Math 124: Fall 2016
Practice for Final Exam

vave: SO LUTION S

Time: 2 hours and 30 minutes

For each problem, you must write down all of your work carefully and legibly to receive
full credit. For each question, you must use theorems and/or mathematical reasoning to
support your answer, as appropriate.

Failure to follow these instructions will constitute a breach of the UVM Code of Academic
Integrity:

¢ You may not use a calculator or any notes or book during the exam.

¢ You may not access your cell phone during the exam for any reason; if you think that
you will want to check the time please wear a watch.

e The work you present must be your own.

e Finally, you will more generally be bound by the UVM Code of Academic Integrity,
which stipulates among other things that you may not communicate with anyone other
than the instructor during the exam, or look at anyone else’s solutions.

I understand and accept these instructions.

Signature:
Problem | Value | Score || Problem | Value | Score

1 5 9 6
2 6 10 10
3 4 11 )
4 4 12 10
5 4 13 8
6 4 14 8
7 6 15 6
8 8 16 6

\ TOTAL | 100




Problem 1 : (5 points) Let f: R* — R* be a homomorphism.

a) Suppose that f is onto. What is its rank?
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c) Again, suppose that f is one-to-one. Is it possible to know if f is onto?
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d) Suppose now that the rank of f is 3. What is the nullity of f7
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e) Finally, suppose now that f is an isomorphism. What is the rank of f? What is its
nullity?

COMoRENCM medns onto - So He kank iS Y
and. 008, —10-0NE > 5o the hul\(k’j (¢ O



Problem 2 : (6 points) For each of the following matrices, say if it is in reduced echelon
form, in echelon form only, or neither. For each, say which variables are free and which
variables are leading if the first column corresponds to z, the second column to y and the
last column to z.
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Problem 3 : (4 points) Solve the following system of linear equations. If you do find
solution(s), check your answer.

. 2i+ yn~ zz%
omamen*eal mnatriX 9% + 2y + 22 =2
R0 e SUustem
L0 S\ &2 /1O 1)
21 ol2z)} ~ |0t 216
5 12 212 /%2 \O0 2 410
-F= X= %"l"
2 o -\ | | x=2=1 ~>
6o 0 loOo 2 is free

 because 1'm So\v’mg T Like thic
‘o e eedwed echelon foem

Cowtion (0 veckon {oem: (@\: (_\1\% . ( g))
2z \ 0

che e pwﬁwﬂaﬂ SoMhoN Check homogeneows

b g k=2, Y=-2% ,2=%
2 +t0 =7
22+ (22)=0 V
240 2V (-22)

22 +20 (_-—"),%) +1Z2=0D \/



Problem 4 : (4 points) Consider the set

2 2 -2 0 4 1 11
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Is this set linearly dependent or linearly independent?
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Problem 5 : (4 points) Consider the homogeneous system of linear equations

T— y+ z =0
Y +w=0

3z — 2y+32+w=0
-y —w=20

What is the dimension of its solution set? Support your answer by giving a basis. Be sure
to argue that you have found a basis.
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Problem 6 : (4 points) What is the dimension of the space

Ty
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Support your answer by giving a basis for the space. Be sure to argue that you have found
a basis. '
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Problem 7 : (6 points) Perform the following matrix operations if they are defined. If
they are not defined, state “not defined.”

NEE D
ThiS iS wot defined becawse mateix

adduSon g o*mﬂ defined when mateices
GRe e same Cize

W W N

b) @ (1) _31)( ——11 _{)

2.%3 - 3x3 answer will be 2X3
L—
sawme So defined

= (24373 1411 o401 R B
5+ 9 -4 43 -y+3 | 17T - -



Problem 8 : (8 points) For each of the following matrices, compute the inverse of the
matrix, if it exists.
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Problem 9 : (6 points) Compute the determinant of each of the following matrices.
Decide if the matrix is invertible or not.
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Problem 10 : (10 points) Consider the matrix

(5 0)

a) (4 points) Find all of the eigenvalues of this matrix.
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b) (6 points) For each eigenvalue, find a basis for the eigenspace. Is this matrix diagonal-
izable?
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Problem 11 : (5 points) Give a triple of numbers a, b and c such that the system

T - z=a
2z 4+ y =b
2x+2y+22=c

does not have a solution.
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Problem 12 : (10 points) Consider the following set of vectors:
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a) (2 points) Without doing any complicated computations, you should be able to argue
that these vectors are not linearly independent. Give the argument.
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Problem 13 : (8 points)

a) Is the vector (1

3> in the column space of the matrix (
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Problem 14 : (8 points) Consider the homomorphism f: R® — R? whose matrix repre-

sentation is
2 0 3
4 0 6/°
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b) Give a basis for the range space of this homomorphism. Be sure to argue that you
have found a basis.
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Problem 15 : (6 points) Consider the map

f:R3—>R3

T y+ 3z
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Prove that f is an isomorphism.
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Problem 16 : (6 points) In this problem, consider the set of all functions f: R — R,
with the usual function addition and scalar multiplication.

a) Prove that function addition is associative.
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b) Assuming that the set of all functions f: R — R with the usual function addition and
scalar multiplication is a vector space, prove that the subset
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