Name:

Problem 1: Please solve the following linear congruence:

$$6x \equiv 15 \pmod{21}$$
.

Solution: Here we have a = 6, b = 15 and n = 21. In addition, it is possible to see, without doing the Euclidean algorithm, that gcd(6,21) = 3. Since 3 divides 15, this linear congruence has at least one solution, and in fact it has gcd(a, n) = 3 solutions.

We adopt the approach explained in class on Wednesday to solve the equation:

- 1. We already found gcd(a, n) and determined that there was a solution.
- 2. We first find one solution to the equation 6x + 21y = 3. By inspection, this has solution $x_0 = -3$ and $y_0 = 1$.
- 3. This gives us a particular solution for the equation 6x + 21y = 15: $x_p = -15$ and $y_p = 5$.
- 4. All integer solutions are of the form

$$x = -15 + 7t$$
$$y = 5 - 2t$$

for $t \in \mathbb{Z}$.

5. We now forget about y, and give the three different values that x can take modulo 21. They are

$$x = -15 + 0 \equiv 6 \pmod{21}$$
 (this is when $t = 0$)
 $x = -15 + 7 = -8 \equiv 13 \pmod{21}$ (this is when $t = 1$)
 $x = -15 + 14 = -1 \equiv 20 \pmod{21}$ (this is when $t = 2$).

(Note that if we continue and take t = 3, we get $x = -15 + 21 \equiv 6 \pmod{21}$). This is not a new solution, and so we know that we got all of the possible solutions.)

The solutions of the congruence are $x \equiv 6, 13$ or 20 (mod 21).