
Example This is not a subspace of R3.
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It is a subset of R3 but it is not a vector space. One condition that it
violates is that it is not closed under vector addition: here are two
elements of T that sum to a vector that is not an element of T .
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(Another reason that it is not a vector space is that it does not satisfy
condition (6). Still another is that it does not contain the zero vector.)



Example The vector space of quadratic polynomials
P2 = {a0 + a1x+ a2x

2 | a0, a1, a2 2 R } has a subspace comprised of
the linear polynomials L = {b0 + b1x | b0, b1 2 R }. By the prior
result, to verify that we need only check closure under linear
combinations of two members.

r(b0 + b1x) + s(c0 + c1x) = (rb0 + sc0) + (rb1 + sc1)x

The right side is a linear polynomial with real coefficients, and so is a
member of L. Thus L is a subspace of P2.
Example Another subspace of P2 is the set of quadratic polynomials
having three equal coefficients.

M = {a+ ax+ ax

2 | a 2 R } = {(1+ x+ x

2)a | a 2 R }

Verify that it is a subspace by considering a linear combination of two
of its members (under the inherited operations).

r(a+ax+ax

2)+s(b+bx+bx

2) = (ra+sb)+(ra+sb)x+(ra+sb)x2

The result is a quadratic polynomial with three equal coefficients and
so M is closed under linear combinations.



Each of the above examples of subspaces parametrizes the
description.
Example This set is a plane inside of R3.
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We could verify that it is a subspace by checking that it is closed
under linear combination as above. That’s easier if we first
parametrize the one-equation linear system 2x- y+ z = 0 using the
free variables y and z.
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Now we’ve described each member of P as a linear combination of
those two. Verifying that P is closed then involves taking a linear
combination of linear combinations, which gives a linear combination.



Span
2.13 Definition The span (or linear closure) of a nonempty subset S of

a vector space is the set of all linear combinations of vectors from S.

[S] = {c1~s1 + · · ·+ cn~sn | c1, . . . , cn 2 R and ~s1, . . . ,~sn 2 S}

The span of the empty subset of a vector space is its trivial subspace.

No notation for the span is completely standard. The square brackets
used here are common but so are ‘span(S)’ and ‘sp(S)’.
Example Inside the vector space of all two-wide row vectors, the
span of this one-element set

S = {(1 2) }

is this.
[S] = {(a 2a) | a 2 R } = {(1 2)a | a 2 R }



Example This is a subset of R3.

Ŝ = {

0

@
1

-1

0

1

A
,

0

@
1

1

0

1

A }

Any vector in the xy-plane is a member of the span [S] because any
such vector is a combination of the two; for instance, this system has
a solution 0
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(the top two rows gives a linear system with a unique solution). But
vectors not in the xy-plane are not in the span. For instance, this
system does not have a solution.
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2.15 Lemma In a vector space, the span of any subset is a subspace.
Proof If the subset S is empty then by definition its span is the
trivial subspace. If S is not empty then by Lemma 2.9 we need only
check that the span [S] is closed under linear combinations of pairs of
elements. For a pair of vectors from that span, ~v = c1~s1 + · · ·+ cn~sn
and ~w = cn+1~sn+1 + · · ·+ cm~sm, a linear combination

p · (c1~s1 + · · ·+ cn~sn) + r · (cn+1~sn+1 + · · ·+ cm~sm)

= pc1~s1 + · · ·+ pcn~sn + rcn+1~sn+1 + · · ·+ rcm~sm

is a linear combination of elements of S and so is an element of [S]
(possibly some of the ~si’s from ~v equal some of the ~sj’s from ~w but
that does not matter). QED


