Math 124: Fall 2016
Practice for Exam 2

NAME: C OL\M\'O\\BS

Time: 1 hour and 15 minutes

For each problem, you must write down all of your work carefully and legibly to receive
full credit. For each question, you must use theorems and/or mathematical reasoning to
support your answer, as appropriate.

Failure to follow these instructions will constitute a breach of the UVM Code of Academic
Integrity:
e You may not use a calculator or any notes or book during the exam.
e You may not access your cell phone during the exam for any reason; if you think that
you will want to check the time please wear a watch.
e The work you present must be your own.
¢ Finally, you will more generally be bound by the UVM Code of Academic Integrity,
which stipulates among other things that you may not communicate with anyone other
than the instructor during the exam, or look at anyone else’s solutions.

I understand and accept these instructions.
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Problem 1 : (3 points)

a) What is the dimension of Myx4? You do not need to justify your answer.

4.4 =10

b) There is a unique value of k such that My, is isomorphic to R*. What is this value
of k7 You do not need to justify your answer.

K=16

¢) Now let m and n be two positive whole numbers. For what &k is R* isomorphic to

Mipsxn?

K=mn

d) There is a unique value of k such that Ps is isomorphic to R¥. What is this value of
k7 You do not need to justify your answer.

K=6
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Problem 2 : (4 points) Consider the vector space P,. For each set S, determine if S is
a basis for P,.

a) S={z~z+1,2z+ 1,22 — 1}
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Problem 3 : (4 points) Let

Represent U with respect to the following two bases:

gm={(2).()} We want d, €dz such that
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Problem 4 : (6 points) Consider the isomorphism f: P; — R? with
a + bz — Repyy 14,3 (a + bz).

Find the image of each of the following elements:
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Problem 5 : (6 points) For each pair of a vector ¥ and a matrix A, decide if ¥ is in the
row space of A.
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Problem 6 : (5 points) Give the dimension of the solution set of the homogeneous system

of linear equations
z+y+22=0
20 —y+ 2=0
dr +y+52=0

For credit you must give some mathematical justification for your answer.
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Problem 7 : (5 points) Find a basis for the row space of the matrix

Make sure to argue that you have found a basis.
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Problem 8 : (5 points) Give a basis for the subspace of P given by
V = {asz® + ayz + ap : az — 2a1 = ag}.

Make sure to argue that you have found a basis.

Subshtute to o the poly nomial
= G, X"+ + 0. —20,
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Problem 9 : (12 points) Consider the subspace

T
V:{(y) :$:3Z,y:“Z,Z€R}.
z

a) (3 points) Give a spanning set for V. 3?}
Cuostitute % Y miotne VECtOR:

3
To0R OWk e [eher: (—-:\ z
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b) (3 points) Give a basis for V. Prove that you found a basis.

fi Cingle, NON 200 Veckop. (s \'\neam% independertt.

i(}\\\} X a basiS

c¢) (6 points) Show that V' is isomorphic to R.
You can use the next page for your work if you run out of space here.
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Please use this page if you need extra space for any problem. (On the problem page, be sure
to let me know to look here, and label each problem clearly if you work on multiple problems
here.)
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