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Example We can think of M2⇥2 as “the same” as R4 if we associate in
this way.
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For instance, these are corresponding elements.
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This association persists under addition.
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Isomorphism
1.3 Definition An isomorphism between two vector spaces V and W

is a map f : V ! W that
1) is a correspondence: f is one-to-one and onto;
2) preserves structure: if ~v1,~v2 2 V then

f(~v1 +~v2) = f(~v1) + f(~v2)

and if ~v 2 V and r 2 R then

f(r~v) = rf(~v)

(we write V

⇠= W, read “V is isomorphic to W”, when such a map
exists).



How-to
To verify that a function f : V ! W between two vector spaces is

an isomorphism, do these four.
I To show that f is one-to-one, assume that ~v1,~v2 2 V are such

that f(~v1) = f(~v2) and derive that ~v1 = ~v2.
I To show that f is onto, assume that ~w 2 W and find a ~v 2 V such

that f(~v) = ~w.
I To show that f preserves addition, check that for all ~v1,~v2 2 V

we have f(~v1 +~v2) = f(~v1) + f(~v2).
I To show that f preserves scalar multiplication, check that for all

~v 2 V and r 2 R we have f(r ·~v) = r · f(~v).
The intuition behind the first two is to ensure that the spaces
correspond: for each member of W there exactly one associcated
member of V. For the latter two, we’ve seen some initial discussion
above, and the next section develops the ideas at length.



Example The space of quadratic polynomials P2 is isomorphic to R3

under this map.
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Here are two examples of the action of f.
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To verify that f is an isomorphism we must check condition (1), that
f is a correspondence, and condition (2), that f preserves structure.



The first part of (1) is that f is one-to-one. We usually verify
one-to-one-ness by supposing that the function yields the same output
on two inputs f(a0 + a1x+ a2x

2) = f(b0 + b1x+ b2x
2) and from that

derive that the two inputs must be equal. The definition of f gives
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and two column vectors are equal only if their entries are equal
a0 = b0, a1 = b1, and a2 = b2. Thus the original inputs are equal
a0 + a1x+ a2x

2 = b0 + b1x+ b2x
2. So f is one-to-one.

The second part of (1) is that f is onto. We usually verify onto-ness
by considering an element of the codomain
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and producing an element of the domain that maps to it. Observe
that ~w is the image under f of the member ~v = a0 + a1x + a2x

2 of
the domain. Thus f is onto.



Condition (2) also has two halves. First we must show that f

preserves addition. Consider f acting on the sum of two elements of
the domain.

f( (a0 + a1x+ a2x
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which gives

= f(a0 + a1x+ a2x
2) + f(b0 + b1x+ b2x
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as required.



We finish by checking that f preserves scalar multiplication. This
is similar to the check for addition.

r · f(a0 + a1x+ a2x
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= f( (ra0) + (ra1)x+ (ra2)x
2 )

So the function f is an isomorphism. Because there is an
isomorphism, the two spaces are isomorphic P2

⇠= R3.



1.10 Lemma An isomorphism maps a zero vector to a zero vector.
Proof Where f : V ! W is an isomorphism, fix some ~v 2 V. Then
f(~0V) = f(0 ·~v) = 0 · f(~v) = ~

0W . QED



1.11 Lemma For any map f : V ! W between vector spaces these
statements are equivalent.

(1) f preserves structure

f(~v1 +~v2) = f(~v1) + f(~v2) and f(c~v) = c f(~v)

(2) f preserves linear combinations of two vectors

f(c1~v1 + c2~v2) = c1f(~v1) + c2f(~v2)

(3) f preserves linear combinations of any finite number of vectors

f(c1~v1 + · · ·+ cn~vn) = c1f(~v1) + · · ·+ cnf(~vn)

The book contains the proof’s details.



This result eases checking that a function preserves the structure of
a vector space, since we can do it in one step with statement (2).
Example This line through the origin
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multiplication operations that it inherits from R2.
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is an isomorphism between L and R1.



To verify that f is one-to-one suppose that f maps two members of
L to the same output.
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By the definition of f we have that t1 = t2 and so the two members of
L are equal.

To check that f is onto consider a member of the codomain, r 2 R.
There is a member of the domain L that maps to it, namely this one.
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To finish, check that f preserves structure with the lemma’s (2).
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Dimension characterizes isomorphism



2.3 Theorem Vector spaces are isomorphic if and only if they have the
same dimension.

The proof is these two lemmas.

2.4 Lemma If spaces are isomorphic then they have the same
dimension.

2.5 Lemma If spaces have the same dimension then they are
isomorphic.



Example The plane 2x - y + z = 0 through the origin in R3 is a
vector space (under the natural addition and scalar multiplication
operations).

Consider that to be a one-equation linear system
and parametrize x = (1/2)y- (1/2)z to describe
the space as a span.
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Clearly that two-vector set is linearly independent, so it is a basis.
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The basis B has two vectors so this is a dimension 2 space. For
instance, it is isomorphic to R2.



Example Consider again the plane

P = {

0

@
1/2

1

0

1

A · y+

0

@
-1/2

0

1

1

A · z | y, z 2 R }

The second lemma’s proof shows that this is an isomorphism:
the map f : P ! R2 that associates each element ~v 2 P with its
representation RepB(~v) 2 R2. Here is an example of its action.
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Another example.
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The first lemma’s proof shows that where we take the domain to
have basis vectors ~

�i then under an isomorphism f the images f(~�i)
form a basis for the range. Applied here we have
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which together make the basis E2 for R2.


