Math 259 - Spring 2021
Factorization using difference of squares
Instructions

- The first problem on this assignment is worth 5 points and the second is worth 10 points.
- This assignment is available until Friday May 14 at 11:59pm.
- You can submit a second attempt for this assignment if your first attempt is turned in by Sunday March 21 at 11:59pm.
- If you look up solutions or facts, don't forget to cite your sources and to rephrase everything in your own words.
- You will need to use a calculator or computer for this assignment. You may use addition, multiplication, subtraction, division, the square root function, the modulo operation, and the gcd function. You may also use a function that tells you if an integer is a perfect square.

Problem

1. For each of the following numbers N, compute the values of

$$
N+1^{2}, N+2^{2}, N+3^{2}, N+4^{2}, \ldots
$$

until you find a value $N+b^{2}$ which is a perfect square: $N+b^{2}=a^{2}$ for a an integer. Then use the values of a and b to factor N. You must state the values of a and b that you found and give the gcd that you computed, as well as give the factors of N.
(a) $N=53357$
(b) $N=34571$
(c) $N=64213$
2. For each of the two values of N below, use the data provided to find values of a and b such that

$$
a^{2} \equiv b^{2} \quad(\bmod N)
$$

and use this information to factor N. You must state the values of a and b that you found and give the gcd that you computed, as well as give the factors of N.
(a) $N=61063$

$$
\begin{aligned}
1882^{2} & \equiv 270 \quad(\bmod 61063) & & \text { and } & 270 & =2 \cdot 3^{3} \cdot 5 \\
1898^{2} & \equiv 60750 \quad(\bmod 61063) & & \text { and } & 60750 & =2 \cdot 3^{5} \cdot 5^{3}
\end{aligned}
$$

(b) $N=2525891$

$$
\begin{array}{rlrrrl}
1591^{2} & \equiv 5390 \quad(\bmod 2525891) & & \text { and } & 5390 & =2 \cdot 5 \cdot 7^{2} \cdot 11 \\
3182^{2} & \equiv 21560 \quad(\bmod 2525891) & & \text { and } & 21560 & =2^{3} \cdot 5 \cdot 7^{2} \cdot 11 \\
4773^{2} & \equiv 48510 \quad(\bmod 2525891) & & \text { and } & 48510 & =2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \\
5275^{2} & \equiv 40824 \quad(\bmod 2525891) & & \text { and } & 40824 & =2^{3} \cdot 3^{6} \cdot 7 \\
5401^{2} & \equiv 1386000 \quad(\bmod 2525891) & & \text { and } & 1386000 & =2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11
\end{array}
$$

