Math 255: Spring 2016
Final Exam

NaME: SOLUTIONS

Time: 2 hours and 45 minutes

For each problem, you must write down all of your work carefully and legibly to receive full credit.
For each question, you must use theorems and/or mathematical reasoning to support your answer,

as appropriate.

Failure to follow these instructions will constitute a breach of the UVM Code of Academic Integrity:

e You may not use a calculator or any notes or book during the exam.

e You may not access your cell phone during the exam for any reason; if you think that you
will want to check the time please wear a watch.

e The work you present must be your own.

e Finally, you will more generally be bound by the UVM Code of Academic Integrity, which
stipulates among other things that you may not communicate with anyone other than the
instructor during the exam, or look at anyone else’s solutions.

I understand and accept these instructions.

Signature:

Problem | Value | Score
1 3
2 4
3 4
4 3
5 6
6 12
7 8
8 10
9 6
10 8
11 10
12 18
13 12

TOTAL | 100




Problem 1 : (3 points) What is the order of 2 modulo 77

THS the Smallest pocihve int€ger k with
22\ wod T

2'22 3%\ wod ]
272 Y3\ (me\ )
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Problem 2 : (4 points) What is 237! modulo 477

©ged (23,47) =) so 237 exists
Y= 2-23 +| So  \= Y7-2-23
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Problem 3 : (4 points) What is the definition of a unit?
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Problem 4 : (3 points) How many solutions does the equation 22 = 0 (mod 4) have?
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Problem 5 : (6 points) Consider the following theorem:

Let the positive integer 7 be written as n = N 2m, where m is square-free. Then n can
be represented as the sum of two squares if m contains no prime factor of the form
4k + 3.

a) (2 points) Among the statements below, circle all of those that are hypotheses of the
theorem above.
Remember that a hypothesis is something that can be assumed to be true when proving the
theorem.

i. n is a positive integer
( ii. » = N2?m and m is square-fré

iii. 7 can be represented as the sum of two squares

@ no prime factor of the form 4%

b) (2 points) Among the statements below, circle all of those that are conclusions of the
theorem above.
Remember that a conclusion is something that we are trying to show is true, given the

hypotheses.

i. n is a positive integer

ii. n = N?m and m is square-free

@n can be represented as the sum of tm
-

=z

<=

iv. m contains no prime factor of the form 4k + 3.

c) (2 points) Let » = 63 = 32 .7. Can n be written as a sum of two squares?
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Problem 6 : (12 points)

a) (4 points) Compute ged(66,48). You may use any technique you like, but you must justify
your answer.

puctideon algomthm .
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ﬁ@:l.\é 13\1 ged (66, U8)=¢

\Z= \2 +6
(L= 226G

AN (Ve Soluhon:

66 =123 1\ pPME factorS in common .
ug= 243 2:32 ¢

6(‘.(1 C H@,@é):é

b) (2 points) Based on your answer above, does the equation 66z + 48y = 12 have solution(s)
in the integers? Please justify with one sentence.

Yeg vecomnse © duvideg L2 .



¢) (6 points) Find all integer solutions of the equation 662 + 48y = 12. You may use the back

of any page if you need more space, but please indicate that you have done so so I can find
your work.
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Problem 7 : (8 points) Consider the following system of linear congruences:

2z=1 (mod 5),
5z=2 (mod 7).

a) (6 points) Give the solution(s) to this system. Be careful to specify if your answer is an
integer or an element of Z/nZ; in that latter case, say what n is.
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b) (2 points) What is the smallest positive integer that is a solution of this system of linear
congruences?
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Problem 9 : (6 points) Find all solutions, if any, to the equation

22 =21 (mod 30)
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Problem 10 : (8 points) Find all solutions, if any, to the following equations:
a) (4 points) 22 =9 (mod 16) |
Becarmse 1o i o powee- of P=2 (even) | we solve
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Problem 11 : (10 points) Note that 108 = 22 . 33.

a) (2 points) What is ¢(108), where ¢ is the Euler-¢ function from class?

w(os) =102 (1-3) (%)

=~ 108 L2
08 %

= 36

b) (6 points) Show that if ged(a, 108) = 1, then a!® = 1 (mod 108). There is more space for
this problem on the following page.
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Please continue your work from part b) here. Do not forget to answer part c) below.

c) (2 points) Does 108 have a primitive root? Please justify with one sentence.
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Problem 12 : (18 points) The Liouville A-function is defined in the following way:
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a) (6 points) Prove that A is multiplicative function.
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