Math 255 - Spring 2017
Answers to selected suggested problems
Problems between March 1 and April 12 (Exam 2)

Please note: If there are any typos, please post about them on Piazza. The latest
corrections to the solutions will be available there.

Section 5.2
10. (a) Using the Corollary, if p is a prime a = a” = b = b (mod p)

11. (a) Each term in the sum is congruent 1 modulo p, so thisis (p—1)-1 = —1 (mod p)

(b) The sum is congruent to 1 +2+---+ (p—1) = ’@. Since p is odd, 2 divides
p—1so @ = pk for k an integer, and is therefore congruent to 0 modulo p.

14. Use the Chinese Remainder Theorem to consider the congruence first modulo p and
then modulo gq.

Section 5.3

1. (a) Similar to Homework 6, problem 1, the case for p = 23.
3. The pairs are (2,12), (3,8), (4,6), (5, 14), (7, 10), (9, 18), (11, 21), (13, 16), (15, 20), (17, 19)

9. To prove the hint, replace each even integer a with the odd integer —(p — a) = a
(mod p). Collecting the negative signs, this will give a factor of (—1)P~1)/2,

11. In the proof of Theorem 5.5, it says that

=)

so the answer they are looking for is

When p = 29, this is 12 and 17, and when p = 37 this is 6 and 31.

Section 6.1

2. We have 12378 = 2 -3 -2063 and 3054 = 2 -3 - 509 so ged(12378,3054) = 6 and
lem(12378,3054) = 2 - 3 - 509 - 2053 = 6300402.



12. (a) Recall that if n = p* ... pF with k; > 1, then 7(n) = (ky + 1) --- (k, + 1). Note
that we cannot have k; + 1 = 1, because k; # 0. Therefore if 7(n) = 10, then
either n is divisible by one prime with k; = 9 or n is divisible by two primes with
ki = 1 and ko = 4. Therefore n is of the form p° for p prime or of the form
p1ps, for p; and p, distinct primes. The smallest integer for which 7(n) = 10 is

48 = 3. 2%,

17. See Homework 6 # 4 (a) plus the proof in class that f(n) = n is multiplicative.

19. Similar to Homework 6 # 4 (a)

Section 6.2

1. (a) Oneof n, n+ 1, n+ 2, n+ 3 must be divisible by 4 = 22.

Section 7.2

1. ©(1001) = 720, ©(5040) = 1152, x(36000) = 9600.

7. (b) First note that if p is any prime, then
1 1 1
1—=->1—--=_,
D 2 2
because p > 2.

Then if n = plfl ...pF with k; > 1, then

Section 7.3

3. For each n = 5,7,8,9, 13 separately, show that a'> = @ (mod n). For n = 5, this
follows from a® = a (mod 5) (Corollary on page 88) then cube both sides. For n = 7,
Corollary again then square both sides and multiply both sides by a. For n = 13,

Corollary once more then multiply both sides by a?

. For n = 8 you must do a even

and a odd separately and the argument is similar to Homework 8 # 2. Finally for
n =9 you must do ged(a,3) = 1 separately from ged(a,3) = 3; when ged(a,3) = 1,

a” = a (mod 9) then square and multiply both sides by a.

5. Do m and n separately then Chinese Remainder Theorem. We do it for m, it is
exactly the same for n: m?*™ = 0 (mod m) since ¢(n) > 1 and n*™ =1 (mod m)

since ged(m,n) = 1.

7. See the solutions to Quiz 18.



Section 8.1

1. (a) 2 has order 8, 3 has order 16 and 5 has order 16 (so 3 and 5 are primitive roots
of 17 but 2 is not)

(b) 2 has order 18, 3 has order 18 and 5 has order 9 (so 2 and 3 are primitive roots
of 19 but 5 is not)

(c) 2 has order 11, 3 has order 11 and 5 has order 22 (so 5 is a primitive root of 23
but 2 and 3 are not)

2. (a) If the order of a" were smaller then the order of a would be smaller.

(b) z = a* is such that 22 = 1 (mod p), but since p is a prime this quadratic equation
only has solutions x = 1 (mod p) and x = —1 (mod p). If z were 1 (mod p), then
the order of a would be k, not 2k.

3. Let m = 2" — 1. Then 2" = 1 (mod m) but no smaller power of 2 is 1 modulo m,
because if say 2F for 1 < k < m were 1 modulo m, then m would divide 2¥ — 1, but
0 < 28 —1 < 2" — 1 = m which is a contradiction. Therefore 2 has order n modulo
m = 2" — 1. By Theorem 8.1, this means that n divides ¢(2" — 1).

(b) The orders are 4, 2, 4, 4, 2, 4, and 2 respectively, whereas ¢(15) = 8.

11. (a) 10 only has two primitive roots and they are 3 and 7.

(b) ¢(17) = 16, so by Theorem 8.3 3" has order 16 if and only if ged(h,16) = 1.
Therefore the other primitive roots are 3* = 10 (mod 17), 3° = 5 (mod 17),
37 =11 (mod 17), 3? = 14 (mod 17), 3'' =7 (mod 17), 3" = 12 (mod 17), and
3% =6 (mod 17).

Section 8.4

1. The primitive roots of 13 are 2, 2° = 6 (mod 13), 27 = 11 (mod 13) and 2!! = 7
(mod 13). Using brute force (i.e. computing all of the powers of these primitive roots
until we get 5), we have that log, 5 = logg5 = 9 (mod 12) and log;; 5 = log,5 = 3

(mod 12).
3. (a) x=3,5,14,12 (mod 17)
(b) x =5 (mod 17)
(¢) 2 =3,10,5,11,14,7,12,6 (mod 17)
(d) z=1 (mod 16)
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