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Abstract. The study of Weierstrass points on curves defined over fields of positive char-
acteristic is fraught with difficulties, and as such little is known about them. In this paper
we adapt an argument of Atkin’s on classical modular curves to the Drinfeld setting. More
precisely, we exhibit an infinite family of curves X0(n), for n an ideal in Fq[T ], such that the
cusp at infinity is an osculation point of the curve.

1. Introduction and Statement of Results

Given a smooth irreducible projective curve of genus g ≥ 2 defined over an algebraically
closed field of characteristic 0, we say that a point P on X is a Weierstrass point if there is a
nonzero rational function F on X with a pole of order less than or equal to g at P and regular
everywhere else. In this case, the set of such points is non-empty and finite.

Because of the geometric significance of such points, given a curve of arithmetic import
it is natural to study its Weierstrass points. Such work was done for three families that are
important to number theorists: the Fermat curves, and the modular curves X(N) and X0(N).
The interested reader should see Rohrlich’s paper [13] for a concise account of some of the
early results obtained in these cases, the most important of which are due to Atkin, Hasse,
Lehner and Newman, Ogg, Petersson, and Schoeneberg. Then in 1985 Rohrlich [14] computed
a modular form for SL2(Z) whose divisor encodes information about the reduction modulo ` of
the Weierstrass points of X0(`), for ` a prime. Building on these results, later work of Ahlgren
and Ono [1] showed that not only were the elliptic curves underlying the Weierstrass points
of X0(`) supersingular at `, which was a result already obtained by Ogg [12], but furthermore
that ∏

Q∈X0(`)

(x− j(Q))wt(Q) ≡
∏
E/F`

E supersingular

(x− j(E))g`(g`−1) (mod `),

where the quantity wt(Q) is a non-negative integer which is positive if and only if Q is a
Weierstrass point, and g` is the genus of X0(`).

The situation where the curve is defined over a field of positive characteristic is more
complicated: It can be the case that for each point P there exists a nonzero rational function
with a pole of order less than or equal to the genus of the curve at P and regular elsewhere.
Accordingly, to ensure that the set of Weierstrass points be finite, a modified definition of
Weierstrass points must be used, which will be given below. Instead, in this setting we call
osculation points the points P such that there exists a nonzero rational function with a pole
of order less than or equal to the genus of the curve at P and regular elsewhere. Under certain
circumstances – when the curve is said to have a classical gap sequence – the osculation points
and the Weierstrass points of the curve coincide, as is the case in characteristic 0.
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Recently, Baker [4] considerably generalized Ogg’s result concerning the reduction modulo
` of Weierstrass points on X0(`) which we mentioned above, and showed that under certain
hypotheses the Weierstrass points of a curve defined over a local field must correspond to
singular points on the special fiber. His argument uses a Specialization Lemma which, to
speak roughly, allows one to transport information from the dual graph associated to a regular
semistable model of the curve to the curve itself. Notably, this Specialization Lemma applies
to the characteristic 0 as well as the positive characteristic case. In addition, it allows one to
show that a tropical curve of genus g ≥ 2 has a Weierstrass point.

In this paper, we study conditions under which one can guarantee that the cusps 0 and∞ on
the Drinfeld modular curve X0(n) are osculation points, following an argument presented by
Atkin in the classical case [3]. This adds to the few results that are known about Weierstrass
points and osculation points on Drinfeld modular curves: Following from the work of Baker
we know that, as in the classical case, whenever n is a prime ideal then the Drinfeld module
underlying a Weierstrass point of X0(n) is supersingular at n. A consequence of this fact is
that if n is prime, then the cusps are never Weierstrass points. (This result is also obtained by
Armana [2], who shows that the cusps are not osculation points, from which it follows easily
that they are not Weierstrass points.) In forthcoming work [15], the author has obtained,
under certain somewhat severe hypotheses, a generalization of results obtained by Rohrlich
in [14] on Weierstrass points for the curve X0(n) for n a prime ideal, which should prove to
be an useful step towards studying how Weierstrass points are distributed in the fibers of the
reduction map above supersingular points.

To state our result, we will need the following notation: Let q ∈ Z be a power of a prime,
n be an ideal of Fq[T ], and write n =

∏
1≤i≤s pri

i for the factorization of n into prime ideals,
with each prime ideal pi generated by a monic prime polynomial of degree di and each ri ≥ 1.
Further, write qi = qdi for simplicity. Now let

κ(n) =
∏

1≤i≤s

(
q
bri/2c
i + q

b(ri−1)/2c
i

)
,

and put r(n) = 1 if all of the ri’s are even and r(n) = 0 otherwise. Then we have:

Theorem 1. Let p be a prime ideal of Fq[T ] and n be an ideal of Fq[T ]. Then a sufficient
condition for the cusps 0 and ∞ of X0(p

2n) to be osculation points is:

• q ≥ 3 and κ(np) ≥ 6(q − 1) when r(pn) = 0 and r(p2n) = 1;
• κ(np) ≥ 6(q − 1) for all other values of r(pn) and r(p2n).

Remark. As with Atkin’s result, this condition forces the product p2n to be “highly composite”.
To illustrate this, we give a few examples of (n, p) that satisfy the condition κ(np) ≥ 6(q− 1).
Write p2n = pmm for (p,m) = 1, and let p generate the ideal p. Then the condition on κ(pn)
is satisfied in the following cases:

• With no restriction on m if
– q ≥ 5 when p is of degree 2 or for any q if p if of degree ≥ 3 when m = 3, or
– p is of degree ≥ 2 when m ≥ 4, or
– whenever m ≥ 5;

• With no restriction on p if
– q4 | m for q a prime ideal distinct from p (similarly as above, a lower power is

enough if q is generated by a polynomial of high enough degree),
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– q1q2q
2
3 | m for q1, q2, and q3 distinct prime ideals,

– m is divisible by s distinct primes with 2s ≥ 3(q − 1).

As remarked above, if one could show that the curves X0(n) have a classical gap sequence,
this result would imply that the cusps 0 and ∞ are Weierstrass points of X0(n) when n is
highly composite, which would present a nice counterpoint to the result that they are never
Weierstrass points when n is prime.
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2. Preliminaries

As before we fix q a power of a prime, and denote by Fq the finite field with q elements.
We will denote by A the ring of polynomials in an indeterminate T , A = Fq[T ], and by K the
field Fq(T ), the field of fractions of A. Then for x ∈ K we may define the degree valuation
v∞(x) = deg(x) associated to the infinite place of K. We will write K∞ = Fq((1/T )) for the
completion of K at its infinite place, and

C = ˆ̄K∞

for the completed algebraic closure of K∞. Finally we will also need the set Ω = P1(C) −
P1(K∞) = C − K∞. It is possible to endow this set with the structure of a rigid analytic
space, see for example [9] for a concise reference, and we will call this space the Drinfeld upper
half-plane. The matrix group GL2(A) acts on Ω via ( a b

c d ) z = az+b
cz+d

.
We now briefly go over the definition of the curves X0(n), and refer the reader to Gekeler’s

book [7] for details and proofs. For n an ideal of A, define the congruence subgroup Γ0(n) of
GL2(A) by

Γ0(n) =

{(
a b
c d

)
∈ GL2(A) | c ≡ 0 (mod n)

}
.

Then the set Γ0(n)\Ω inherits a rigid analytic structure from Ω. Furthermore, Drinfeld shows
in [5] that there exists a smooth irreducible affine curve defined over K, which we will denote
by Y0(n), such that the rigid analytic space associated to it (see [6] for a description of this
space) is canonically isomorphic to Γ0(n)\Ω as a rigid analytic space over C. The curve Y0(n)
has a unique smooth projective model which we denote by X0(n). Throughout, we will think
of X0(n) as defined over C, and its points will be C-valued points.

As sets of C-valued points, X0(n) is obtained from Y0(n) by adding finitely many points
called cusps, and these points are in one-to-one correspondence with the set Γ0(n)\P1(K). We
can give an alternative description of this set: Write Γ̄0(n) for the image of Γ0(n) in GL2(A/n),
and (A/n)2

prim for the set of vectors in A/n × A/n that span a nonzero direct summand of

A/n×A/n. Then the set of cusps of X0(n) is in bijection with the set Γ̄0(n)\(A/n)2
prim/F×q , as

shown in [8]. If n 6= 1, we will be particularly interested in the cusp given by the equivalence
class of (1, 1) ∈ (A/n)2

prim, which we will denote by 0, and the cusp given by the equivalence

class of (1, n) ∈ (A/n)2
prim, where n is the monic generator of n, which we will denote by ∞.
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In [10], Gekeler computes the genera of these curves: Recall our notation from the Introduc-
tion: we write n =

∏
1≤i≤s pri

i for the factorization of n into prime ideals, with the generator

of pi of degree di and each ri ≥ 1. Further, write qi = qdi for simplicity. We will need the
quantities κ(n) and r(n) defined in the Introduction, as well as

ε(n) =
∏

1≤i≤s

qri−1
i (qi + 1).

Then we have

Proposition 2 (Gekeler [8]). The genus of the curve X0(n) is given by

(2.1) g(n) = 1 +
ε(n)− (q + 1)κ(n)− 2s−1(r(n)q(q − 1) + (q + 1)(q − 2))

q2 − 1
.

The curve X0(n) comes equipped with an involution denoted Wn, the Fricke involution. For
z ∈ Ω, Wn send the equivalence class of z in Γ0(n)\Ω to the equivalence class of −1

nz
, where

n is again a monic generator of the ideal n. For (a, c) ∈ (A/n)2
prim, Wn send the equivalence

class of (a, c) to the equivalence class of (a, n/c). In particular, Wn interchanges the two cusps
0 and ∞.

Finally, we review a few facts about the geometry of curves; proofs may be found in [11].
Let k be an algebraically closed field and X be a smooth irreducible projective curve over
k of genus g ≥ 2, and fix P a point of X. If there is a nonzero rational function F on X
such that F has a pole of order exactly n at P and F is regular elsewhere, we say that n is
a a pole number at P . Otherwise, if no such function exists, we say that n is a gap at P .
There are exactly g gaps at P , and if n1(P ), . . . , ng(P ) are the gaps at P , indexed such that
ni(P ) < nj(P ) if i < j, we say that (n1(P ), . . . , ng(P )) is the gap sequence at P .

For a fixed curve X, it can be shown that there exists a sequence of positive integers
(n1, . . . , ng) with ni < nj if i < j such that (n1, . . . , ng) is the gap sequence at P for all
but finitely many points of X. We call this sequence the canonical gap sequence of X. The
finitely many points that have a different gap sequence are called the Weierstrass points
of X. Rephrasing the definition given in the Introduction, if a point P has gap sequence
(n1(P ), . . . , ng(P )) and ng(P ) > g, then P is an osculation point of the curve.

We say that X has a classical gap sequence if its gap sequence is (1, . . . , g). This is always
the case if k has characteristic 0. It is clear that if X has a classical gap sequence, then
the osculation points are exactly the Weierstrass points; otherwise every point of X is an
osculation point.

3. Proof of the Theorem

We start by remarking that if F is a nonzero rational function with a pole of order m
at the cusp ∞ on X0(n) and regular elsewhere, then the function F ◦Wn is also a nonzero
rational function, and it has a pole of order m at the cusp 0 and is regular elsewhere. The
same assertion with 0 in place of ∞ and ∞ in place of 0 is also true. Therefore 0 and ∞ will
simultaneously be or not be osculation points for X0(n).

Throughout we will continue to write n for the unique monic polynomial generating the
ideal n, and write p for a prime ideal of A and p for its unique monic generator. We will also
let d = deg p.
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Lemma 3. Let p, n, p and n be as above. The index of Γ0(p
2n) in Γ0(pn) is qd.

Proof. This is easily shown by noticing that the set{(
1 0
kpn 1

)
: k ∈ A, deg k < deg p

}
,

including k = 0, is a complete set of right coset representatives. The cardinality of this set is
qd. �

Each of these coset representatives fixes the cusp 0, and as a consequence it follows that
the natural covering map X0(p

2n)→ X0(pn), which is of degree qd, is fully ramified above the
cusp 0 of X0(pn). Thus we have

Lemma 4. If F is a nonzero rational function on X0(pn) with a pole of order m at the cusp
0, and regular elsewhere, then its pullback to X0(p

2n) via the natural covering map has a pole
of order qdm at 0 and is regular elsewhere on X0(p

2n).

Whether or not 0 is an osculation point for X0(pn), there is certainly a nonzero rational
function F on X0(pn) with a pole of order less than or equal to g(pn) + 1 at 0 and regular
elsewhere, since there are only g(pn) gaps at each point. Thus the pullback of F to X0(p

2n)
has a pole of order less than or equal to qd(g(pn) + 1) at 0 and is regular elsewhere. Therefore
we have:

Lemma 5. If g(p2n) ≥ qd(g(pn)+1) then the cusps 0 and∞ of X0(p
2n) are osculation points.

Using formula (2.1), a tedious but elementary computation determines that this happens
in the cases listed in the statement of the theorem, and this completes the proof.
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