Introduction to Cryptography

PCMI 2022 - Undergraduate Summer School

Vesterday; talked about ideas behind FHE

Homework today; "simple cipher" from last week

secret key; p

public key; $x_i = q_i p + r_i$

public key: $x_i = q_i p + r_i$ encr: $c = r_{x_0} (m + \sum x_i + 2r)$

dec: $m = r_p(c) \mod 2$

PLWE: polynomial learning with errors

(variant of RLWE)

K a number field [K:Q]=n

 $K = \mathcal{O}(\mathcal{X}) = \{ a_0 + a_1 \mathcal{X} + ... + a_{n-1} \mathcal{X}^{n-1} : a_i \in \mathcal{Q} \}$

dima K

TEK We can actually choose $T \in O_K$ elements with min poly $\in \mathbb{Z}[x]$

$$K = Q(T) = \{ a_0 + a_1 T + ... + a_{n-1} T^{n-1} : a_i \in Q \}$$

 $T \in K$
We can actually choose $T \in O_K$ elements with win poly $\in T$

If min poly of y has degree n

If min poly of
$$\gamma$$
 has degree γ

$$\gamma^{n} + b_{n-1} \gamma^{n-1} + \dots + b_{n} = 0$$

$$\gamma^{n} + b_{n-1} \gamma^{n-1} + \dots + b_{1} \chi + b_{n}$$

Example:
$$K = Q(\frac{\sqrt{2}}{2}) = \{a_0 + a_1, \frac{\sqrt{2}}{2} : a_0, a_1 \in Q\}$$

$$x = \sqrt{\frac{2}{2}} \qquad x^2 = \frac{1}{2} \qquad x^2 - \frac{1}{2} = 0 \qquad 2x^2 - 1 = 0$$

So
$$\sqrt{2} \notin O_K$$
 but $K = \mathbb{Q}(\sqrt{2})$

and JZEOK

Sometimes when we are lucky: $O_{K} = \mathbb{Z}[X] = \{a_{0} + a_{1}X + a_{2}X^{2} + ... + a_{n-1}X^{n-1} : a_{i} \in \mathbb{Z}\}$ The interpretation of the second when it is so, we say that

This is pape, and when it is so, we say that O_k is monogenic

LWE pairs $(\vec{a}_i, \vec{b}_i = \vec{a}_i \cdot \vec{S} + e_i)$

For now assume Ux is monogenic.

Drawing from the PLWE expor distribution: - draw n integers independently at random from a discrete Gaussian with variance o²

• FORM the "small" element $e = e_0 + e_1 \forall + \ldots + e_{n-1} \forall^{n-1} \in \mathcal{O}_K$

Fix a prime q = 2t, consider the quotient ring OK/q. OK =: Rq

We know that $0_{1/2} = \{a_{0} + a_{1} + a_{2} + a_{2} + ... + a_{n-1} + a_{n-1} \}$

where 8 is a peppesentative of Y+qOk

To get a small element of Rq

. draw a small EEOK . reduce the coefficients in the polynomial modulo of A PLWE cipher: K, q, σ all public key generation: $B(\delta)$ secret key is a random Small SERq · public ky; choose a & Rq uniformly at random small e & Rq publish (a, b) b=as+e

encryption:
-draw 3 small random elements of Rq,
name them r, e, ez

name them $r_1 \cdot e_1, e_2$ to send the n bits $m_0, m_1, ..., m_{n-1}$ $(m_i \in \{0, 1\})$

form $m = m_0 + m_1 \overline{\gamma} + \dots + m_{n-1} \overline{\gamma}^{n-1} \in \mathbb{R}_q$

· send the pair (u,v) where

$$u=ar+e_1$$

$$V=br+e_2+\left\lfloor \frac{9}{2}\right\rfloor m$$

 $V-US = 20 + 2.7 \times ... + 2m \cdot 5m^2$ Fig. · decryption: compute Round the coefficients of the polynomial to 6 or 19

The security is based on the hardness of the decision RLWE problem tell apart pairs (a,b) with b=as+e from pandom pairs (a,b) Note that here the secret is small not uniformly distributed. Turns out that it doesn't matter,

This pelies on search peducing to decision

That's all for now!