Math 395 - Fall 2020 Quiz 10 Please solve **ONE** of the four problems below: - 1. Let ζ be a primitive 24th root of unity in \mathbb{C} , and let $K = \mathbb{Q}(\zeta)$. - (a) Describe the isomorphism type of the Galois group of K/\mathbb{Q} . - (b) Determine the number of quadratic extensions of \mathbb{Q} that are subfields of K. (You need not give generators for these subfields.) - (c) Prove that $\sqrt[4]{2}$ is not an element of K. - 2. Let n be a given positive integer and let E_{2^n} be the elementary abelian group of order 2^n (the direct product of n copies of the cyclic group of order 2). Show that there is some positive integer N such that the cyclotomic field $\mathbb{Q}(\zeta_N)$ contains a subfield F that is Galois over \mathbb{Q} with $\mathrm{Gal}(F/\mathbb{Q}) \cong E_{2^n}$, where ζ_N is a primitive Nth root of 1 in \mathbb{C} . - 3. Put $\alpha = e^{\frac{2\pi i}{7}}$, and consider the field $K = \mathbb{Q}(\alpha)$. Find an element $x \in K$ such that $[\mathbb{Q}(x):\mathbb{Q}] = 2$. (Proving that such x exists will earn you partial credit; for full credit, express x explicitly as a polynomial in α , such as $42\alpha^3 1337\alpha^5$, for example.) - 4. Let F be a field of characteristic 0 and let $f \in F[x]$ be an irreducible polynomial of degree > 1 with splitting field $E \supset F$. Define $\Omega = \{\alpha \in E : f(\alpha) = 0\}$. - (a) Let $\alpha \in \Omega$ and let m be a positive integer. If $g \in F[x]$ is the minimal polynomial of α^m over F, show that $\{\beta^m : \beta \in \Omega\}$ is the set of roots of g. - (b) Now fix $\alpha \in \Omega$ and suppose that $\alpha r \in \Omega$ for some $r \in F$. Show that, for all $\beta \in \Omega$ and integers $i \geq 0$, we have $\beta r^i \in \Omega$. Conclude that r is a root of unity. - (c) If α and r are as in (b) and if m is the multiplicative order of the root of unity r, show that $f(x) = g(x^m)$, where g is the minimal polynomial of α^m over F.