
Introduction to mathematical cryptography
PCMI 2022 Undergraduate Summer School

Christelle Vincent

August 3, 2022

Contents

1 Computational complexity 2
1.1 How to measure complexity . 2
1.2 Easy and hard problems . 6

2 DLP, Elgamal, and attacks 7
2.1 The discrete log problem . 7
2.2 The Elgamal cipher . 8
2.3 Attacking the Elgamal cipher . 9
2.4 Baby steps, giant steps . 10
2.5 The index calculus attack . 11
2.6 Implications for security . 12

3 Lattice-based cryptography 13
3.1 A simple lattice-based cipher . 13

3.1.1 Our new remainder . 13
3.1.2 The private and public keys . 14
3.1.3 Encryption . 15
3.1.4 Decryption . 15
3.1.5 An example . 17

3.2 Learning With Errors . 19
3.2.1 The LWE problems and definitions 19
3.2.2 More lattice problems . 20
3.2.3 Regev’s cipher based on LWE . 23

3.3 Ring-LWE . 24
3.3.1 Algebraic preliminaries . 24
3.3.2 Polynomial-LWE . 25
3.3.3 A RLWE cipher . 26

1

4 Fully homomorphic encryption 28
4.1 Homomorphisms and boolean circuits . 29
4.2 A brief history of homomorphic encryption 30

1 Computational complexity

As mentioned in the first lecture, the fundamental ideal behind cryptography is that there
are operations that are easy to do but hard to undo. In this section we make this notion
more precise.

1.1 How to measure complexity

In mathematics, an algorithm is a finite sequence of instructions or computations that,
when performed, yield a result. For example, you might have learned to multiply integers
in school by applying the so-called “schoolbook algorithm” for multiplication. Notice that
here the algorithm is not just “multiplying two integers” but the specific process by which
the answer to the multiplication problem is obtained. This might seem surprising, but there
are other algorithms to multiply integers that have completely different steps to reach the
same answer!1

Given a specific algorithm, the computational complexity of that algorithm is how
much resources it takes to accomplish the computation. The word “resources” is purposefully
vague here: In this course we will almost exclusively talk about either time complexity or
arithmetic complexity, which counts either how much time it takes for the algorithm to
complete, or how many arithmetic operations must be performed to complete the algorithm.
Another quantity that is often of interest is the amount of memory or storage necessary to
perform a computation, but that will not come up for us except possibly in passing.

In the case of our example, the schoolbook algorithm for multiplication (or “schoolbook
multiplication” for short), it’s perhaps most natural to consider the arithmetic complexity
of the algorithm, by which here we mean the total number of additions and multiplications
necessary to perform the computation. For example, to compute 15× 6, we would:

1. Multiply 5× 6 = 30, then

2. multiply 1× 6 = 6, then

3. add 6 + 3 = 9,

using 3 operations to obtain the answer 90.
Pretty quickly, it becomes clear that even if we always apply the schoolbook multiplication

algorithm perfectly, the number of steps necessary to perform the computation depends on
the specific numbers that we are multiplying. Numbers with more digits take a lot more

1If you are interested, you can look up the Karatsuba algorithm or the family of Toom-Cook algorithms,
which are a generalization of the Karatsuba algorithm.

2

steps to multiply, but even two pairs of numbers with factors of the same size might not take
exactly the same number of steps because of carries which introduce extra additions (here,
by a “carry” I mean the addition in the problem 15 × 6, where the 3 tens from the units
multiplication get added to the 6 tens from the tens multiplication). Since the number of
arithmetic steps we need to perform depends on the numbers being multiplied, what could
we possibly mean by the complexity of the whole algorithm?

After more experimentation with various numbers, we might notice that the main factor
that influences the number of steps in a multiplication problem is the size of the numbers
being multiplied. By this we mean that while adding the carries does introduce some ex-
tra operations here and there, “most” of the operations we perform are multiplications, so
integers with the same numbers of digits require roughly the same number of operations to
multiply.

This will turn out to be the case for the majority of the algorithms we talk about, so we
will, from now on, always count the number of arithmetic steps of an algorithm as a function
of the size of the input integers.

Definition 1.1. Let n be a positive integer. Then its size k is the number of digits in its
decimal expansion. This is given by the expression

k = blog10 nc+ 1,

where b·c is the floor function. Often computing books use instead the number of bits in the
binary expansion of the integer, which is given by the formula

blog2 nc+ 1.

We will see that for our purposes we can use either notion of size interchangeably.

To see exactly how the number of steps in the schoolbook multiplication algorithm de-
pends on the size of the integers being multiplied, let’s consider multiplication of two five-digit
integers. The image below shows what we mean:

3

Let’s count the operations, noting the ones that would be done for any five-digit multi-
plication, and the ones that only occur sometimes:

• There are always twenty-five multiplications, as each digit must multiply each digit.

• There are also always at least sixteen additions in the column additions at the bottom.

• Carries during multiplications can add up to 5 additions for each of the four positions,
so up to twenty additions.

• The column additions at the bottom could have up to thirteen additional additions.

In total there are therefore 41 operations that must always be performed, and up to 33
additional additions depending on carries. Therefore if f(5) is the number of steps it takes
to multiply two five-digit integers using schoolbook multiplication, we have

41 ≤ f(5) ≤ 74.

Compare this to multiplying two six-digit integers, when there are 61 operations that
must always be performed, and up to 46 additional additions depending on carries. In

4

general, if f(k) is the number of steps that it takes to multiply two integers each with k
digits using schoolbook multiplication, then we have

2k2 − 2k + 1 ≤ f(k) ≤ 3k2 − 1,

where

2k2 − 2k + 1 = k2 +
k(k − 1)

2
+

(k − 1)(k − 2)

2

and

3k2 − 1 = k2 +
k(k − 1)

2
+

(k − 1)(k − 2)

2
+ k(k − 1) + k + 2(k − 1).

Therefore one can say that multiplying two k-digit integers using schoolbook multiplication
takes at least k2 steps, but no more than 3k2 steps.

This is already pretty neat, but we do even say a bit more. This is because when k is very
large, the difference between k2 and 3k2 remains the same (one number is 3 times as big as
the other). That’s a “cost” that’s built into our algorithm and which doesn’t depend on the
size of the numbers we are multiplying, and therefore we don’t always want to keep track of
it. It’s a lot easier to remember that schoolbook multiplication takes “about” k2 steps, since
that’s the number that will give you a sense of how long a multiplication problem will take.

To formalize what we mean by “about” k2 steps, we need some notation. First we need
a notion for a function that eventually becomes smaller than a multiple of another function:

Definition 1.2. Let f and g be two functions taking as input positive integers, and out-
putting positive integers. We will write this as f, g : N→ N. We write that

f � g

if there are positive constants c and C such that

f(k) ≤ cg(k) for all k ≥ C.

The expression “f � g” is read “f is less than less than g.”

We will also need a notion for a function that eventually becomes bigger than a multiple
of another function:

Definition 1.3. Let f, g : N→ N. We write that

f � g

if there are positive constants c and C such that

f(k) ≥ cg(k) for all k ≥ C.

The expression “f � g” is read “f is greater than greater than g.”

5

These two notions together allow us to define when two functions are eventually “about
the same magnitude:”

Definition 1.4. Let f, g : N→ N. We write that

f ∼ g

if we have that
f � g and f � g.

The expression “f ∼ g” is read “f is of the order of g.”

There is often an easy way to determine if f ∼ g:

Proposition 1.5. Let f, g : N→ N. Then if the limit

lim
k→∞

f(k)

g(k)

exists and is nonzero, f ∼ g.

Now with this notation, we can say that if f is the number of steps it takes to multiply
two k-digit integers, then f ∼ k2. Accordingly, we usually say that schoolbook multiplication
can be accomplished in “quadratic time” since the number of steps f is of the order of a
quadratic polynomial.

1.2 Easy and hard problems

Now that we have a way to express about how many steps it takes to perform a computation,
we can talk about “easy” and “hard” problems. First, again here we must make precise that
we cannot really talk about the complexity of solving a problem without having an algorithm
in mind for solving that problem. However, we commonly will say that a problem is “easy”
or “hard” depending on the number of steps it takes to solve the problem using the most
efficient known algorithm.

In addition, here all of our problems are solved by algorithms, we assume that we can
accomplish all the steps, so an “easy” problem is simply one that we can solve quickly, and
a “hard” problem is one that takes an unreasonable amount of time to solve.

More precisely:

Definition 1.6. Let f : N → N. We say that f grows polynomially if there are positive
constants a and b such that

ka � f(k)� kb.

If the number of steps in an algorithm, when given as a function of the size of the inputs to
the algorithm, grows polynomially, then we say that this algorithm is fast.
If a problem can be solved by a known fast algorithm, then we say that this problem is easy.

At the other end of the spectrum we have:

6

Definition 1.7. Let f : N → N. We say that f grows exponentially if there are positive
constants a and b such that

eak � f(k)� ebk.

If the number of steps in an algorithm, when given as a function of the size of the inputs to
the algorithm, grows exponentially, then we say that this algorithm is slow.
If the most-efficient known algorithm to solve a problem is slow, then we say that this
problem is hard.

We will see that there is also an intermediate “speed” at which certain problems can be
solved:

Definition 1.8. Let f : N→ N. We say that f grows subexponentially if for every positive
constants a (no matter how big) and b (no matter how small) we have

ka � f(k)� ebk.

In other words, f is “larger” than any polynomial, but “smaller” than any exponential
function.
If the most-efficient known algorithm to solve a problem has a number of steps that grows
subexponentially, we usually still think of the problem as hard, but we must keep in mind
that it is not exponentially hard.

2 DLP, Elgamal, and attacks

The first family of ciphers we will study rely on the difficulty of solving a certain problem,
the discrete logarithm problem, in certain well-chosen groups.

2.1 The discrete log problem

Let G be a finite cyclic group. Then the discrete logarithm problem (DLP) in the group
G is

Problem 2.1 (The discrete log problem). Given a generator g of G and h ∈ G, find 0 ≤
x < #G such that

h = gx.

The meaning of the name of this problem is the following: First, if g and h were real
numbers, then we would write

h = gx if and only if x = logg h,

where logg is the real logarithm in base g. Therefore, it makes sense that the problem of
finding x such that h = gx should be called a logarithm problem in general.

Secondly, the most “natural” topology on a finite group is the discrete topology, in which
each singleton is an open set. This is in contrast to the usual topology on the real line, in

7

which every open set around a point, no matter how small, contains as many points as there
are in the real numbers. It turns out that this difference is crucial to make the logarithm
problem hard, in the sense of Definition 1.7, in some groups. Indeed, in the discrete topology
there is no good approximation to the logarithm given by a Taylor series, and therefore there
might not always be a fast algorithm to solve the discrete log problem in a discrete group.

As a word of caution, as we saw in Monday’s lecture, the discrete log problem is not
always difficult for every discrete group G! If G = Z/nZ, equipped with addition modulo n
as its operation, with generator g = 1, then the discrete log problem asks, given h ∈ Z/nZ,
to find 0 ≤ x < n such that

h ≡ x (mod n).

This can be done quickly (in the sense of Definition 1.6) using long division. Indeed, if (as
is likely) h ∈ Z/nZ is given as an integer representing the equivalence class of h in Z/nZ,
then x is simply the remainder of (the integer) h when it is divided by n.

2.2 The Elgamal cipher

If G is a group where the multiplication and inversion operations are fast but solving the
discrete log problem is believed to be hard, then thanks to the fast exponentiation algorithm2,
the operation of raising g to a power x to obtain h = gx is fast, but the operation of recovering
the exponent x from g and h is slow. We now explain how this can be leveraged into building
a cipher.

Recall that the basic set-up in public key cryptography is that a person A would like
to send a message to a person B on a public channel securely. To do that, person B (the
recipient of the communication) must first establish private and public keys. Person A can
then use the public key to encrypt a message to person B, turning the plaintext of the
message into unintelligible ciphertext that can be shared on the public channel. Upon
reception, person B can use their private key to decrypt the message.

Algorithm 2.2 (Elgamal key generation). To prepare to receive a secure communication,
person B:

1. First chooses a cyclic group G in which the DLP is hard, and a generator g for this
group.

2. Then generates a random secret value x with 2 ≤ x < #G. This value x is the secret
key.

3. Finally computes h = gx. The values G, g and h are the public key.

Take a moment to convince yourself that person B does not have to perform any hard
computations to generate the keys. This is important, as we need every algorithm of the

2We unfortunately will not have time to study this algorithm more than we already have during XML.
We will simply note that the naive way to exponentiate, as in the July 19 problem set, is slow, and therefore
the existence of a fast exponentiation algorithm is crucial here.

8

cipher to be fast. Once the keys have been generated, person A can now encrypt a message
for person B:

Algorithm 2.3 (Elgamal encryption). Given an Elgamal public key (G, g, h), where G is a
cyclic group generated by g and h ∈ G, and a plaintext m ∈ G, person A:

1. First generates a random secret value y with 2 ≤ y < #G.

2. Then computes the ordered pair of ciphertexts

c1 = gy, c2 = m · hy,

where here · is the group operation in G.

The ciphertexts are then sent to person B on the public channel.

Once again, take some time to confirm that person A does not have to perform any hard
computations. In addition, notice that at no point does person A need knowledge of the
secret key x. Upon reception of the ordered pair of ciphertexts c1 and c2, person B performs
the following decryption algorithm to recover the message m:

Algorithm 2.4 (Elgamal decryption). Given an Elgamal private key x corresponding to a
public key (G, g, h), and an ordered pair of ciphertexts c1, c2, person B computes

m = c−x1 · c2.

First, take a moment to verify that this equality is correct. Then once more we must
make sure that person B does not have to perform any hard computations to decrypt the
message: The quantity c−x1 can be computed by first computing cx1 , which is fast since person
B knows the secret key x, and then taking the multiplicative inverse of this quantity. This
is fast by assumption. Finally, multiplying by c2 is also fast. We also note that to perform
the decryption algorithm, person B does not need knowledge of person A’s secret value y.
This value is discarded by person A after the communication is complete.

2.3 Attacking the Elgamal cipher

If an adversary E can compute discrete logarithms in the group G, then adversary E will be
able to recover the message m. Indeed, adversary E can obtain the secret key x from the
public parameters g and h by computing a discrete logarithm, and then decrypt as easily as
person B.3 This is not the only problem that adversary E can solve to recover the message
m.

Indeed, if adversary E can compute gxy from the values g, h = gx, and c1 = gy (which
are all public), then adversary E can recover the message by computing

m = g−xyc2.

3Note that adversary E could also obtain the secret value y from the parameters g and c1 if they can
compute logarithms in G; this also allows adversary E to obtain the message since then m = c2 · h−y.

9

This problem, to recover gxy from g, gx, and gy, is called the Diffie-Hellman problem. It
is possible that this problem is easier to solve than the discrete logarithm problem, but we
do not have at this time a better algorithm to solve the Diffie-Hellman problem than first
solving the discrete log problem to obtain the exponents x and y to compute gxy. Therefore
we will focus on solving the discrete logarithm problem.

To figure out if an algorithm to solve the discrete problem is fast or slow, we must first
define the size of the input to our problem. Here, the value which drives how difficult the
discrete log problem is to solve is #G, the order of the group G. Therefore, we will compute
the number of steps to perform the algorithm as function of the size k of #G. Remember
from Definition 1.1 that we have

k ≈ log #G,

where we can use the logarithm in any base a > 1 for our purposes.

2.4 Baby steps, giant steps

The provably fastest algorithm we have to solve the discrete logarithm problem in a general
group G is called the baby steps, giant steps algorithm and it is due to Shanks. As we
know, in specific groups G, such as Z/nZ under addition, the discrete logarithm problem can
sometimes be solved much faster with a special purpose algorithm that exploits properties
of the specific group G. However, if we do not have any information about the group G
other than it is cyclic, this is the fastest algorithm. Fortunately, the number of steps in this
algorithm grows exponentially in k ≈ log #G, so in a general group G solving the discrete
logarithm problem is difficult.

The idea behind the algorithm is the following: Given a cyclic group G with generator
g and h = gx for some unknown exponent 0 ≤ x < #G, then for any integer N such that
#G ≤ N2, we can write

x = x0 +Nx1

with 0 ≤ x0, x1 < N .
Now think of “walking” between g and h by taking “baby steps” consisting of multiplica-

tion by g. For example, we can think of going between g and g4 by taking three baby steps:
one from g to g2, a second from g2 to g3 and finally a third from g3 to g4. Of course if we
take only baby steps, it will take x− 1 steps to “walk” from g to h = gx. Taking only baby
steps is a naive, brute force search, and can take as many as #G− 2 steps.

To speed things up, we will also allow ourselves to take “giant steps” consisting of mul-
tiplication by gN . Then we can “walk” from g to h = gx by first taking x0 baby steps, and
then x1 giant steps. If we choose N2 very close (but larger than!) #G, then N ≈

√
#G, so

this allows us to “walk” from g to h in at most 2
√

#G steps, since each of x0 and x1 is less
than N .

We must now leverage this understanding into an algorithm that allows us to find x0 and
x1 (and therefore the discrete logarithm x since x = x0 + Nx1). We do this by thinking
of the baby steps and the giant steps meeting somewhere in the middle between g and h:

10

Walking “forward” from g with x0 baby steps, we get to gx0 , which is the same place we get
if we walk “backwards” from h with x1 giant steps.

Another way to think about this is the following, and this is what gives us the baby steps,
giant steps algorithm:

1. First, adversary E computes and stores the values 1, g, g2, g3, . . . , gN−1. We are guar-
anteed that gx0 will appear among these values.

2. Then adversary E starts at h and take giant steps backwards, computing hg−N , hg−2N ,
hg−3N , At some point, after x1 < N giant steps, adversary E will reach one of the
values 1, g, g2, g3, . . . , gN−1 they have already computed. This reveals the values of x0
and x1 to adversary E.

All that remains is to estimate the complexity of this algorithm; to do so we consider
one group operation to be one step. To compute the values 1, g, g2, g3, . . . , gN−1, adversary
E must perform approximately N or

√
#G group operations. This is already exponential in

k, the size of #G. Assuming that we can compute in G efficiently, computing g−N can be
done in time polynomial in k using fast exponentiation and then inverting the answer. Once
this is done, adversary E has then to perform at most N or

√
#G steps. We therefore see

that the computation takes approximately 2
√

#G ∼ 2k/2 steps in the worst case. (We note
that it also requires storing approximately 2

√
#G ∼ 2k/2 elements of G in the worst case, so

this algorithm is also exponential in storage complexity.)

2.5 The index calculus attack

In contrast with baby steps, giant steps, this attack is specifically for the situation where
G is represented as (Z/pZ)×. Since this attack uses more information, it is faster; it is a
subexponential attack on the DLP on (Z/pZ)×. The idea of the attack is to blur the
distinction between elements of Z/pZ and their least residue, and to use this to factor the
least residues into small primes when possible. Here is how it goes:

Given a cyclic group G with generator g and h = gx for some unknown exponent 0 ≤
x < #G, at the beginning of the algorithm, adversary E chooses a suitable bound B. In

practice, B should be approximately 2
√

log p log log p
2 . Adversary E then computes and stores

the set of primes that are strictly less than B:

{`1, `2, . . . , `r},

this set is called the factor base.
The first step of the algorithm is for adversary E to compute logg `i for each `i in the

factor base. This is done in the following manner: For random exponents i, adversary E
computes gi, the least residue of gi (mod p), and checks if gi is divisible only by primes in
the factor base. If not, then gi is discarded. If it is, then we have

gi = `
e`1 (i)

1 `
e`2 (i)

2 · · · `e`r (i)r ,

11

and therefore

i ≡ logg gi ≡ e`1(i) logg `1 + e`2(i) logg `2 + · · ·+ e`r(i) logg `r (mod p− 1).

Once adversary E obtains r equations of this type, they can use them to solve for the values
logg `j for each `j in the factor base.

Now that this is done, adversary E turns to the second step, which is to compute the
least residue hj of hgj for random values of j. If any hj is divisible only by elements in the
factor base, say

hj = `e11 `
e2
2 · · · `err ,

then we have

logg(hj) ≡ logg h+ j ≡ e1 logg `1 + e2 logg `2 + · · ·+ er logg `r.

Since the values logg `i are known, this allows adversary E to recover the value of logg h.

2.6 Implications for security

We begin with a short primer on security in cryptography. Typically, someone implementing
a cipher will have a certain target security level they would like to achieve. For example,
common communications on the internet might need to be secure, but top secret government
information might need to be “even more” secure.

The security level of an instance of a cipher is measured in bits, where saying that a
certain instance offers k bits of security means that an adversary has to perform as least 2k

steps to perform the attack on the problem. 128 bits of security is considered suitable for
the internet to keep information safe for 10 to 20 years, 192 bits is an intermediate level of
security, and top secret information usually requires encryption with parameters that offer
at least 256 bits of security.

Let us first consider the Elgamal cipher with generic group G. In this case, the best
attack is baby steps, giant steps. As we saw, if #G has size k bits, this attack takes about
2k/2 steps to complete. Therefore, if we wish to obtain 128 bits of security, we must have
128 = k

2
, or #G of size 256 bits.

The analysis of the index calculus attack is more difficult because we did not count the
steps it takes to perform the attack, and because in that case the exact constants play a role
in how large the size of p must be to ensure 128 bits of security. We will just note that if
p−1 can be factored into small prime factors, then we can use Sun Zi’s Remainder Theorem
to reduce the problem of computing discrete logarithms modulo p − 1 to the problem of
computing discrete logarithms modulo those prime factors, which is faster. Therefore when
using DLP with G = (Z/pZ)×, we recommend using p of size at least 1024 bits, and such
that p − 1 has at least one prime factor of size 256 to guard against the baby steps, giant
steps attack.

12

3 Lattice-based cryptography

This week we will discuss ciphers based on the Learning With Errors problem, which we will
formally introduce on Thursday. We begin on Tuesday by introducing a particularly simple
cipher based on this idea before getting into the higher-dimension stuff.

3.1 A simple lattice-based cipher

In this section we present in detail one example of a lattice-based cryptographic scheme,
which can be found in a 2010 article by van Dijk, Gentry, Halevi, and Vaikuntanathan
entitled Fully Homomorphic Encryption over the Integers. The article is available on our
website. Almost every single lattice-based encryption algorithm is a variation on Regev’s
original Learning With Errors scheme (the NTRU schemes are the exception), as is this one.

3.1.1 Our new remainder

Throughout our study of this encryption scheme, we will need to compute remainders that
are a little bit different than those you might be used to.

Definition 3.1. Let a, b be integers with b 6= 0. Then we define the two integers qb(a) and
rb(a) to be the unique integers such that

a = qb(a)b+ rb(a), and − b

2
< rb(a) ≤ b

2
.

Note that this is different from the “usual” remainder, which we take to be between
0 (inclusively) and b (exclusively). One way to obtain this new, exciting remainder, is to
compute the usual remainder, and then check if it is less than or equal to b

2
. If so, then you

are done, for this value of a the usual remainder and the value rb(a) agree. However, if the
usual remainder is strictly greater than b

2
, then subtract b to obtain rb(a). (Then rb(a) is

negative.)

Example 3.2. Let b = 7. Then we will have that for any a, −7
2
< r7(a) ≤ 7

2
, or, using the

fact that r7(a) must be an integer:

r7(a) ∈ {−3,−2,−1, 0, 1, 2, 3}.

If a = 10, we can write
10 = 1 · 7 + 3.

Here we have that 3 is a valid value for r7(10), so q7(10) = 1 and r7(10) = 3.
If a = 12, we can write

12 = 1 · 7 + 5.

Here 5 is not a valid value for r7(12); it’s too big! So we must adjust the equation:

12 = 2 · 7− 2.

Now −2 is a valid value for r7(12), so we have that q7(12) = 2 and r7(12) = −2.

13

Note that the journal version of the article uses several notations for rb(a): They also
write [a]b and (a mod b) for the same number. We will stick to the notation rb(a) in these
notes.

3.1.2 The private and public keys

For this description we will talk about “large,” “medium,” and “small” integers. The article
gives a mathematical, technical definition for what these words must mean for the scheme to
work, and we encourage you to read the article if you are curious. For a first acquaintance
with the scheme we will not be more precise here. To get a sense of the size of the difference
parameters, you can refer to the example in Section 3.1.5.

The private key is a medium-sized odd integer p. When we need it later, we will
sometimes denote the private key, or secret key, by sk.

The public key is a list of τ + 1 different integers which we will denote x0, x1, . . . xτ ,
where τ is very small. All of these integers are of the form

xi = pqi + ri,

where

• each qi is chosen at random so it is likely to be very large (actually qi is within an
interval of the form 0 ≤ qi <

2γ

p
, where 2γ is very big, so qi could be small, but an

interval of the form above contains way more large numbers than small numbers, so
it’s likely that qi will be very large), and

• each ri is chosen at random to be much smaller than p.

Furthermore, we will assume that the list has been ordered so that x0 is its largest element,
and we will assume that x0 is odd and rp(x0) is even. If that is not the case once we have
generated our list of integers, we throw out the whole list, and start over until we obtain
a list of integers of the form xi = pqi + ri with the largest one of them x0 satisfying the
conditions that x0 is odd and rp(x0) is even. That is a valid public key. When we need it
later, we will sometimes denote the public key by pk.

Remark 3.3. We pause here to discuss the underlying “lattice” in lattice-based cryptogra-
phy, and what we are learning when we are Learning With Errors. Very roughly speaking,
a lattice L in Rn is a set of evenly spaced out points, such that 0 is in L and if `1 and `2 are
in L, then `1 + `2 is in L. In the scheme we are presenting, we have n = 1, and the lattice L
is the set of all multiples of p:

L = {. . . ,−3p,−2p,−p, 0, p, 2p, 3p, . . .}.

We see that these points are evenly spaced out (there is always a distance of p between one
element of the lattice and the next), 0 ∈ L, and L is closed under addition since the sum of
two multiples of p is a multiple of p.

14

If we look at the public key while thinking about our lattice, we see that the elements xi
are each (relatively) very close to an element of L. This is because each ri is chosen to be
much smaller than p, so xi = pqi + ri is close to pqi ∈ L. In fact by how we chose the ris,
we know that the nearest lattice point (multiple of p) for any xi is pqi. So we think of the
public key as almost a list of elements of L, except that each element has a small error ri.

The difficult problem to recover the secret key p from the public key x0, x1, . . . , xτ . In
other words, the goal is to learn the shortest nonzero vector p in the lattice given some
points that are almost in the lattice but have some errors. This is why the problem of
recovering p from the values x0, x1, . . . , xτ is called Learning With Errors. The difficulty of
the problem is as difficult as finding the shortest nonvector vector in a lattice, so this scheme
is lattice-based.

3.1.3 Encryption

To encrypt a bit m ∈ {0, 1}, we chose a random subset of the elements x1, x2, . . . , xτ (note
that we may not choose the largest element x0) from the public key. Let S be the set
that contains the indices of elements we have chosen at random; S is a random subset of
{1, . . . , τ}.

We also choose a random small integer r, and the ciphertext encrypting m is

c = rx0

(
m+ 2

∑
i∈S

xi + 2r

)
.

We take some time to unpack this: What we have done is essentially add some noise to
our value of m. Some of the noise are some randomly chosen values 2xi for xi in the public
key (but xi 6= x0). These are approximately values in the lattice of multiples of p, so this
noise has some structure. The rest of the noise is 2r for r a small integer. This is even, and
a small number, which we will see is important during decryption.

3.1.4 Decryption

Given a ciphertext c, the decryption algorithm computes

m ≡ rp(c) (mod 2).

In other words, the bit m has the same parity as rp(c). Without knowledge of the private
key, it is hard to compute the correct remainder to check its parity. The journal version of
the article lists more attacks against this scheme in Section 5 and Appendix B but we will
not cover them in class.

Proposition 3.4. This decryption algorithm recovers m correctly.

Proof. Remember that if m ∈ {0, 1} is the plaintext, then an encryption of m is of the form

c = rx0

(
m+ 2

∑
i∈S

xi + 2r

)
.

15

Since this is a remainder modulo x0, there exists an integer k such that

c = m+ 2r + 2
∑
i∈S

xi − kx0.

To see why this is true, imagine that given the integer m+ 2r + 2
∑

i∈S xi, you compute its
remainder modulo x0 by subtracting x0 until you land in the interval

(
−x0

2
, x0

2

]
.

Now remember that each xi is of the form pqi + ri, and so we have

c = m+ 2r + 2
∑
i∈S

xi − kx0

= m+ 2r + 2
∑
i∈S

(pqi + ri)− k(pq0 + r0)

= m+ 2r + 2
∑
i∈S

ri − kr0 + p(2
∑
i∈S

qi − kq0)

Now if
2r + 2

∑
i∈S

ri − kr0

is small, then we will have that

rp(c) = m+ 2r + 2
∑
i∈S

ri − kr0.

More precisely, since p is odd, we have that

rp(c) = m+ 2r + 2
∑
i∈S

ri − kr0.

if ∣∣∣∣∣2r + 2
∑
i∈S

ri − kr0

∣∣∣∣∣ < p

2
− 1.

(We subtract 1 because we do add the message bit m to this in the ciphertext so we don’t
want that extra 1 to be what tips this over.) This is why we need to be careful when we
define what it means for the values of ri to be “much smaller” than p and for τ to be small.
Note that if τ is small, and x0 is the largest of the values of xi, then k will be small too
(less than τ), so kr0 is small. You can read a discussion of the acceptable and suggested
parameter sizes in Section 3 of the journal version of the article.

We assume thus that our values have been chosen so that

rp(c) = m+ 2r + 2
∑
i∈S

ri − kr0.

We must now show that rp(c) ≡ m (mod 2), which is equivalent to showing that

2r + 2
∑
i∈S

ri − kr0 ≡ 0 (mod 2).

16

In turns this reduces to showing that

kr0 ≡ 0 (mod 2).

But recall that x0 is chosen so that rp(x0) is even. Since x0 = pq0 +r0, and r0 is very small in
absolute value compared to p, we have that rp(x0) = r0. We now see why we had to assume
that rp(x0) is even, and the proof is done.

Remark 3.5. Now that we know why rp(x0) had to be even, you might wonder why x0 had
to be odd. Recall that

c = m+ 2r + 2
∑
i∈S

xi − kx0

for some integer k.
If x0 were even, the ciphertext would always have the same parity as m (c ≡ m (mod 2)).

Since x0 is part of the public key, it would be easy to notice this vulnerability and to decrypt
every single message without knowing p.

If x0 is odd, then c is either the same parity as m or not, depending if k is even or odd.
Given the value of the remainder of m+ 2r + 2

∑
i∈S xi modulo x0, it is thought to be very

hard to recover the set S (or the random values of xi that were chosen to obscure m), so it
is hard to compute k. Therefore it is random if c has the same parity as m or not and the
parity of c does not give an attacker any information about m.

3.1.5 An example

In this section we give an example of an instance of this cipher. For reference, the parameters
were chosen for to achieve 3 bits of security (λ = 3 in the notation of the article). Recall
that for an instance that is secure in real life, we should use λ = 128 or λ = 256 to have 128
or 256 bits of security. The further parameters for this instance are

• ρ = λ = 3: this is the number of binary digits in the values of the noise ri chosen at
random to create the public key,

• ρ′ = 2λ = 6: this is the number of binary digits in the value of the noise r chosen at
random to encrypt a bit,

• η = 12: this is the number of binary digits in the value of the secret key p,

• γ = 33: this is the maximum number of binary digits in the product pqi, where qi is
chosen at random to create the public key,

• τ = γ + λ = 36: this is one less than the number of values xi in the public key.

For the private key we must choose an odd integer p between 2η−1 = 2048 and 2η = 4096.
We choose p = 3011.

17

To create the public key, we choose random values of qi and ri to form xi = pqi + ri.
According to our parameters, we will have

0 ≤ qi ≤ 2, 852, 851,

and
−7 ≤ ri ≤ 7.

Here
2γ

21
= 2852851.076...

gives us the upper bound for the values of qi, and ri must be strictly between −2ρ and 2ρ.
Here is a valid public key for the private key p = 3011:

x0 = 8454204503, 3327341689, 1349786140, 2796047723, 7830075393, 6761697318,

4923797967, 2282744485, 2700505680, 2574555543, 4536432818, 5853763387,

6757138668, 8182482829, 8130443719, 6817659754, 2897777368, 2859480454,

8404833136, 2986869839, 2216788527, 3241154823, 7130084136, 898925021,

4384274941, 7507585242, 1921632240, 783868684, 6288094121, 6833000810, 6364802355,

2855280111, 3534432240, 2013660441, 6553649254, 7582742811, 7411341636.

To encrypt a bit m ∈ {0, 1}, we must choose a random number r strictly between
−2ρ

′
= −64 and 2ρ

′
= 64 (notice that the “noise” in the encryption is twice as large in

binary digits as the noise in the public key elements), and a random set of elements xi from
the public key, but avoiding x0. The ciphertext is

c = rx0

(
m+ 2r + 2

∑
i∈S

xi

)
.

Suppose that we wish to encrypt the bit m = 0. Then we would choose a small number
r at random, say r = −10, and a random list of elements from the public key (but avoiding
x0), say the numbers

2216788527, 1349786140, 783868684, 6553649254, 8404833136.

We first compute

m+ 2r + 2
∑
i∈S

xi = 38617851462

and then the ciphertext is the remainder modulo x0 of 38617851462

c = rx0(38617851462) = −3653171053.

To decrypt this same ciphertext (c = −3653171053), we just compute r3011(c), and check
if it’s even or odd. If it’s even, the message was m = 0, and if it’s odd, the message was
m = 1:

r3011(−3653171053) = −28.

This is even so the message was m = 0.

18

3.2 Learning With Errors

Now that we have seen a simple cipher based on the Learning With Errors (LWE from now
on) problem, we are ready to study LWE in more detail.

3.2.1 The LWE problems and definitions

To agree with the notation in the literature, from now on q ∈ Z will be a prime number.
In our simple cipher, we needed to generate random small numbers for the noise ri

in the public key. This was done by setting a bound of what we meant by “small” (the
authors suggest using noise that is smaller than 2λ in absolute value, where λ is the security
parameter) and choosing the noise ri uniformly randomly in the interval (−2λ, 2λ). For more
complicated ciphers, we will use a slightly more complicated random distribution:

Definition 3.6. Let σ > 0 and B ∈ Z be fixed. Then the truncated discrete Gaussian
distribution on the integers with variance σ2 and constrain −B ≤ x ≤ B is given
by the following probability distribution on the integers:

(1) P (X = x) =


exp

(
−x2

2σ2

)
∑

−B≤y≤B,y∈Z

exp

(
−y2

2σ2

) if −B ≤ x ≤ B, x ∈ Z

0 otherwise.

As the name suggests, you should think of this distribution as a normal distribution
centered at 0 with variance σ2, but the only values obtained are integers between −B and
B. The variance σ2 essentially tells you what counts as “small.”

Definition 3.7. Let q be a prime, σ > 0, and n a positive integer be fixed, and choose a
vector ~s ∈ Fnq . An LWEq,σ,~s pair is a tuple (~a, b) ∈ Fnq × Fq such that

• ~a ∈ Fnq is drawn uniformly at random, and

• b = ~a ·~s+e for e drawn from a truncated discrete Gaussian distribution on the integers
with variance σ2 and constraint −b q

2
c ≤ x ≤ b q

2
c.

Here ~a · ~s denotes the usual dot product.

There are two main problems related to Learning With Errors:

Definition 3.8. Given m LWEq,σ,~s pairs

(~a1, b1), . . . , (~am, bm)

the (search) LWE problem asks to recover the vector ~s.

And:

19

Definition 3.9. Given m pairs

(~a1, b1), . . . , (~am, bm)

with (~ai, bi) ∈ Fnq × Fq, the decision LWE problem asks to determine if the pairs are
LWEq,σ,~s for some σ and ~s, or if the values ~ai and bi were drawn uniformly at random from
Fnq and Fq, respectively.

If one can solve the search LWE problem, then one can solve the decision LWE problem
with high probability: Indeed, feed the pairs (~ai, bi) into the algorithm that solves for ~s, then
check the distribution of the values

~ai · ~s− bi.

If these values are distributed according to a truncated Gaussian distribution, then the pairs
were LWE. If these values are uniformly distributed, then the pairs were not LWE. The
reason why this allows us to solve the decision problem with high probability is that it is
possible to get very unlucky such that the pairs are actually LWE but the values ~ai · ~s− bi
look uniformly distributed. Using more pairs (~ai, bi), the probability of our being unlucky
can get as small as we wish. We say that the decision LWE problem reduces to the search
LWE problem (with high probability).

Interestingly, one can show that the search LWE problem also reduces to the decision
LWE problem if q is bounded by a polynomial in n. (This constraint is so that the problem
can be solved in polynomial time.) Indeed we can recover the coordinates of ~s one at a time
in the following way: Given a set of LWEq,σ,~s pairs (~a1, b1), . . . , (~am, bm), make a guess g ∈ Fq
for the value of the jth coordinate of ~s. Then, from the pairs you were given, form the new
pairs

(~ai + (0, 0, . . . , 0, ri, 0, . . . 0), bi + rig),

where ri appears in the jth coordinate, and ri is drawn uniformly at random from Fq. If the
guess g is correct, then these pairs are still LWEq,σ,~s pairs, and if the guess g is incorrect, the
pairs are uniformly distributed. Thanks to our ability to solve the decision LWE problem,
we can therefore guess all of the coordinates of ~s one by one in polynomial time.

The security of the cipher we will present is based on the hardness of the decision LWE
problem. When q is polynomial in n, this is equivalent to the hardness of the search LWE
problem, but that’s not the case when q is exponential in n.

3.2.2 More lattice problems

In this section we highlight more lattice problems and their relationship to the LWE prob-
lems. But first, we define what a lattice is:

Definition 3.10. A lattice L ⊂ Rn is a discrete subgroup (under addition) of Rn of rank n.
More practically, every lattice in Rn is the Z-span of some basis ~v1, ~v2, . . . , ~vn of Rn. In that
case, we say that the set {~v1, ~v2, . . . , ~vn} generates the lattice L, or that it forms a basis
for L.

20

Lattices have many problems:

Definition 3.11. Given a basis ~v1, ~v2, . . . , ~vn for a lattice L, the shortest vector problem
(SVP) asks to give the shortest nonzero vector ~v belonging to the lattice. In other words,
let

(2) λ(L) = min
06=~v∈L

‖~v‖ .

Then give a vector ~v ∈ L with ‖~v‖ = λ(L).

A variation on this problem is this:

Definition 3.12. Fix a constant β > 0. Given a basis ~v1, ~v2, . . . , ~vn for a lattice L, the
GapSVPβ problem asks to decide if the shortest vector of L has length less than or equal
to 1, or strictly greater than β. In other words, with λ(L) as in equation (2), decide if
λ(L) ≤ 1 or β < λ(L).

Note that in the GapSVP problem, we promise that the case of 1 < λ(L) ≤ β will not be
asked. Or if it is asked, we allow ourselves to give the wrong answer or to refuse to answer.

In Public-key cryptosystems from the worst-case shortest vector problem, Peikert shows
that if q ≥ 2n/2, the search LWE problem is at least as hard as the GapSVP problem in the
worst case. Unfortunately since we do not have a reduction of search to decision in this case,
this does not say anything about the hardness of the decision LWE problem.

For moduli q polynomial in n, the search LWE problem (and therefore the decision LWE
problem) is at least as hard as a slightly different problem called ζ-to-γ-GapSVP. When
using a Gaussian error distribution, Regev showed (in a personal communication to Peikert
reported in loc. cit. that search and decision LWE are equivalent when q is a product of small
primes (but q itself can be exponential in n, so GapSVP reduces to the seach LWE poblem),
so this is another instance when a hard problem reduces to the decision LWE problem.

None of these reductions are exactly what we would like (reducing a hard problem to
solving decision LWE). In 2013, in Classical hardness of learning with errors by Brakerski,
Langlois, Peikert, Regev and Stehlé, it was shown that if q is polynomial in n, then the
GapSVP problem in dimension

√
n reduces to the decision LWE problem in dimension n.

For fun, here is one more problem:

Definition 3.13. Fix β > 0 and q a prime. Given an n×m matrix A with entries in Fq, the
short integer solution (SISβ) problem asks to find a nonzero vector ~z ∈ Zm such that

1. ‖~z‖ ≤ β, and

2. A~z ≡ 0 (mod q).

Note that to guarantee that there exists such a ~z, one can require
√
n log q ≤ β (but at the

same time, so the problem is not trivial, one should require β < q so that ~z = (q, 0, 0, . . . , 0)
is not a solution), and m ≥ n log q.

21

Proposition 3.14. The decision LWE problem reduces to the short integer solution problem
with high probability.

Proof. Suppose that we have a list of m pairs {(~ai, bi)} and want to determine if they are
LWE. Suppose further that for any matrix and any value β, we can solve the short integer
solution problem efficiently. Then we can solve the decision LWE problem as follows:

We begin by forming a large number of subsets Tj ⊂ {1, 2, . . . ,m}, j = 1, 2, . . . , N , say.
For each j, we form the matrix

Aj =


~ak1
~ak2
. . .
~ak`

 ,

whose rows are the elements ~ak for k ∈ Tj, and then use the SIS solver to give a short integer
solution ~zj to the equation ATj ~zj ≡ 0 (mod q).

Then for each j we form the vector

~Bj =


bk1
bk2
. . .
bk`

 ,

and compute ~BT
j ~zj. If the values ~BT

j ~zj are distributed according to a truncated discrete

Gaussian distribution, then we conclude that the pairs were LWE. If the values ~BT
j ~zj are

uniformly distributed in Z/qZ, then we conclude that the pairs were not LWE.
The reason why this works is the following: If the pairs were LWE all along, then we

have that for each j
~Bj = Aj~s+ ~Ej,

where ~Ej is the vector of errors. In that case then, we have that

~BT
j ~zj = (Aj~s+ ~Ej)

T~zj

= (~sTATj + ~ET
j)~zj

= ~sTATj ~zj + ~ET
j ~zj

= ~ET
j ~zj,

since ATj ~zj ≡ 0 (mod q). Recall that we have that

~Ej · ~zj ≤
∥∥∥ ~Ej∥∥∥ ‖~zj‖ ,

and
∥∥∥ ~Ej∥∥∥ is smaller in absolute value than q

4
with high probability. Then if ‖~zj‖ is small

enough (which we can control since we control the value of β), we will see a small value of
~Ej · ~zj with high probability and therefore very often.

If the pairs are not LWE, then ~BT
j ~zj is just a uniformly chosen random vector whose dot

product is taken with a short vector. This will not be as short, and should sometimes be
big, so with high probability we will see larger values.

22

3.2.3 Regev’s cipher based on LWE

We now present the first cipher based on the hardness of LWE, proposed by Regev in 2005
in On Lattices, Learning with Errors, Random Linear Codes, and Cryptography.

Algorithm 3.15 (Regev LWE key generation). Given n a positive integer, choose m a
positive integer, q a prime, and a probability distribution χ on Fq:

1. Choose a vector ~s ∈ Fnq uniformly at random. This is the secret key.

2. For i = 1, . . . ,m, choose m vectors ~ai ∈ Fnq uniformly at random and independently of
each other.

3. For i = 1, . . . ,m, choose m values ei ∈ Fq from the distribution χ and independently
from each other.

4. The public key is the set of pairs (~ai, bi) for i = 1, . . . ,m, where for each i

bi = ~ai · ~s+ ei.

When choosing vectors of length n, Regev recommends the following choices:

- n2 ≤ q ≤ 2n2,

- m = (1 + ε)(n+ 1) log2 q for any ε > 0, and

- χ is a truncated discrete Gaussian with standard deviation σ =
q√

2πn log2 n
.

(Please note that this corrects the mistake I made in class where I didn’t originally
multiply by q.)

Algorithm 3.16 (Regev LWE encryption). Given a Regev LWE public key {(~ai, bi)}, one
can encrypt one bit, 0 or 1. In either case, choose a random subset T ⊆ {1, 2, . . . ,m}, then:

• To send the bit 0, send the pair (~a, b), where

~a =
∑
i∈T

~ai, and b =
∑
i∈T

bi;

• To send the bit 1, send the pair (~a, b), where

~a =
∑
i∈T

~ai,

as before, but

b =
⌊q

2

⌋
+
∑
i∈T

bi.

23

The hardness of the decision LWE problem comes in here: When the bit sent is 0 the pair
sent is an LWE pair, and when it is 1 the pair is not LWE. More precisely, Regev shows that
if someone can distinguish between encryptions of 0 and 1, then they can solve the decision
LWE problem for a non-negligible fraction of all ~s.

Finally we present the decryption algorithm:

Algorithm 3.17 (Regev LWE decryption). Given the secret key ~s, upon reception of a pair
(~a, b), compute

b− ~a · ~s.
If this value is closer to 0 than to b q

2
c, the bit sent was 0 with high probability, and if this

value is closer to b q
2
c than to 0, the bit sent was 1 with high probability.

More precisely, we have the following result:

Lemma 3.18 (Regev LWE correctness). Let δ > 0, and k ∈ {0, 1, . . . ,m}. Let {ei} be a set
of k independently chosen random values from the distribution χ. If the probability that

k∑
i=1

ei

is closer to 0 than to b q
2
c is greater than 1−δ for every k ∈ {0, 1, . . . ,m}, then the probability

of decryption error is at most δ.

With the parameters chosen by Regev, it can be shown that the probability of an error
in decryption is negligible as a function of n.

3.3 Ring-LWE

Unfortunately LWE encryption is very inefficient, requiring a public key of size about n2

and a ciphertext of size n to send a single bit. We present here a modification of LWE that
is more efficient, called Ring Learning With Errors, which was first introduced in 2013 by
Lyubashevsky, Peikert and Regev in On ideal lattices and learning with errors over rings.

3.3.1 Algebraic preliminaries

A number field K is a field containing Q that is finite dimensional as a vector space over
Q. The dimension of K over Q is called the degree of K. If K has degree n over Q, then
every element α ∈ K satisfies a monic irreducible polynomial f ∈ Q[x], called the minimal
polynomial of α. The ring of integers OK of K is the set of α ∈ K such that the minimal
polynomial of α has coefficients in Z. (This set is indeed a ring.)

If K has degree n over Q, then there are n different injective field homomorphisms
K → C. Those whose image is contained in R are called real embeddings of K and
those whose image is not contained in R are called complex embeddings of K. All of the
complex embeddings of K come in conjugate pairs: If τ : K → C is a complex embedding
of K, then so is τ̄ = ·̄ ◦ τ , where ·̄ denotes complex conjugation on C.

24

Suppose that K has s1 real embeddings σ1, . . . , σs1 and s2 pairs of complex embeddings,
with a representative of each pair given by τ1, . . . , τs2 (so that n = s1 + 2s2). Then the
canonical embedding4 of K is the map sending α ∈ K to

(σ1(α), . . . , σs1(α),
√

2 Re(τ1(α)),
√

2 Im(τ1(α)), . . . ,
√

2 Re(τs2(α)),
√

2 Im(τs2(α))) ∈ Rn.

The image of OK under the canonical embedding, Λ = σ(OK) is a lattice in Rn.

3.3.2 Polynomial-LWE

We begin by explaining a particularly straightforward adaptation of LWE to the number field
setting, which is mentioned by Lyubashevsky, Peikert, and Regev in On ideal lattices and
learning with errors over rings. This cipher is now commonly called “polynomial learning
with errors” or PLWE.

If K is a number field of degree n, there is a primitive element γ ∈ K such that

K = Q(γ) = {a0 + a1γ + · · ·+ an−1γ
n−1 : ai ∈ Q}.

By “clearing the denominator” of γ, we may even assume that γ ∈ OK . However, it is not
the case in general that if K = Q(γ) for γ ∈ OK , then

OK = Z[γ] = {a0 + a1γ + · · ·+ an−1γ
n−1 : ai ∈ Z}.

When there is such a choice of γ, we say that OK is monogenic. In this section we will
suppose that this is the case throughout.

In this case, there is a simple way to draw a “small” element of OK at random: For some
suitable σ > 0, choose n elements ej ∈ Z, j = 0, . . . , n− 1, independently at random from a
discrete Gaussian distribution with variance σ2, and form the element

e = e0 + e1γ + · · ·+ en−1γ
n−1.

Now fix a prime q ∈ Z. We have then that the elements of the quotient ring Rq =
OK/qOK are of the form

ē0 + ē1γ̄ + · · ·+ ēn−1γ̄
n−1

for ēj ∈ Z/qZ and γ̄ a representative of the coset γ + qOK . We can draw a “small” element
of Rq at random by first drawing a small element of OK according to the procedure in the
preceding paragraph, and then reducing it modulo q. From now on this is what we will mean
by drawing a small element of Rq at random.

We are now ready to describe the PLWE cipher:

Algorithm 3.19 (PLWE key generation). Given a number field K of degree n with mono-
genic ring of integers generated by γ, a prime q, and a standard deviation σ > 0 for the error
distribution:

4Though it is said to be canonical, which might connote the fact that it is unique, several slightly different
maps are called the “canonical embedding” in the literature. Usually it does not really matter which specific
canonical embedding we choose.

25

1. Draw a small element s ∈ Rq at random. This is the secret key.

2. Draw an element a ∈ Rq uniformly at random, a small element e ∈ Rq and form the
pair

(a, b = as+ e) ∈ R2
q .

This is the public key.

Algorithm 3.20 (PLWE encryption). To send an n-bit message whose jth bit ismj ∈ {0, 1},
given the public key (a, b) ∈ R2

q , we view the message as

m = m0 +m1γ̄ + · · ·+mn−1γ̄
n−1 ∈ Rq,

then choose three random small elements of Rq denoted r, e1, e2 and send the pair (u, v) ∈ R2
q ,

where
u = ar + e1 and v = br + e2 +

⌊q
2

⌋
m.

Algorithm 3.21 (PLWE decryption). Upon reception of a ciphertext (u, v) ∈ R2
q , we com-

pute

v − us = (re− se1 + e2) +
⌊q

2

⌋
m.

When σ is chosen appropriately, the coefficients of the element re− se1 + e2 as a polynomial
in γ̄ are smaller than q

4
, so the message m can be recovered by rounding the coefficients of

v − us as a polynomial in γ̄ to either 0 or b q
2
c, whichever is closest. If the jth coefficient

rounds to 0, the jth sent bit was 0, and if it rounds to b q
2
c, the jth sent bit was 1.

The security of this cipher depends on the decision RLWE problem (which is similar
to the decision LWE problem, with ~a replaced by a and ~s replaced by a small value s),
since the public key (a, b) and the ciphertext (u, v) appear to have been drawn uniformly at
random, and therefore do not leak information about the message. Note that here we are
using a theorem showing that LWE and RLWE with small secret s is just as safe as their
counterparts with secret chosen uniformly at random, and a theorem giving the equivalence
of search and decision RLWE, which is valid in particular if K is Galois over Q.

3.3.3 A RLWE cipher

In this section we present a modification of the cipher presented by Lyubashevsky, Peikert,
and Regev in A toolkit for Ring-LWE cryptography. It is perhaps no surprise at this point
that we must first define some error distributions we will need:

Definition 3.22. Let ~ν ∈ Rn be a vector, and σ > 0. Then the continuous Gaussian
distribution on Rn (centered at 0) with standard deviation σ is given by the probability
distribution function

Dσ(~x) =
1

(2πσ2)n/2
exp

(
−‖~x‖
2σ2

)
,

where ‖x‖ is the Euclidean norm on Rn.

26

Definition 3.23. Let Λ ⊂ Rn be a lattice, ~ν ∈ Rn be a vector, and σ > 0. Then the
discretization of the Gaussian distribution with standard deviation σ to the lattice
coset ~ν + Λ is the distribution whose elements are drawn in the following way:

1. Draw a vector ~x from a Gaussian distribution with variance σ2 on Rn.

2. Round ~x to an element ~y of the set ~ν + Λ that is “not too far” from ~x. We refer to the
original paper, Section 2.4.2 for three valid ways to define “not too far.”

We can now describe the cipher:

Algorithm 3.24 (Key generation for an RLWE cipher). Let K be a number field of de-
gree n with ring of integers R, and p ∈ Z be a prime. Fix an integer ` ≥ 2, real
numbers r ≥ 2nq(n+2)/n` and σ > 1√

2π
, and finally q ∈ Z a prime distinct from p with

q ≥ σ
√

2πn log n(r2`+ 1). All of this information is available publicly. Then

• Let a0 = −1 ∈ R/qR, and choose `−1 values ai ∈ R/qR, i = 1, . . . , `−1, independently
and uniformly at random.

• Fix x` = 1, and draw ` values xi, i = 0, . . . , `−1, from a discrete Gaussian distribution
on the integers centered at 0 with standard deviation r.

• Compute the value

a` = −
`−1∑
i=0

aixi,

where here the xis have been reduced modulo q.

Then the secret key is the vector ~x = (x1, . . . , x`) ∈ Z`, and the public key is the vector
~a = (a1, . . . , a`) ∈ (R/qR)`.

Algorithm 3.25 (Encryption for an RLWE cipher). Given an instance of this RLWE cipher,
to encrypt the value µ ∈ R/pR,

• Draw ` values e0, . . . , e`−1 from the discretization of the Gaussian distribution on Rn

with standard deviation pσ to the lattice pΛ, where Λ = σ(R), and form the vector
~e = (e1, . . . , e`−1).

• Draw one value e` from the discretization of the Gaussian distribution on Rn with
standard deviation pσ to the lattice coset µ+ pΛ.

The ciphertext is
~c = e0~a+ ~e ∈ (R/qR)`.

27

Algorithm 3.26 (Decryption for an RLWE cipher). Given a ciphertext ~c, compute the dot
product d̄ = ~c · ~x ∈ R/qR. Fix {bj} a “good” basis for R, write bj ≡ b̄j (mod qR), and
express

d̄ =
n∑
j=1

d̄j b̄j,

with d̄j ∈ Z/qZ. For each d̄j, let dj ∈ Z be the unique integer congruent to d̄j modulo q and
such that − q

2
≤ dj <

q
2
. Then

µ ≡ d =
n∑
j=1

djbj (mod pR)

with high probability (given the parameters we have chosen).

The security of this cipher is based on the hardness of the decision RLWE problem for
K. Indeed the authors show that the public key ~a is indistinguishable from a random vector,
so no information can be gained from it. Furthermore, if the ith entry of the ciphertext ~c is
denoted ci and ai is the ith entry of the public key ~a, the pairs (ai, ci) are then RLWE pairs
with two different error distributions, and the authors show that we cannot distinguish the
first `− 1 pairs from the last (whose error distribution contains the plaintext information).

4 Fully homomorphic encryption

A fully homomorphic encryption scheme is one that allows the performance of computa-
tions on encrypted data, in such a way that the outcome of the computation on the encrypted
data is the encryption of the string that would have been the outcome of the computation
if had been performed on the unencrypted data.

More formally, a fully homomorphic encryption scheme is a usual cipher (with key gen-
eration, encryption and decryption algorithms) along with an “evaluation” operation, which
allows to evaluate a circuit on the encrypted data without access to the secret key. After one
evaluates a circuit on the encrypted data, the output of the evaluate function is a valid ci-
phertext which can be decrypted to obtain the outcome of the circuit if it had been evaluated
on the unencrypted data.

The idea of fully homomorphic encryption is as old as public-key cryptography. Indeed
Rivest, Adleman, and Dertouzos introduced the notion in 1978, the same year RSA, the
first publicly published public key cryptosystem, was presented. At the time, it was already
understood that RSA was homomorphic: RSA respects multiplication (see Example 4.1).
However it was not until 2009 that Gentry suggested the first fully homomorphic encryp-
tion scheme. We will explain the connection between homomorphic and fully homomorphic
encryption in Section 4.1

Example 4.1. Recall the RSA encryption algorithm: Given a public key (N, e), a plaintext
m is encrypted to the ciphertext

c ≡ me (mod N).

28

Consider now two plaintexts m1,m2 and their product m1m2 ≡ m (mod N). Then the
encryption of m

cm ≡ me (mod N)

is equal to the product of the encryptions of m1 and m2:

cm ≡ me (mod N)

≡ (m1m2)
e (mod N)

≡ me
1m

e
2 (mod N)

≡ cm1cm2 (mod N).

4.1 Homomorphisms and boolean circuits

As mentioned above, an encryption algorithm is homomorphic if it supports the evaluation
of arbitrary circuits consisting only of one gate. That gate is usually addition or multiplica-
tion, but for example the Goldwasser-Micali cryptosystem allowed evaluation of an arbitrary
number of XOR gates (exclusive or gates).

In 1978 when the idea of fully homomorphic encryption was first introduced, “fully homo-
morphic” meant that the encryption algorithm supports the evaluation of arbitrary circuits
consisting of two gates, addition and multiplication. In mathematics, a map that respects
addition and multiplication is called a (ring) homomorphism; this is where the phrase “fully
homomorphic” comes from. As a note, a homomorphic encryption algorithm corresponds in
mathematics to a group homomorphism; for mathematicians all homomorphisms are homo-
morphisms, though they may be homomorphism for different objects such as groups (which
have one operation) or rings (which have two operations). In computer science “homomor-
phic” corresponds to respecting one operation and “fully homomorphic” to respecting two
operations.

It was quickly understood, however, that if one thinks of bits as elements of F2, that is,
if one defines bit addition as

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0

and bit multiplication as

0 · 0 = 0, 0 · 1 = 1 · 0 = 0, 1 · 1 = 1,

then a fully homomorphic encryption scheme would allow the evaluation of arbitrary circuits
on the encrypted bits.

Indeed, one can show that using these two binary gates (addition and multiplication),
one can create any Boolean circuit we wish. This is because together, the AND and NOT
gates are functionally complete: using AND and NOT allows the construction of any
circuit. It thus suffices to show that addition and multiplication allow us to recreate the
AND and NOT gates.

Recall that the AND gate has the following truth table:

29

Input Output
00 0
01 0
10 0
11 1

This is exactly the same as the multiplication gate! Therefore if we have an encryption
algorithm that respects multiplication, it will respect the AND gate.

The NOT gate just flips the bit; it changes 0 to 1 and 1 to 0. But notice that this is
exactly what adding the bit 1 does:

0 + 1 = 1 and 1 + 1 = 0.

Therefore if the encryption algorithm respects addition, by adding the encryption of the bit
1 to any bit, we will have applied the NOT gate.

I’m not sure exactly when the definition of “fully homomorphic” changed from meaning
“respects two operations” to “allows the evaluation of arbitrary circuits.” But now that is
what it means. Some fully homomorphic encryption schemes will show that their encryption
algorithm respects the NAND gate, instead of respecting addition and multiplication. This
is because by itself the NAND gate is functionally complete, and therefore if the encryption
respects the NAND gate it will respect any circuit. (So in particular, if an encryption
algorithm respects the NAND gate, it will automatically respects addition and multiplication,
since they are Boolean circuits.) The NAND gate has the following truth table:

Input Output
00 1
01 1
10 1
11 0

It is called NAND because it is the same as first doing AND and then doing NOT to the
output.

4.2 A brief history of homomorphic encryption

As we mentioned above, the idea of fully homomorphic encryption was put forth as early as
1978, and at that time it was already known that the RSA encryption scheme was homo-
morphic. However, at that time there was no construction of a fully homomorphic scheme,
and it was not clear whether or not it would be possible to design such a scheme.

Over the years many homomorphic schemes were designed, but the next big step was
taken twenty years later, when the Sander-Young-Yung system was published in 1999. This
scheme did allow the evaluation of both addition and multiplication, but the number of
multiplications allowed was limited.

To discuss this notion further, we introduce the concept of the depth of a circuit. The
depth of a given circuit is the maximum number of gates that a given bit needs to travel
through, or the longest path between the data input and the data output.

30

For example, consider this illustration of how to implement the XOR (exclusive or) gate
using only NOR gates (the NOR gate is a universal gate, just like the NAND gate; it can be
used by itself to create any circuit) which I found on Wikipedia:

The depth of this circuit is 4, because the maximum number of NOR gates that a bit has to
go through is 4 (notice that on the outside some copies of the bits only go through 3 NOR
gates, but the depth is the maximum number of gates).

The reason the depth of a circuit is important when studying fully homomorphic en-
cryption schemes is because we know that to be secure, a homomorphic scheme cannot be
deterministic: The encryption of a message must be random in some way, otherwise an at-
tacker could use the operation(s) on the encrypted data to recover the original plaintext.
So far, every fully homomorphic encryption scheme works by adding some “noise” to the
plaintext as part of the encryption. As long as the amount of noise is not too large, the
decryption algorithm can recover the plaintext.

However, it is a characteristic of every known fully homomorphic scheme so far that while
addition does not increase the noise too much, multiplication does. If a circuit performs too
many multiplications on the input data, when we apply the circuit to the encrypted data
the multiplications will add too much noise and at the end the decryption algorithm will fail
to recover the correct answer in plaintext.

The first encryption scheme that allowed two operations, the one proposed by Sander,
Young, and Yung in 1999, had an amount of noise that grew exponentially with the number
of multiplications. For this reason, to keep the amount of noise low enough for decryption
to be correct, one could only apply circuits of logarithmic depth to the encrypted data.
An encryption scheme that supports the evaluation of both addition and multiplication, as
long as the circuit depth is logarithmic in the number of input bits is called somewhat
homomorphic.

The next step in the development of homomorphic encryption was taken in 2005 by
Boneh, Goh and Nissim. Their encryption scheme allowed an arbitrary number of additions
but only one multiplication. However, this was an improvement on the Sander-Young-Yung
since the noise did not increase exponentially with the multiplication, which greatly improved
the efficiency of the scheme.

Finally in 2009, Gentry showed how to bootstrap a somewhat homomorphic encryption
scheme so that it becomes fully homomorphic. This was the topic of Monday’s lecture, and

31

we refrain from repeating the information here. A good read on this topic, from which my
presentation was inspired is the article Computing arbitrary functions of encrypted data by
Craig Gentry, which I have posted on our website. In these notes we will simply say that
the bootstrapping operation allows one to “refresh” the encrypted data to reduce the noise.
In other words, after performing some multiplications, which have made the noise increase,
one refreshes the ciphertext using the bootstrapping operation so that the noise is reduced
to allow for more multiplications.

We note that the bootstrapping operation is incredibly time-consuming. This has been
improved in the past 10 years, but overall bootstrapping is still considered expensive. Be-
cause of this, researchers have developed leveled fully homomorphic encryption schemes,
which allow the evaluation of circuits of bounded depth without causing decryption errors.
The difference between somewhat homomorphic encryption and leveled fully homomorphic
encryption is that the depth of the circuits that can be evaluated correctly is independent of
the size of the input for a level fully homomorphic scheme. In applications where the num-
ber of multiplications to be performed is known in advance, it is usually more efficient to
use a leveled fully homomorphic encryption algorithm than a fully homomorphic encryption
algorithm.

32

	Computational complexity
	How to measure complexity
	Easy and hard problems

	DLP, Elgamal, and attacks
	The discrete log problem
	The Elgamal cipher
	Attacking the Elgamal cipher
	Baby steps, giant steps
	The index calculus attack
	Implications for security

	Lattice-based cryptography
	A simple lattice-based cipher
	Our new remainder
	The private and public keys
	Encryption
	Decryption
	An example

	Learning With Errors
	The LWE problems and definitions
	More lattice problems
	Regev's cipher based on LWE

	Ring-LWE
	Algebraic preliminaries
	Polynomial-LWE
	A RLWE cipher

	Fully homomorphic encryption
	Homomorphisms and boolean circuits
	A brief history of homomorphic encryption

