
Matrix notation for linear systems
Example We can simplify the clerical load in reducing this system

-3x + 2z= -1

x- 2y+ 2z= -5/3

-x- 4y+ 6z=-13/3

by writing it as an augmented matrix .
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The two nonzero rows give -3x+ 2z = -1 and -2y+ (8/3)z = -2.



Parametrizing -3x+ 2z = -1 and -2y+ (8/3)z = -2 gives this.

x = (1/3) + (2/3)z

y = 1+ (4/3)z

z = z

We can write the solution set in vector notation.
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Example Reducing this system

x+ 2y- z = 2

2x- y- 2z+w= 5

using the augmented matrix notation
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gives this vector description of the solution set.
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General = Particular + Homogeneous



Form of solution sets
Example This system

x+ 2y- z = 2

2x- y- 2z+w= 5

has solutions of this form.
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Taking z = w = 0 shows that the first vector is a particular solution
of the system.



3.2 Definition A linear equation is homogeneous if it has a constant
of zero, so that it can be written as a1x1 + a2x2 + · · · + anxn = 0.
Example From the above system we get this associated system of
homogeneous equations by changing the constants to 0’s.

x+ 2y- z = 0

2x- y- 2z+w= 0

The same Gauss’s Method steps reduce it to echelon form.
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The vector description of the solution set

{

0

BB@

1

0

1

0

1

CCA z+

0

BB@

-2/5

1/5

0

1

1

CCAw | z,w 2 R }

is the same as earlier but with a particular solution that is the zero
vector.


