
Math 255 - Spring 2017
Homework 5 Solutions

1. The five divisibility statements can be translated into the five congruence relations:

a ≡ 0 (mod 2)

a + 1 ≡ 0 (mod 3)

a + 2 ≡ 0 (mod 4)

a + 3 ≡ 0 (mod 5)

a + 4 ≡ 0 (mod 6)

We could also write a ≡ −1 (mod 3), etc., which are equivalent congruences. Since
this is a set of simultaneous linear congruences, we want to use the Chinese Remainder
Theorem to find the solution. However, we cannot apply the Chinese Remainder
Theorem right now because the nis are not pairwise relatively prime.

The way to get pairwise relatively prime moduli is to see if any of the equations imply
any of the other equations, so that we can get rid of the superfluous equations (those
that are implied by other equations). Hopefully in this way we can end up with
equations all of whose moduli are pairwise relatively prime.

Consider first the two equations a ≡ 0 (mod 2) and a + 2 ≡ 0 (mod 4). The first
equation says that there is k ∈ Z such that a = 2k. The second equation says that
there is ` ∈ Z such that a + 2 = 4` or a = 4` − 2. If a = 4` − 2, then a = 2(2` − 1).
Therefore a is of the form 2k, with k = 2`− 1. Therefore the equation a ≡ 0 (mod 2)
is implied by the equation a + 2 ≡ 0 (mod 4) and we can omit it from the set of
congruences without losing any information.

(Note that the other way doesn’t work: We cannot omit a + 2 ≡ 0 (mod 4) and keep
a ≡ 0 (mod 4). This is because if a ≡ 0 (mod 2) then either a ≡ 0 (mod 2) or a ≡ 2
(mod 4). We cannot recover the information that actually a + 2 ≡ 0 (mod 4). This
should make sense: Knowing the remainder of division by 4 is more information than
just knowing the remainder of division by 2.)

Consider now the three equations a+ 1 ≡ 0 (mod 3), a+ 2 ≡ 0 (mod 4) and a+ 4 ≡ 0
(mod 6). We will show that if a+1 ≡ 0 (mod 3) and a+2 ≡ 0 (mod 4), then a+4 ≡ 0
(mod 6). This will make the equation a + 4 ≡ 0 (mod 6) superfluous.

If a + 1 ≡ 0 (mod 3), then a + 1 = 3k for some k ∈ Z. If a + 2 ≡ 0 (mod 4), then
a + 2 = 4` for some ` ∈ Z. Consider now a + 4: We have

a + 4 = a + 1 + 3 = 3k + 3 = 3(k + 1)

and
a + 4 = a + 2 + 2 = 4` + 2 = 2(2` + 1).

1



Therefore, a + 4 is divisible by both 2 and 3. Since gcd(2, 3) = 1, this implies that
2 ·3 = 6 divides a+ 4 or a+ 4 ≡ 0 (mod 6). Therefore this last equation is superfluous
once we have the equations a + 1 ≡ 0 (mod 3) and a + 2 ≡ 0 (mod 4).

Getting rid of the extra equations, we now have the set of simultaneous congruences

a ≡ −1 (mod 3)

a ≡ −2 (mod 4)

a ≡ −3 (mod 5).

This is exactly in the form required for the Chinese Remainder Theorem, and so we
apply it. We have

a1 = −1, n1 = 3, and N1 = 20

a2 = −2, n2 = 4, and N2 = 15

a3 = −3, n3 = 5, and N3 = 12

We now find our xis:

• x1 is any integer such that 20x1 ≡ 1 (mod 3). Equivalently, this is 2x1 ≡ 1
(mod 3). By guessing and checking, we see that we can use x1 = 2.

• x2 is any integer such that 15x2 ≡ 1 (mod 4). Equivalently this is 3x2 ≡ 1
(mod 4). By guessing and checking, we see that we can use x2 = 3.

• Finally, x3 is such that 12x3 ≡ 1 (mod 5). Equivalently this is 2x3 ≡ 1 (mod 5).
One last time, we guess and check and find x3 = 3 works.

Putting it all together we have

x ≡ −2 · 20− 2 · 3 · 15− 3 · 3 · 12 (mod 3 · 4 · 5)

≡ −40− 90− 108 (mod 60)

≡ 20 + 30− 48 (mod 60)

≡ 2 (mod 60).

Now we need the smallest integer a > 2 that is congruent to 2 modulo 60. That number
is a = 62.
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2. Let x be the number of coins that got stolen. From the story, we can extract the
following congruences:

x ≡ 3 (mod 17)

x ≡ 10 (mod 16)

x ≡ 0 (mod 15)

This is exactly in the form required to apply the Chinese Remainder Theorem, so we
go ahead and apply it.

We have

a1 = 3, n1 = 17, and N1 = 15 · 16 = 240

a2 = 10, n2 = 16, and N2 = 15 · 17 = 255

a3 = 0, n3 = 15, and N3 =?

We note that since a3 = 0, we do not need to compute N3 and x3, since in the formula
at the end they will just be multiplied by a3 = 0.

Therefore we only need to find x1 and x2:

• x1 is any integer such that 240x1 ≡ 1 (mod 17). Equivalently we have 2x1 ≡ 1
(mod 17), since 240 ≡ 2 (mod 17). It is perhaps easy to guess that x1 = 9 is a
valid solution, because 2 · 9 = 18 ≡ 1 (mod 17).

• x2 is any integer such that 255x2 ≡ 1 (mod 16). Because 256 is divisible by 16,
255 ≡ −1 (mod 16), so equivalently we are solving −x2 ≡ 1 (mod 16). A possible
solution is x2 = −1.

Putting it all together we get

x ≡ 3 · 240 · 9− 10 · 255 + 0 (mod 15 · 16 · 17)

≡ 6480− 2550 (mod 4080)

≡ 3930 (mod 4080).

Because 3930 is between 0 and 4079, the smallest possible number of coins is 3930.
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3. Let a ∈ Z be such that gcd(a, 35) = 1.

First, we notice that gcd(a, 5) = 1. This must be the case because for any integer,
gcd(a, 5) is either 1 or 5 (these are the only divisors of 5). If gcd(a, 5) were 5, then 5
would divide a. Since 5 also divides 35, it would follow that gcd(a, 5) ≥ 5. Therefore
it must be that gcd(a, 5) = 1. In the same manner, we can say that gcd(a, 7) = 1.

We can therefore apply Fermat’s Little Theorem for p = 5 and p = 7: It is the case
that

(1) a5−1 = a4 ≡ 1 (mod 5)

and

(2) a7−1 = a6 ≡ 1 (mod 7).

By Theorem 4.2, we can raise both sides of equation (1) to the power of 3 and retain
the congruence. Therefore,

(a4)3 ≡ 13 (mod 5),

or, to put it more simply,
a12 ≡ 1 (mod 5).

In the same manner we can square both sides of equation (2) and retain a true state-
ment:

(a6)2 ≡ 12 (mod 7)

or
a12 ≡ 1 (mod 7).

Now for a moment let x = a12. Then we have the simultaneous congruences

x ≡ 1 (mod 5)

x ≡ 1 (mod 7).

A solution to this set of congruences is x ≡ 1 (mod 35). By the Chinese Remainder
Theorem, this is the unique solution. Therefore we are guaranteed that a12 ≡ 1
(mod 35).
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