$\begin{array}{c} \text{Math 395 - Fall 2020} \\ \text{Quiz 11} \end{array}$

Please solve **ONE** of the three problems below:

1. Let p be a prime, let \mathbb{F}_p be the field of order p, and let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F} . Let p be a positive integer relatively prime to p and let p be the splitting field of the polynomial $f_n(x)$ in $\overline{\mathbb{F}}_p$, where

$$f_n(x) = x^n - 1.$$

- (a) Explain briefly why $[F_n : \mathbb{F}_p]$ is equal to the order of p in the multiplicative subgroup $(\mathbb{Z}/n\mathbb{Z})^{\times}$. (You can quote without proof basic facts you need about finite fields.)
- (b) If n and m are relatively prime and neither is divisible by p, is $F_{nm} = F_n F_m$?
- 2. Let q be a power of a prime, let $Gal(\mathbb{F}_{q^2}/\mathbb{F}_q) = \langle \sigma \rangle$ (note that σ has order 2). Let N be the usual norm map for this extension:

$$N \colon \mathbb{F}_{q^2}^{\times} \to \mathbb{F}_q^{\times}$$
 given by $N(x) = x\sigma(x)$.

- (a) What is the degree of the extension \mathbb{F}_{q^2} over \mathbb{F}_q ? Describe how the Frobenius automorphism for this extension acts on the elements of \mathbb{F}_{q^2} . What is its relationship to σ above?
- (b) Prove that N is surjective.
- (c) Show that $\mathbb{F}_{q^2}^{\times}$ has an element of order q+1 whose norm is 1.
- (d) Compute the following index: $[\mathbb{F}_q^{\times}: N(\mathbb{F}_q^{\times})]$.
- 3. Let K be a field with 625 elements.
 - (a) How many elements of K are primitive (field) generators for the extension K/\mathbb{F}_5 ? (Justify.)
 - (b) How many nonzero elements are generators of the multiplicative group K^{\times} ? (Justify.)
 - (c) How many nonzero elements of K satisfy $x^{75}=x$? (Justify.)
 - (d) Let F be the subfield of K with 25 elements. How many elements a in F are there such that $K = F(\sqrt{a})$?