences, and therefore the last digit of 20182018 is 4.
Of course, if that is not clear, we can use the Chinese Remainder Theorem algorithm,
which we leave to the reader.

(Note that this is cool, because 20182018 is a number with more than 6, 500 digits! That
we can compute the last one without computing the whole giant number is neat.)

3. By Wilson’s Theorem, we have that

(p− 1)! ≡ −1 (mod p).

We also note that

(p− 1)! = (p− 3)!(p− 2)(p− 1)

≡ (p− 3)!(−2)(−1) (mod p)

≡ 2(p− 3)! (mod p).

Therefore
2(p− 3)! ≡ −1 (mod p).

From this we easily conclude that

2(p− 3)! + 1 ≡ 0 (mod p).

4. We note that 437 = 19× 23; it is not a prime! Therefore we will do as in problems 1
and 2, and consider 18! modulo 19 and modulo 23 separately. The Chinese Remainder
Theorem will allow us to get the answer we want at the end.

Since 19 is prime, a straightforward application of Wilson’s Theorem tells us that
18! ≡ −1 (mod 19).

To compute 18! (mod 23), we will also use Wilson’s Theorem, but we will have to work
a little bit harder. Wilson’s Theorem gives us that

22! ≡ −1 (mod 23).

Similarly to problem 3, we have

22! = 18! · 19 · 20 · 21 · 22

≡ 18! · (−4) · (−3) · (−2) · (−1) (mod 23)

≡ 18! · 24 (mod 23)

≡ 18! (mod 23).

Therefore we have
18! ≡ 22! ≡ −1 (mod 23).
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In conclusion, 18! ≡ −1 (mod 19) and 18! ≡ −1 (mod 23). Therefore, the Chinese
Remainder Theorem tells us that the only class modulo 437 that satisfies both these
congruences is −1 (mod 437). (By uniqueness, since −1 ≡ −1 (mod 19) and −1 ≡ −1
(mod 23).) Therefore we have

18! ≡ −1 ≡ 436 (mod 437).

5. (a) We notice that we can write

f(n) =
∑
d|n

(d+ 1) =
∑
d|n

d+
∑
d|n

1 = σ(n) + d(n).

Therefore using Theorems 1 and 2 we have, if n = pe11 p
e2
2 · · · p

ek
k is the prime-power

factorization of n, that

f(n) = (e1 + 1)(e2 + 1) · · · (ek + 1) +

(
pe1+1
1 − 1

p1 − 1

)(
pe2+1
2 − 1

p2 − 1

)
· · ·
(
pek+1
k − 1

pk − 1

)
(b) We do not expect f to be multiplicative; while a product or quotient of multi-

plicative functions is multiplicative, a sum or a difference is not, because addition
doesn’t play that well with multiplication. Another reason why we do not expect
f to be multiplicative is that in the formula we got above, we cannot split up
f(n) into a product of functions of peii , there is a pesky sum in the middle.

Indeed we may disprove the statement by giving a single counter-example: We
have that (3, 4) = 1 and

f(3 · 4) = f(12) = (1 + 1) + (2 + 1) + (3 + 1) + (4 + 1) + (6 + 1) + (12 + 1)

= 2 + 3 + 4 + 5 + 7 + 13

= 34,

but

f(3) = (1 + 1) + (3 + 1)

= 2 + 4

= 6,

and

f(4) = (1 + 1) + (2 + 1) + (4 + 1)

= 2 + 3 + 5

= 10.

And we see that
f(12) 6= f(3)f(4),

despite the fact that (3, 4) = 1. Therefore f is not multiplicative.
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6. (a) We have

10! ≡ −1 (mod 11)

9!1! ≡ 1 (mod 11)

8!2! ≡ −1 (mod 11)

7!3! ≡ 1 (mod 11)

6!4! ≡ −1 (mod 11)

5!5! ≡ 1 (mod 11)

(b) We can guess the following theorem: Let p be a prime. Then

(p− 1− i)!i! ≡ (−1)i+1 (mod p).

The proof is:

(p− 1− i)!i! ≡ (−1)i(−1)i(p− 1− i)!i! (mod p)

≡ (−1)i(p− 1− i)!(−1)ii! (mod p)

≡ (−1)i(p− 1− i)!(−1)(−2) . . . (−i+ 1)(−i) (mod p)

≡ (−1)i(p− (i+ 1))!(p− 1)(p− 2) . . . (p− (i− 1))(p− i) (mod p)

≡ (−1)i(p− 1)! (mod p)

≡ (−1)i(−1) (mod p)

≡ (−1)i+1 (mod p),

where in the first step we have used that (−1)i(−1)i = ((−1)i)2 = 1.
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