
Math 255 – Spring 2017
Solving x2 ≡ a (mod n)
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1 Lifting

Definition 1.1. Let n and d be two integers such that d divides n. Then b modulo n is a
lift of a modulo d if

a ≡ b (mod d).

A fixed congruence class a modulo d has n
d

different lifts modulo n, and they are given by

x ≡ a + dr (mod n), r = 0, 1, 2, . . . ,
n

d
− 1

Example 1.2. Let n = 54 and d = 6. Then x ≡ 2 (mod 6) (so here a = 2) has 54
6

= 9 lifts
modulo 54, and they are

x ≡ 2, 8, 14, 20, 26, 32, 38, 44, 50 (mod 54).

Note that all of these integers are different modulo 54, but they are all the same modulo 6.

Note that the notion of lifting has come up earlier in the semester without us giving it
this name:

1. When we solve a linear equation ax ≡ b (mod n) but gcd(a, n) > 1, if gcd(a, n) divides
b we “divide everything” by gcd(a, n). This gives us an equation a′x ≡ b′ (mod n′),
with

a′ =
a

gcd(a, n)
, b′ =

b

gcd(a, n)
, n =

n

gcd(a, n)
,

and now gcd(a′, n′) = 1. Therefore a′−1 (mod n′) exists and the equation can be solved
by division to give a unique solution x′ modulo n′. Then the solutions of the original
equation, are exactly all of the lifts x (mod n) of x′ (mod n′).

Example 1.3. Let’s solve
15x ≡ 39 (mod 42).

Since gcd(15, 42) = 3, 15 is not a unit modulo 42. Furthermore, since 3 divides 39,
the equation has gcd(15, 42) = 3 solutions. (If 3 did not divide 39, we could not
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“divide everything” by 3 and there would be no solution, see Theorem 4.7.) We start
by dividing all the way through:

5x ≡ 13 (mod 14).

Now 5 is a unit modulo 14, with inverse 3, since 5 · 3 = 15 ≡ 1 (mod 14) (there is no
relation between this 3 and the gcd(15, 42), this is a coincidence). We multiply both
sides by 3

x ≡ 39 ≡ 11 (mod 14)

to solve the equation. The three solutions modulo 42 are the three lifts of x ≡ 11
(mod 14) to Z/42Z:

x ≡ 11 + 14r, r = 0, 1, 2

or
x ≡ 11, 25, 39 (mod 42).

2. The Chinese Remainder Theorem is an example of when we can be guaranteed to
obtain a unique simultaneous lift of several congruences. Given

x ≡ a1 (mod n1), x ≡ a2 (mod n2), . . . , x ≡ ak (mod nk)

with the nis pairwise relatively prime, we are told that there is a unique lift

x ≡ a (mod n),

where n = n1n2 · · ·nk, that lifts simultaneously all of the congruence classes listed.

Example 1.4. Consider the set of congruences

x ≡ 1 (mod 3), x ≡ 2 (mod 5), x ≡ 3 (mod 7);

this problem Section 4.4, problem 4(a). These three congruences lift to a unique class
modulo n = 3 · 5 · 7 = 105:

x ≡ 52 (mod 105).

We can check that this is a lift of each of the congruences: Indeed

52 ≡ 1 (mod 3),

52 ≡ 2 (mod 5), and

52 ≡ 3 (mod 7).

The reason why the Chinese Remainder Theorem requires that the nis be relatively
prime is so that the congruences do not contradict each other. There is no problem if
x ≡ a1 (mod n1) and x ≡ a2 (mod n2) with gcd(n1, n2) > 1, as long as both a1 and
a2 are lifts of the same congruence class modulo gcd(n1, n2). In that case there is a
unique lift to

x ≡ a (mod lcm(n1, n2)).

Otherwise there is no lift.

2



Example 1.5. Consider the two congruences

x ≡ 4 (mod 6) and x ≡ 10 (mod 15).

Since gcd(6, 15) = 3, this will have a common lift modulo lcm(6, 15) = 30 if and only
if

4 ≡ 10 (mod 3).

Since this is the case the lift exists. We can compute it using the Chinese Remainder
Theorem as the simultaneous lift of

x ≡ 0 (mod 2), and x ≡ 10 (mod 15)

or
x ≡ 4 (mod 6), and x ≡ 0 (mod 5).

In any case the simultaneous lift is

x ≡ 10 (mod 30).

However, the two congruences

x ≡ 3 (mod 6) and x ≡ 10 (mod 15)

do not have a common lift to any modulus, since this would require at the same time
that x ≡ 0 (mod 3) and x ≡ 1 (mod 3), which is impossible.

2 Solving x2 ≡ a (mod pk) for p odd

We begin with a proposition. This is the only time we will consider the case of gcd(a, p) > 1:

Proposition 2.1. The equation
x2 ≡ 0 (mod p),

where p is any prime, has the unique solution x ≡ 0 (mod p).

Proof. The only zero divisor in the ring Z/pZ is 0. Therefore, if a product is 0, one of the
factors must be 0, from which it follows that x ≡ 0 (mod p).

Our main result is the following:

Theorem 2.2 (Theorem 9.11). Let p be an odd prime and a ∈ Z with gcd(a, p) = 1. The
equation

x2 ≡ a (mod pk)

either

• has no solution if
(

a
p

)
= −1; or
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• has 2 solutions x1 and −x1 if
(

a
p

)
= 1.

We now turn our attention to finding the two solutions when they exist. The idea behind
solving the equation is similar to induction:

1. We first solve the equation x2 ≡ a (mod p) (the “base case”)

2. Given a solution to x2 ≡ a (mod pj), we compute a solution to x2 ≡ a (mod pj+1) (the
“induction step”). We repeat this step, lifting our solution from modulo p to modulo
p2 to modulo p3, until we get to the pk that is our target.

The “base case” in our class will always be easy, either because p is small or because
the equation is x2 ≡ 1, 4, 9, 16 . . . (mod p) (which have a solution in the integers which also
works modulo any prime p). We focus here on the lifting (or “induction”) step.

Assume that we have a solution x0 such that x2
0 ≡ a (mod pj). Then we look for a lift

of x0 (mod pj) to x1 (mod pj+1) that satisfies x2
1 ≡ a (mod pj+1). Concretely, this gives us

the following two equations:

1. The “lifting equation”
x1 = x0 + pjy0,

which ensures that x1 (mod pj+1) is a lift of x0 (mod pj),

2. and the equation
x2
1 ≡ a (mod pj+1),

which is the equation we are trying to solve.

Plugging the first equation into the second we get

a ≡ (x0 + pjy0)
2 (mod pj+1)

≡ x2
0 + 2x0p

jy0 + p2jy20 (mod pj+1)

≡ x2
0 + 2x0p

jy0 (mod pj+1).

Recall that our unknown here is y0. This is a linear equation in y0. Furthermore, this
equation can be shown to always have a unique solution y0 (mod p): Indeed we have

2x0p
jy0 ≡ a− x2

0 (mod pj+1).

Since x2
0 ≡ a (mod pj), a − x2

0 is divisible by pj (this is, after all, the definition of what it
means to be congruent). We also have that gcd(2x0p

j, pj+1) = pj, since gcd(2x0, p) = 1 (p is
odd, and x0 cannot be divisible by p and be a solution to x2 ≡ a (mod pj) if gcd(a, p) = 1).
Therefore we can divide all the way through by pj and find the unique solution to

2x0y0 ≡
a− x2

0

pj
(mod p)

by multiplying both sides of the equation by (2x0)
−1 (mod p) (which exists since gcd(2x0, p) =

1, as argued above).
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3 Solving x2 ≡ a (mod 2k)

We note that Proposition 2.1 still applies. Since gcd(a, 2) = 1 implies that a is odd, we now
restrict to this case. Our main result when p = 2 is the following:

Theorem 3.1 (Theorem 9.12). Let a be odd. Then we have the following:

1. The equation
x2 ≡ a (mod 2)

has the unique solution x ≡ 1 (mod 2).

2. The equation
x2 ≡ a (mod 4)

either

• has no solution if a ≡ 3 (mod 4); or

• has two solutions x ≡ 1, 3 (mod 4) if a ≡ 1 (mod 4).

3. When k ≥ 3, the equation
x2 ≡ a (mod 2k)

either

• has no solution if a 6≡ 1 (mod 8); or

• has four solutions x1, −x1, x1 + 2k−1, −(x1 + 2k−1) if a ≡ 1 (mod 8).

Since the cases of k = 1 and k = 2 are completely covered by the Theorem, we focus on
the case of k ≥ 3 and turn our attention to giving the four solutions in that case. The idea is
identical to the one we used for p odd, except that we must modify the lifting step slightly.
The base case is also easier.

1. We first solve the equation x2 ≡ a (mod 8). Note that if there is a solution, then a ≡ 1
(mod 8), and therefore the “base case” is always solving x2 ≡ 1 (mod 8). This has
solutions x ≡ 1, 3, 5, 7 (mod 8) and we can choose to lift any of those four solutions.

2. Given a solution x2 ≡ a (mod 2j), we compute a solution to x2 ≡ a (mod 2j+1) (the
“induction step”). We repeat this step, lifting our solution from modulo 8 to modulo
16 to modulo 32, until we get to the 2k that is our target.

We now explain the lifting step or “induction” step.
Assume that we have a solution x0 such that x2

0 ≡ a (mod 2j). Then we look for a
lift of x0 (mod 2j−1) to x1 (mod pj+1) that satisfies x2

1 ≡ a (mod pj+1). Notice the small
“backwards dance” that we must do for p = 2: We have a solution modulo 2j, but when
lifting we treat it as if it is a solution modulo 2j−1 (we “demote” it to Z/2j−1Z) before lifting

5



straight to Z/2j+1Z. The reason we do this is the following: When we solve the equations
as above, if we had

x1 = x0 + 2jy0,

and
x2
1 ≡ a (mod 2j+1),

which are analogous to the equation we have when p is odd, then when we square, here is
what happens:

a ≡ (x0 + 2jy0)
2 (mod 2j+1)

≡ x2
0 + 2x02

jy0 + 22jy20 (mod 2j+1)

≡ x2
0 + 2j+1x0y0 (mod 2j+1)

≡ x2
0 (mod 2j+1).

The variable y0 has completely disappeared from the equation so we cannot solve for it!
(There is also a more serious problem which we discuss in the Remarks below.)

Instead, this is what we do: We begin with the following two equations:

1. The “lifting equation”
x1 = x0 + 2j−1y0,

which ensures that x1 (mod 2j+1) is a lift of x0 (mod 2j−1),

2. and the equation
x2
1 ≡ a (mod 2j+1),

which is the equation we are trying to solve.

Now we proceed as before: We plug the first equation into the second to get

a ≡ (x0 + 2j−1y0)
2 (mod 2j+1)

≡ x2
0 + 2x02

j−1y0 + 22j−2y20 (mod 2j+1)

≡ x2
0 + 2jx0y0 (mod 2j+1),

where now the last term disappears since 22j−2 ≡ 0 (mod 2j+1) because 2j − 2 ≥ j + 1 if
j ≥ 3 (which we have assumed to begin with since k ≥ 3).

Again our unknown here is y0 and this is a linear equation in y0. Furthermore, this
equation can be shown to always have a unique solution y0 (mod 2): Indeed we have

2jx0y0 ≡ a− x2
0 (mod 2j+1).

Since x2
0 ≡ a (mod 2j), again a−x2

0 is divisible by 2j. We also have that gcd(2jx0, 2
j+1) = 2j,

since gcd(x0, 2) = 1 (x0 cannot be divisible by 2 and be a solution to x2 ≡ a (mod 2j) if
gcd(a, 2) = 1). Therefore we can divide all the way through by 2j and find the unique
solution to

x0y0 ≡ y0 ≡
a− x2

0

2j
(mod 2),

where here we use that x0 ≡ 1 (mod 2) since gcd(x0, 2) = 1 so x0 is odd.
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Remark 3.2. We note that a quite important point has gotten swept under the rug: If

x1 = x0 + 2j−1y0,

then 0 ≤ y0 < 4 all give different lifts of x0 (mod 2j−1) to x1 (mod 2j+1). However, we have
found y0 (mod 2). Technically, we should find the two lifts of y0 (mod 2) to y0 (mod 4) to
obtain two lifts of x0 (mod 2j−1) to x1 (mod 2j+1). However, for our procedure we only
need one lift, and we find all solutions at the top level, once we have one solution to x2 ≡ a
(mod 2k).

However, this is the reason why there are four solutions and why x1 and x1 + 2k−1 are
both solutions. These are both lifts of x1 (mod 2k−2) to x1 (mod 2k) that satisfy x2 ≡ a
(mod 2k). We explain this with an example:

Example 3.3. Let us solve x2 ≡ 9 (mod 32). We begin by solving x2 ≡ 9 (mod 16), which
has solutions x ≡ 3, 5, 11, 13 (mod 16) (we can find these by solving x2 ≡ 9 (mod 8) and
lifting, or by noticing that x1 = 3 is a solution and using Theorem 3.1) . We now lift all of
the solutions to see what we obtain:

First we lift x0 = 3: We “demote” it to x0 = 3 + 8y0, then square:

9 ≡ (3 + 8y0)
2 (mod 32)

≡ 9 + 48y0 + 64y20 (mod 32)

≡ 9 + 16y0 (mod 32).

We note that the equation
9 ≡ 9 + 16y0 (mod 32)

has the unique solution y0 ≡ 0 (mod 2), but two solutions y0 ≡ 0, 2 (mod 4) (and 16
solutions in Z/32Z where this equation really lives!). This gives two different lifts of x0:

x1 ≡ 3 (mod 32) and x1 ≡ 19 (mod 32)

of x0 ≡ 3 (mod 8). We see that they are exactly of the form x1 and x1 + 16, as predicted by
the theorem.

Now let us see what happens when we lift x0 = 5. We “demote” to x0 = 5 + 8y0 then
square:

9 ≡ (5 + 8y0)
2 (mod 32)

≡ 25 + 80y0 + 64y20 (mod 32)

≡ 25 + 16y0 (mod 32).

We note that the equation
9 ≡ 25 + 16y0 (mod 32)

has the unique solution y0 ≡ 1 (mod 2), but two solutions y0 ≡ 1, 3 (mod 4). This gives
two different lifts of x0:

x1 ≡ 13 (mod 32) and x1 ≡ 29 (mod 32)
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of x0 ≡ 5 (mod 8). Again these are of the form x1 and x1 + 16.
Finally, let us lift x0 = 11: We “demote” it to x0 = 11 + 8y0, then square:

9 ≡ (11 + 8y0)
2 (mod 32)

≡ 121 + 176y0 + 64y20 (mod 32)

≡ 25 + 16y0 (mod 32).

This is the same equation we obtained when we were lifting x0 = 5, and it has solutions
y0 ≡ 1, 3 (mod 4). This gives us the two lifts of x0:

x1 ≡ 19 (mod 32) and x1 ≡ 3 (mod 32).

We see that we obtained the same solutions as when we lifted x0 = 3, which makes sense
since 3 ≡ 11 (mod 8), so we were actually doing the same lift.

Similarly, if we were to lift x0 = 13, we would get the solutions x1 ≡ 13 (mod 32) and
x1 ≡ 29 (mod 32) again since 13 ≡ 5 (mod 8). This shows how each of four solutions can
give two lifts that are solutions, but we still have only four solutions in total: There are
two pairs of solutions that each give the same two lifts. If we chose x0 (mod 16) and −x0

(mod 16) two solutions of x2 ≡ 9 (mod 16) and computed their four lifts (two lifts each) we
would get all four solutions to x2 ≡ 9 (mod 32).

Remark 3.4. We say here one more thing about the “demotion” of the solution modulo 2j

to a solution modulo 2j−1. Looking at Example 3.3, we see that starting with the solution
x0 ≡ 3 (mod 16), we obtained the two solutions x1 ≡ 3 (mod 32) and x1 ≡ 19 (mod 32).
These are both lifts of 3 (mod 16). However, starting with the solution x ≡ 5 (mod 16), we
obtained the two solutions x1 ≡ 13 (mod 32) and x1 ≡ 29 (mod 32). These are not lifts of
5 (mod 16) (but they are lifts of 5 (mod 8), of course). In fact, all of the solutions of x2 ≡ 9
(mod 32) are lifts of 3 (mod 16) and 13 (mod 16), and none are lifts of 5 (mod 16) or 11
(mod 16). However, we have that 3 ≡ 11 (mod 8) and 13 ≡ 5 (mod 8), so by demoting
down to (mod 8), we ensure that we can now lift all of the solutions. This is good because
before we solve the equation we cannot know which solutions (mod 16) lift to (mod 32).

We note that this is exactly the problem we ran into in class when we tried to lift
directly from a solution to x2 ≡ 9 (mod 8) to a solution to x2 ≡ 9 (mod 32). If I choose
x0 a solution of x2 ≡ 9 (mod 8), say for example x0 ≡ 1 (mod 8), if I am unlucky x0 might
not be a solution of x2 ≡ 9 (mod 16) and therefore it will certainly not lift to a solution
of x2 ≡ 9 (mod 32). To avoid this situation, I start by choosing a solution x0 to x2 ≡ 9
(mod 16), then I demote it down to a solution of x2 ≡ 9 (mod 8) but now since I know that
I can lift to a solution to x2 ≡ 9 (mod 16), I know that I will not be unlucky and I can also
lift to a solution to x2 ≡ 9 (mod 32).

To be explicit:
x2 ≡ 9 (mod 8)

has the four solutions x ≡ 1, 3, 5, 7 (mod 8). Of these, only two lift to solutions to

x2 ≡ 9 (mod 16),
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namely x ≡ 3 (mod 8) and x ≡ 5 (mod 8) lift to x ≡ 3, 11 (mod 16) and x ≡ 5, 13 (mod 16)
respectively.

Then the same thing happens at the next step: Of the four solutions x ≡ 3, 5, 11, 13
(mod 16) of the equation

x2 ≡ 9 (mod 16),

only x ≡ 3 (mod 16) and x ≡ 13 (mod 16) actually lift to solutions to

x2 ≡ 9 (mod 32),

which has solutions x ≡ 3, 13, 19, 23 (mod 32).
The reason things are so messed up, and different from the case of p odd, where every

solution modulo pj lifts to a solution modulo pj+1, is because the derivative of x2 is 2x
which is identically zero modulo 2. The deeper reason why this matters involves studying
p-adic integers and Hensel’s Lemma, which tells you exactly when solutions modulo pj to
any equation lift uniquely to a solution modulo pj+1.

4 Solving x2 ≡ a (mod n) for general n

To do this we use the Chinese Remainder Theorem. Let n = pk11 . . . pkrr . Suppose that we
have a number x such that

x2 ≡ a (mod pkii )

for each prime power factor pkii of n. Then by changing variables to y = x2, we have that

y ≡ a (mod pkii )

and therefore by the Chinese Remainder Theorem

y ≡ a (mod n)

or x2 ≡ a (mod n).
Now at the same time, suppose that we have an r-tuple (a1, a2, . . . , ar) such that for each

i
a2i ≡ a (mod pkii ),

then there is a unique congruence class x (mod n) such that

x ≡ ai (mod pkii ).

This explains why we may solve the equation x2 ≡ a (mod n) “prime power by prime power.”

Example 4.1. Let us solve the equation

x2 ≡ 1 (mod 72).
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Since 72 = 23 · 33, we must solve

x2 ≡ 1 (mod 8) and x2 ≡ 1 (mod 9).

In general, we would need to use the techniques of Sections 2 and 3, since these are
equations of the form x2 ≡ a (mod pk). However, these equations are particular simple so
we are not required to do applying the lifting technique.

The equation x2 ≡ 1 (mod 8) has solutions x ≡ 1, 3, 5, 7 (mod 8), as we know.
The equation x2 ≡ 1 (mod 9) has one solution x1 ≡ 1 (mod 9). By Theorem 2.2, this

equation has two solutions and the other solution is −x1 ≡ −1 ≡ 8 (mod 9).
Therefore, for any pair (a1, a2) such that a21 ≡ 1 (mod 8) and a22 ≡ 1 (mod 9), we get

one solution to x2 ≡ 1 (mod 72). There are 8 such pairs:

(1, 1), (1, 8), (3, 1), (3, 8), (5, 1), (5, 8), (7, 1), and (7, 8).

Each pair gives a solution in the following way. In the notation of the Chinese Remainder
Theorem, we have a1 = 5, N1 = 9 and x1 = 1 and a2 = 1, N2 = 8 and x2 = −1.

Suppose we take the pair (5, 1), this stands for the Chinese Remainder Theorem problem

x ≡ 5 (mod 8), x ≡ 1 (mod 9).

Therefore we get the solution

x ≡ 5 · 9 · 1 + 1 · 8 · (−1) ≡ 37 (mod 72).

If we take the pair (7, 1), this is the pair of equations

x ≡ 7 (mod 8), x ≡ 1 (mod 9).

Therefore we get the solution

x ≡ 7 · 9 · 1 + 1 · 8 · (−1) ≡ 55 (mod 72).

In this manner we can get the 8 solutions x ≡ 1, 17, 19, 35, 37, 53, 55, 71 (mod 72) quite
quickly.
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