Math 124: Fall 2016
Practice for Exam 1

vave: - SOLATIONC

Time: 1 hour and 15 minutes

For each problem, you must write down all of your work carefully and legibly to receive
full credit. For each question, you must use theorems and/or mathematical reasoning to
support your answer, as appropriate.

Failure to follow these instructions will constitute a breach of the UVM Code of Academic
Integrity:

e You may not use a calculator or any notes or book during the exam.

¢ You may not access your cell phone during the exam for any reason; if you think that
you will want to check the time please wear a watch.

e The work you present must be your own.

e Finally, you will more generally be bound by the UVM Code of Academic Integrity,
which stipulates among other things that you may not communicate with anyone other
than the instructor during the exam, or look at anyone else’s solutions.

I understand and accept these instructions.

Signature:

Problem | Value | Score
1 15
2 4
3 6
4 6
5 5
6 5
7 9

TOTAL | 50




Problem 1 : (15 points) Solve the following systems of linear equations. For full credit,
check your answer when a solution exists.
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Problem 2 : (4 points) Write down the 4 x 4 matrix whose a; ; entry is (—1)"7.
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Problem 3 : (6 points) Are the following two matrices row equivalent?
0 3 -3
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Problem 4 : (6 points) Consider the following subsets of Ps, the set of polynomials of
degree less than or equal to two. Decide if each of the subsets is linearly independent or
linearly dependent.
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Problem 5 : (5 points) Let S be the set of all vectors in R® that are perpendicular to

the vector
1
3 1.
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Show that the set S is a vector subspace of R3.
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Problem 6 : (5 points) Consider the following subset of R?:
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Problem 7 : (9 points) Consider the set of real numbers R with vector addition given by
r@y=c+y+7,

where @ is the new vector addition and + is the usual addition of real numbers, and scalar

multiplication
r®c=re+7r—1),

where again all operations on the right are the usual multiplication, addition and subtraction
on real numbers.
This is a vector space.

a) Show that this vector addition is commutative.
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For your convenience, here are the operations in this vector space again: Addition is given

by
c@y=z+y+7,

and scalar multiplication is
r@c=rz+7r—1).

c¢) Show that addition of scalars distributes over scalar multiplication, i.e. that (r4s)®z =
r®TrdsRx.
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